DISSERTATION

JOP: A Java Optimized Processor for
Embedded Real-Time Systems

ausgefuhrt zum Zwecke der Erlangung des akademischer&rad
eines Doktors der technischen Wissenschaften
unter der Leitung von

AO.UNIV.PROFE DIPL.-ING. DR.TECHN. ANDREAS STEININGER
und
AO.UNIV.PROF. DIPL.-ING. DR.TECHN. PETER PUSCHNER

Inst.-Nr. E182
Institut fur Technische Informatik

eingereicht an der Technischen Universitat Wien
Fakultat fur Informatik

von

DIPL.-ING. MARTIN SCHOBERL
Matr.-Nr. 8625440

Straul3engasse 2-10/2/55
1050 Wien

Wien, im Janner 2005

Abstract

Compared to software development for desktop systemsemusoftware design
practice for embedded systems is still archaic. C/C++ and agsembler are used on
top of a small real-time operating system. Many of the bemeftJava, such as safe
object references, the notion of concurrency as a rstsclaaguage construct, and
its portability, have the potential to make embedded systemch safer and simpler
to program. However, Java technology is seldom used in eddokslystems, due to
the lack of acceptable real-time performance.

This thesis presents a Java processor designed for tindesfadgle execution of
real-time tasks. JOP (Java Optimized Processor) is theemmahtation of the Java
virtual machine in hardware. JOP is intended for applicetim embedded real-time
systems and the primary implementation technology is inld pgogrammable gate
array. This research demonstrates that a hardware imptatienof the Java virtual
machine results in a small design for resource-constraieeites.

Architectural advancements in modern processor designeare average perfor-
mance with features such as pipelines, caches and brardibtfme. However, these
features complicate worst-case execution time (WCET)yaimland lead to very
conservative WCET estimates. This thesis tackles thisl@nolirom the architec-
tural perspective — by introducing a processor architedtuwhich simpler and more
accurate WCET analysis is more important than average easamance.

This thesis evaluates the issues surrounding the use afesthdava for real-time
applications. In order to overcome some of the issues wéhdstrd Java, a pro le
for real-time Java is de ned. Tight integration of the réiate scheduler with the
supporting processor result in an ef cient platform for dam embedded real-time
systems.

The proposed processor and the Java real-time pro le hame bsed with success
to implement several commercial real-time applications.

Kurzfassung

Eingebettete Systeme werden zur Zeit vorwiegend in C/C+er @dich noch in
Assembler programmiert. Viele Vorteile der Programmigaspe Java, wie z.B.
sichere Objektreferenzen, die Notation von Nebenlauigikeder Sprache und auch
die Portabilitat der Sprache, konnten die Entwicklungsér Systeme vereinfachen
und auch die Sicherheit dieser Systeme erhdohen. Jedociment die mangelnde
Echtzeitfahigkeit von Standard Java den Einsatz in eiegieten Systemen.

Diese Arbeit beschreibt den Entwurf eines echtzeitfahmigava Prozessors. JOP
(Java Optimized Processor) ist die Realisierung der Jawaavimachine in Hard-
ware. JOP ist fur den Einsatz in eingebetteten, ech&egén Systemen entworfen
und ist in einem “Field Programmable Gate Array' implememtiDiese Arbeit zeigt,
dass eine Hardwarerealisierung der Java virtual machirermam kleinen System
fuhrt, das auch fur Applikationen mit rigiden Ressousthrankungen geeignet ist.

Moderne Prozessoren weisen Architekturmerkmale auf (wBe Parallelverar-
beitung, Cachespeicher und Sprungvorhersage), die \@malle durchschnittliche
Rechenleistung erhohen. Diese Architekturmerkmalehersoen jedoch die "Worst-
Case Execution Time' (WCET) Analyse und fuhren zu pesgisiien WCET Ab-
schatzungen. Diese Arbeit geht einen anderen Weg — Es imedPeozessorarchitek-
tur vorgestellt, fur die eine einfache und genauere WCE®lyse wichtiger ist als
die durchschnittliche Rechenleistung.

Diese Arbeit untersucht die Probleme, die sich bei der Vadueg von Java in
Echtzeitsystemen ergeben. Standard Java wird um eine iSggem fur Echtzeit-
systeme erweitert. Die Integration des echtzeitfahigeme8ulers mit dem Prozessor
fuhrt zu einer ef zienten Plattform fur Java in eingeletén Echtzeitsystemen.

Der vorgestellte Prozessor und die Spezi kation fur eehfahiges Java wurden
erfolgreich in mehreren kommerziellen Echtzeitsystemingesetzt.

Contents

1 Introduction 1
1.1 Justi cation for Development 1
1.2 Embedded Real-Time Systems 2
1.3 Research Objectives and Contributions 3
1.4 OutlineoftheThesis 6
2 Java and the Java Virtual Machine 7
21 Java ... 7
2.1.1 History e e 9
2.1.2 The Java Programming Language 9
2.2 TheJava Virtual Machine 11
221 MemoryAreas 11
222 JVMlinstructionSeto 12
223 Methods 13
2.2.4 Implementation oftheJVM 14
2.3 SUmMmMary ... 16
3 Related Work 17
3.1 Hardware Translation and Coprocessors 17
311 Hard-Int. 19
3.1.2 DELFT-JAVAENgine, 19
313 JIFFY . . . 19
314 Jazelle. 20
3.15 JSTAR,JA108 21
3.1.6 A Co-Designed Virtual Machine 21
3.2 JavaProcessors 22
321 picodava.o e e e e e 22
3.22 alJileJEMCore 25
323 Cjip . . o 26

3.24 Ignite, PSC1000 26

Il CONTENTS
3.25 Moon 27
3.2.6 Lightfoot 27
3.27 LavaCORE 28
3.28 Komodo. 28
329 Femtodava 28

3.3 AdditionalComments 29
3.4 ResearchObjectives. 30
4 Restrictions of Java for Embedded Real-Time Systems 33
4.1 Java Support for Embedded Systems L. 33
4.2 Issues with Java in Embedded Systems 4 3
4.3 JavaMicroEdition 37
4.3.1 Connected Limited Device Con guration (CLDC) 73
4.3.2 Connected Device Con guration (CDC) 39
4.3.3 Additional Specications 40
4.3.4 Discussion e 40
44 Real-TimeExtensions 41
44,1 Real-TimeCoreExtension 41
4.4.2 DiscussionoftheRTCore 42
4.4.3 Real-Time SpecicationforJava 43
4.4.4 DiscussionoftheRTSJ 45
445 SubsetsoftheRTSI 51
446 Extensionstothe RTSI 53
45 Summary . .o . e e e 53
5 JOP Architecture 55
5.1 BenchmarkingtheJVM 55
5.1.1 Bytecode Frequency 55
5.1.2 Methods TypesandLength 60
51.3 Summary 64
5.2 OverviewofJOP 64
5.3 Microcode e 66
5.3.1 Translation of Bytecodes to Microcode 66
5.3.2 CompactMicrocode 68
5.3.3 InstructionSet 69
5.3.4 BytecodeExample 70
5.3.5 Flexible Implementation of Bytecodes 07
53.6 Summary 71

5.4 The Processor Pipeline 71

CONTENTS 1]

5.4.1 JavaBytecodeFetch 72
5.4.2 JOPInstructionFetch. 73
5.4.3 Decode and Address Generation 74
544 EXeCUte e e 75
545 InterruptLogic, 77
546 Summary 77
5.5 AnEfcientStack Machine. 78
5.,5.1 JavaComputingModel 78
5.5.2 Access Patternsonthe Java Stack 81
5.5.3 Common Realizations of a Stack Cache 82
554 ATwo-LevelStackCache 85
55,5 ResourceUsageCompared 91
556 Summary 93
56 HWI/SW Codesign 93
5.7 Real-Time Predictability 98
571 Interrupts 98
572 TaskSwitch. 99
5.7.3 Architectural Design Decisions 101
574 Summary e e e 103
5.8 A Time-Predictable Instruction Cache 103
5.8.1 CachePerformance 104
5.8.2 Proposed Cache Solution 107
583 WCETAnalysis 112
584 CachesCompared 113
585 Summary e 119
JOP Runtime System 121
6.1 AReal-Time ProleforEmbeddedJava 112
6.1.1 Application Structure L. 122
6.1.2 Threads 122
6.1.3 Scheduling 123
6.1.4 Memory. e 125
6.1.5 RestrictionofJdava 125
6.1.6 ImplementationResults 128
6.2 User-Dened Scheduler 128
6.2.1 ScheduleEvents 129
6.2.2 DataStructures e 129
6.2.3 Services forthe Scheduler 130

6.2.4 ClassScheduler 130

CONTENTS

6.2.5
6.2.6
6.2.7
6.2.8
6.2.9
6.2.10

Results

ClassTask
A Simple Example Scheduler
Interaction of Task, Scheduler and the JVM

Predictability
Related Work

Summary
6.3 JVM Architecture
6.3.1 Runtime Data Structures

7.1 Hardware Platforms

7.2 Resource Usage
7.3 Performance

7.4 WCET

7.4.5

Conclusions

8.1 Conclusions
8.2 Summary of Contributions
8.3 Future Research Directions

Publications

Acronyms

Microcode Path Analysis
Microcode Low-level Analysis
Bytecode Independency
WCET of Bytecodes
Evaluation
7.5 Applications
7.5.1 Motor Control
7.5.2 Further Projects
7.6 Summary

JOP Instruction Set

Bytecode Execution Time

Benchmark Results

199

223

233

CONTENTS \Y

F Cyclone FPGA Board 237

1 Introduction

This thesis introduces the concept of a Java processor fbedded real-time sys-
tems, in particular the design of a small processor for nessaonstrained devices
with time-predictable execution of Java programs. ThisJaecessor is called JOP
— which stands for Java Optimized Processor —, based on shenation that a full
native implementation of all Java bytecode instructionsotsa useful approach.

1.1 Justi cation for Development

To justify Java's use in embedded real-time systems we duarte a document pub-
lished by the National Institute of Standards and Techno[dg@]:

Java's higher level of abstraction allows for increasedypmmer productivity
(although recognizing that the tradeoff is runtime ef aigh

Java is relatively easier to master than C++

Java is relatively secure, keeping software componentduding the JVM
itself) protected from one another

Java supports dynamic loading of new classes
Java is highly dynamic, supporting object and thread aveatt runtime
Java is designed to support component integration and reuse

The Java technologies have been developed with carefuidswaton, erring
on the conservative side using concepts and techniquebdhiatbeen scruti-
nized by the community

The Java programming language and Java platforms suppaitatipn porta-
bility

The Java technologies support distributed applications

Java provides well-de ned execution semantics

2 1 INTRODUCTION

Based on the NIST document, the Real-Time for Java Expedspdras published
the Real Time Speci cation for Java (RTSJ) [8] to add reaidiextensions to Java.

Despite the above, to date Java is rarely used in embeddeithnessystems. High
resource requirements for the Java virtual machine andedigiable real-time be-
havior are the main issues surrounding the use of Java foeddelol systems. This
thesis addresses both issues, and the proposed Java pronakes a strong case for
the use of Java in embedded systems.

1.2 Embedded Real-Time Systems

An embedded system is a special-purpose computer systers thart of a larger
system or machine. An embedded system is designed to pegfaranrow range of
functions with no, or minimal user intervention.

Since many embedded systems are produced in large quantiie need to re-
duce costs is a major concern. Embedded systems often lggweant energy con-
straints, and many are battery-powered. As a result of tbesstraints, embedded
systems use a slow processor and small memory size to maicoizts and energy
consumption.

Embedded systems interact with the environment and oftes togoroduce output
within a given timeframe. Therefore, most embedded systmmseal-time systems.
Here is a general de nition of a real-time system (John An&taic [88]):

In real-time computing the correctness of the system depant only
on the logical result of the computation but also on the titngtach the
result is produced.

However, it should be noted that ‘real-time' does not meaally fast'. In pure
real-time systems (i.e. without non real-time tasks), géhisrno additional value in
producing results earlier than required.

Embedded real-time systems often have to handle concuaskd, such as com-
munication, calculating values for a control loop, useeifégce and supervision. A
natural way to handle these concurrent jobs is to model thenmdividual tasks.
These tasks are executed on a preemptive multi-taskingray&ach task is assigned
a priority and the multi-tasking system is responsible firesluling individual tasks
according to their priority.

To ful | the time constraints for a real-time system, an apgiate schedule needs
to be found. This problem was solved in the classic paper byabd Layland [61]
on independent periodic tasks. The optimal priority agsignt for a set of tasks
is called the rate monotonic priority order, in which a taskhva shorter period is

1.3 RESEARCHOBJECTIVES ANDCONTRIBUTIONS 3

assigned a higher priority. If the Worst-Case Executiond{WwCET) of each task
is known, the schedule is feasible and all tasks will meet tteadling, if:

Ci Cs 1
—~4+ 4+ = n
T T umn)=n2r 1)

where

C; = worst-case execution time tdisk
T; = period oftask
U(n) = utilization bound fom tasks.

In theory, this test is both elegant and simple. For con@gseems, two issues have
to be solved:

There are very few systems in existence that do not requin@ramication
between tasks. As a result, tasks cannot be seen as indepamdeblocking
needs to be incorporated into the schedulability analysis.

The WCET of each task has to be known. This is not a trivial .teSknple

measurements of execution times never fully guarantee raactoralue. The
tasks therefore have to be analyzed using the correct mbtted target system.
It is almost impossible to provide an accurate and correaighof modern

processors and memory systems.

Several standard textbooks on real-time systems [51, H)dth the rstissue. JOP
is intended to resolve the second issue. It should be nottdtere are a number of
scheduling approaches and schedulability tests. Howasex rule, these approaches
all assume that the WCET of each task is known.

1.3 Research Objectives and Contributions

This thesis presents a hardware implementation of the JaitsaMMachine (JVM),
targeting small embedded systems with real-time conssraifhe processor is de-
signed from the ground up for low WCET of bytecodes, in oraegie tasks low
WCET values. The following list summarizes the researcleabjes for the pro-
posed Java processor:

1The period of a periodic task is the time between consecatitigations of the task. The deadline of
the task is assumed to be at the end of the tasks period.

4 1 INTRODUCTION

Primary Objectives:
Time-predictable Java platform for embedded real-timeéesgs
Small design that ts into a low-cost FPGA

A working processor, not merely a proposed architecture

Secondary Objectives:

Acceptable performance compared with mainstream nontireal-Java sys-
tems

A exible architecture that allows different con guratienfor different appli-
cation domains

De nition of a real-time pro le for Java

Contributions:

JOP is a stack computer with its own instruction set, calléctaoode in this thesis.
Java bytecodes are translated into microcode instructioesquences of microcode.
The difference between the JVM and JOP is best describect dsltbwing:

The JVM is a CISC stack architecture, whereas JOP is a RIS sta
architecture.

JOP will help to increase the acceptance of Java for embeddddime systems.
JOP is implemented as a soft-core in a Field Programmable Gahy (FPGA).
Using an FPGA as the processor for embedded systems is urammrbecause of the
high costs, compared with a microcontroller. However, & tiore is small enough,
unused FPGA resources can be used to implement periphdmg FRGA, resulting
in a lower chip count and hence lower overall costs.

The thesis' main contributions are as follows:

The execution time for Java bytecodes can be exactly peztlintterms of the
number of clock cycles. There is no mutual dependency betwersecutive
bytecodes. Therefore, no pipeline analysis — with posaiibleound timing
effects —is necessary. These properties greatly simplifylevel WCET anal-
ysis.

In order to Il the gap between processor speed and the memcegss time,
caches are mandatory. In Section 5.8, a novel way to orgamzastruction

1.3 RESEARCHOBJECTIVES ANDCONTRIBUTIONS 5

cache, asnethod cachgs provided. This method cache is simple to analyze
with respect to worst-case behavior and still provides atsuthial performance
gain when compared against a solution without an instrnataxhe.

The proposed processor architecture results in a pretbctabd high-
performance execution of real-time tasks in Java, withdw tesource
implications and unpredictability of a JIT-compiler.

JOP is microprogrammed using a novel way of mapping bytecademi-
crocode addresses. This mapping has zero overheads, ewamniplex byte-
codes.

A two-level stack cache, described in Section 5.5, whichtatshe embedded
memory technologies of current FPGAs and ASICs, ensuressihexecution
of basic instructions with minimum resource requiremeht#.and spill of the
stack cache is subjected to microcode control and theréfaeepredictable.

JOP is the smallest hardware implementation of the JVM albklto date.
This fact enables low-cost FPGASs to be used in embeddednsyst€he re-
source usage of JOP can be con gured to trade size agairfstripance for
different application domains.

The de nition of standard Java does not t hard real-time laggtions. There-
fore, a real-time pro le for Java (with restrictions) is deed in Section 6.1
and implemented on JOP. Tight integration of the scheduldrte hardware
that generates schedule events results in low latency aniitler of the task
dispatch.

In this pro le, hardware interrupts are represented asesymous events with
associated threads. These events are subject to the cofninel scheduler and
can be incorporated into the priority assignment and sdhbiity analysis in
the same way as normal application tasks.

One contribution made as part of this thesis is the concrepéementation of
the proposed architecture. The author is aware that it isisudlly considered
necessary to provide a complete implementation as partldsast However,
it is the opinion of the author that a simulation-only apmtoavould lead to
mistakes or small glitches. By providing a concrete impletagon, we are
not only confronted with the full complexity of real-life presses, but also
with one or more major issues that would often be generougtylaoked in
a simulation. In Section 7.5, the usage of JOP in a real-wapldlication is
described.

6 1 INTRODUCTION

1.4 Outline of the Thesis

Chapter 2 provides background information on the Java progring language and
the execution environment, the Java virtual machine, fea dgplications.

The related work is presented in Chapter 3. Different harewalutions from both
academia and industry for accelerating Java in embeddéehsysre analyzed. This
chapter concludes with the research question.

Standard Java is not suitable for the resource-constrained of embedded sys-
tems. Chapter 4 gives an overview of the different restmtiof Java for embedded
and real-time systems.

Chapter 5 is the main chapter of this thesis in which the #&chire of JOP is
described. The motivation behind different design deosiis given.

A Java processor alone is not a complete JVM. Chapter 6 thescthe runtime
environment on top of JOP, including the de nition of a réiate pro le for Java and
a framework for a user-de ned scheduler in Java.

In Chapter 7, JOP is evaluated with respect to size, perfocsrand WCET. This
is followed by a description of the rst commercial real-idapplication of JOP.

Finally, in Chapter 8, the work undertaken is reviewed amdtiajor contributions
of this thesis are presented. This chapter concludes witletithns for future research
using JOP and real-time Java.

2 Java and the Java Virtual Machine

Java technology consists of the Java language de nitiorg @itibn of the standard
library, and the de nition of an intermediate instructioat svith an accompanying
execution environment. This combination helps to makite once, run anywhere
possible.

The following chapter gives a short overview of the Java @ogning language. A
more detailed description of the Java Virtual Machine (J\@vj)l the explanation of
the JVM instruction set, the so-called bytecodes followse &xploration of dynamic
instruction counts of typical Java programs can be foundeirtiSn 5.1.

2.1 Java

Java is a relatively new and popular programming languadpe. rilain features that
have helped Java achieve success are listed below:

Simple and object oriented: ~ Java is a simple programming language that appears
very similar to C. This “look and feel' of C means that prograers that know
C, can switch to Java without dif culty. Java provides a singpl object model
with single inheritanck

Portability: To accommodate the diversity of operating environmengs,J#va com-
piler generates bytecodes — an architecture neutral ietiate format. To
guarantee platform independence, Java speci es the siztsdasic data types
and the behavior of its arithmetic operators. A Java ingtgoy the Java vir-
tual machine, is available on various platforms to help makdte once, run
anywhere' possible.

Availability: Java is not only available for different operating systeitris,available
at no cost. The runtime system and the compiler can be dodetbfrom
Sun's website for Windows, Linux and Solaris. Sophistidatievelopment
environments, such as Netbeans or Eclipse, are availatks tire GNU Public
License.

1Java hasingle inheritanceof implementation- only one class can be extended. However, a class
can implement several interfaces, which means that Javanbitiple interface inheritance

8 2 JAVA AND THE JAVA VIRTUAL MACHINE

Java Application

Java Programming Language

Java Java Class Library
Native
Interface

Java Virtual Machine

Classloader Verifier Execution

Operating System

Figure 2.1: Java system overview

Library: The complete Java system includes arich class library te@se program-
ming productivity. Besides the functionality from a C stardilibrary, it also
contains other tools, such as collection classes and a @Ukitto

Built-in multithreading: Java supports multithreading at the language level: the
library provides theThread class, the language provides the keyword
synchronized for critical sections and the runtime system provides nawnit
and condition lock primitives. The system libraries haverbevritten to be
thread-safe: the functionality provided by the librarigsavailable without
con icts due to multiple concurrent threads of execution.

Safety: Java provides extensive compile-time checking, followgdisecond level
of runtime checking. The memory management model is simplejects are
created with thenew operator. There are no explicit pointer data types and
no pointer arithmetic, but there is automatic garbage ctiie. This simple
memory management model eliminates a large number of thgrgroning
errors found in C and C++ programs. A restricted runtime remvnent, the
so-calledsandboxis available when executing small Java applications in Web
browsers.

As can be seen in Figure 2.1, Java consists of three main cenfs

1. The Java programming language as de ned in [33]

2.1 VA 9

2. The class library, de ned as part of the Java speci catidthimplementations
of Java have to contain the library de ned by Sun

3. The Java virtual machine (de ned in [60]) that loads, eexiand executes the
binary representation (thedass le) of a Java program

The Java native interface supports functions written in €e#. This combination
is sometimes calledava technologyo emphasize the fact that Java is more than just
another object-oriented language.

However, a number of issues have hindered a broad accepifidaea. The orig-
inal presentation of Java as an Internet language led to theonteption that Java
was not a general-purpose programming language. Anothstadb was the rst
implementation of the JVM as an interpreter. Execution @aJarograms wasery
slow compared to compiled C/C++ programs. Although advaités runtime tech-
nology, in particular the just-in-time compiler, have @dshe performance gap, it is
still a commaonly held view that Java is slow.

2.1.1 History

The Java programming language originated as part of a sganject to develop
software for network devices and embedded systems. In the'@@s, Java, which
was originally known as Oak [65, 67], was created as a progriagntool for a con-
sumer device that we would today call a PDA. The device (knaa/t7) was a small
SPARC-based hardware device with a tiny embedded OS. Howteee*7 was not
issued as a product and Java was of cially released in 19% ramwv language for
the Internet (to be integrated into Netscape's browser)er@ve years, Java tech-
nology has become a programming tool for desktop applicstiaveb servers and
server applications. These application domains resuttedd split of the Java plat-
form into the Java standard edition (J2SE) and the enterpdgion (J2EE) in 1999.
With every new release, the library (de ned as part of theylaage) continued to
grow. Java for embedded systems was clearly not an area Suimt@eested in pur-
suing. However, with the arrival of mobile phones, Sun adeiname interested in
this embedded market. Sun de ned different subsets of Jakiech have now been
combined into the Java Micro Edition (J2ME). A detailed dggon of the J2ME
follows in Section 4.3.

2.1.2 The Java Programming Language

The Java programming language is a general-purpose apjected language. Java
is related to C and C++, but with a number of aspects omittega & a strongly

10 2 JAVA AND THE JAVA VIRTUAL MACHINE

Type Description

boolean eithertrue or false

char 16-bit Unicode character (unsigned)
byte 8-bit integer (signed)

short 16-bit integer (signed)

int 32-bit integer (signed)

long 64-bit integer (signed)

float 32-bit oating-point (IEEE 754-1985)

double 64-bit oating-point (IEEE 754-1985)

Table 2.1: Java primitive data types

typed language, which means that type errors can be detatednpile time. Other
errors, such as wrong indices in an array, are checked atmeinihe problematfc
pointerin C and explicit deallocation of memory is completely awald The pointer

is replaced by aeferencei.e. an abstract pointer to an object. Storage for an object
is allocated from the heap during creation of the object wéth. Memory is freed by
automatic storage management, typically using a garbdigetaw. The garbage col-
lector avoids memory leaks from a missiinge() and the safety problems exposed
by dangling pointers.

The types in Java are divided into two categories: primitiyges and reference
types. Table 2.1 lists the available primitive types. Methaxal variables, class elds
and object elds contain either a primitive type value or ference to an object.

Classes and class instances, the objects, are the funddrdatg and code orga-
nization structures in Java. There are no global variabtdsirections as there are
in C/C++. Each method belongs to a class. This “everythingnbe to a class or
an object' combined with the class naming convention, agesigd by Sun, avoids
name con icts in even the largest applications.

New classes can extend exactly one superclass. Classa®othat explicitly ex-
tend a superclass become direct subclassesbjett , the root of the whole class
tree. This single inheritance model is extendedrgrfaces Interfaces are abstract
classes that only de ne method signatures and provide néeimgntation. A con-
crete class can implement several interfaces. This modeldas a simpli ed form
of multiple inheritance.

Java supports multitasking throutfireads Each thread is a separate ow of con-
trol, executing concurrently with all other threads. A twlecontains the method

2C pointers represent memory addresses as data. Pointenetit and direct access to memory leads
to common and hard-to- nd program errors.

2.2 THE JAVA VIRTUAL MACHINE 11

stack as thread local data — all objects are shared betwesadth Access con icts
to shared data are avoided by the proper useyofhronized methods or code
blocks.

Java programs are compiled to a machine-independent ligaepresentation as
de ned in [60]. Although this intermediate representatisrde ned for Java, other
programming languages (e.g. ADA [13]) can also be compitéal Java bytecodes.

2.2 The Java Virtual Machine

The Java virtual machine (JVM) is a de nition of an abstramtnputing machine that
executes bytecode programs. The JVM speci cation [60] @s three elements:

An instruction set and the meaning of those instructionse-bjttecodes

A binary format — theclass le format. A class le contains the bytecodes, a
symbol table and other ancillary information

An algorithm toverify that a class le contains valid programs

In the solution presented in this thesis, the class les am®ed, linked and trans-
formed into an internal representation before being execon JOP. This transfor-
mation is performed witllavaCodeCompact and is not executed on JOP. We will
therefore omit the description of the class le and the vesition process.

The instruction set of the JVM is stack-based. All operaitake their arguments
from the stack and put the result onto the stack. Values arsfierred between the
stack and various memory areas. We will discuss these meaneag rst, followed
by an explanation of the instruction set.

2.2.1 Memory Areas

The JVM contains various runtime data areas. Some of these are shared be-
tween threads, whereas other data areas exist separatecfothread.

Method area: The method area is shared among all threads. It contairis clats
information such as eld and method data, the code for thehodd and the
constant pool. The constant pool is a per-class table, idmgavarious kinds
of constants such as numeric values or method and eld neféerse The con-
stant pool is similar to a symbol table.

Part of this area, the code for the methods, is very frequerttessed (during
instruction fetch) and therefore is a good candidate fohicac

12 2 JAVA AND THE JAVA VIRTUAL MACHINE

Heap: The heap is the data area where all objects and arrays acataltlo The heap
is shared among all threads. A garbage collector reclaiarage for objects.

JVM stack: Each thread has a private stack area that is created at tleetsaenas
the thread. The JVM stack is a logical stack that contairleviahg elements:

1. A frame that contains return information for a method
2. Alocal variable area to hold local values inside a method
3. The operand stack, where all operations are performed

Although it is not strictly necessary to allocate all thréeneents to the same
type of memory we will see in Section 5.5 that the argumessipg mecha-
nism regulates the layout of the JVM stack.

Local variables and the operand stack are accessed asritlyoaeregisters in
a standard processor. A Java processor shall provide sarhemganechanism
of this data area.

The memory areas are similar to the various segments in ntowal processes (e.qg.
the method code is analogous to the “text' segment). Howdéveroperand stack
replaces the registers in a conventional processor.

2.2.2 JVM Instruction Set

The instruction set of the JVM contains 201 different instians [60], thebytecodes
that can be grouped into the following categories:

Load and store: Load instructions push values from the local variables dhto
operand stack. Store instructions transfer values fromstaek back to lo-
cal variables. 70 different instructions belong to thisegary. Short versions
(single byte) exist to access the rst four local variableEhere are unique
instructions for each basic typat(, long , float , double andreference).
This differentiation is necessary for the bytecode verilart is not needed dur-
ing execution. For exampléad , fload andaload all transfer one 32-bit
word from a local variable to the operand stack.

Arithmetic: The arithmetic instructions operate on the values foundherstack and
push the result back onto the operand stack. There are atithinstructions
forint , float anddouble . There is no direct support fdryte , short or
char types. These values are handledility operations and have to be con-
verted back before being stored in a local variable or anobbééd.

2.2 THE JAVA VIRTUAL MACHINE 13

Type conversion: The type conversion instructions perform numerical cosioers
between all Java types: as implicit widening conversiong. (gt to long ,
float ordouble) or explicit (by casting to a type) narrowing conversions.

Obiject creation and manipulation: Class instances and arrays (that are also ob-
jects) are created and manipulated with different insimast Objects and class
elds are accessed with type-less instructions.

Operand stack manipulation: All direct stack manipulation instructions are type-
less and operate on 32-bit or 64-bit entities on the staclaniptes of these
instructions arelup, to duplicate the top operand stack value, aopl, to re-
move the top operand stack value.

Control transfer: Conditional and unconditional branches cause the JVM te con
tinue execution with an instruction other than the one imiatety following.
Branch target addresses are speci ed relative to the duaddress with a
signed 16-bit offset. The JVM provides a complete set of thaconditions
for int values and references. Floating-point values and kyje are sup-
ported through compare instructions. These compare tigins result in an
int value on the operand stack.

Method invocation and return: ~ The different types of methods are supported by
four instructions: invoke a class method, invoke an ingtamethod, invoke
a method that implements an interface andhaokespecial ~ for an instance
method that requires special handling, suclpra@te methods or a super-
class method.

A bytecode consists of one instruction byte followed by opdl operand bytes.
The length of the operand is one or two bytes, with the folf@yviexceptions:
multianewarray contains 3 operand bytesjnvokeinterface contains 4
operand bytes, where one is redundant and one is always ekopswitch

and tableswitch (used to implement the Javavitch statement) are variable-
length instructions; andoto w andjsr _w are followed by a 4 byte branch offset,
but neither is used in practice as other factors limit thehmetsize to 65535 bytes.

2.2.3 Methods

A Javamethodis equivalent to dunctionor procedurein other languages. In object
oriented terminology thisnethodis invokedinstead ofcalled We will usemethod
andinvokein the remainder of this text. In Java and the JVM, there artypes of
methods:

14 2 JAVA AND THE JAVA VIRTUAL MACHINE

Static or class methods

Virtual methods

Interface methods

Class initialization

Constructor of the parent classiper())

For these ve types there are only four different bytecodes:

invokestatic : A class method (declarestatic) is invoked. As the target does
not depend on an object, the method reference can be resaivedd/link
time.

invokevirtual : An object reference is resolved and the corresponding rdetho

invoked. The resolution is usually done with a dispatchegi#@r class con-
taining all implemented and inherited methods. With thispdich table, the
resolution can be performed in constant time.

invokeinterface : An interface allows Java to emulate multiple inheritance. A
class can implement several interfaces, and differensetaghat have no in-
heritance relation) can implement the same interface. Exibility results
in a more complex resolution process. One method of resolus a search
through the class hierarchy that results in a variable, asgiply lengthy, exe-
cution time. A constant time resolution is possible by asisig every interface
method a unique number. Each class that implements andogerfeeds its
own table with unique positions for each interface methothefvholeappli-
cation.

invokespecial : Invokes an instance method with special handling for suassc
private , and instance initialization. This bytecode catches madffgrdnt
cases. This results in expensive checks for commoate instance meth-
ods.

2.2.4 Implementation of the JVM

There are several different ways to implement a virtual nrachThe following list
presents these possibilities and analyses how approphieyeare for embedded de-
vices.

2.2 THE JAVA VIRTUAL MACHINE 15

for (;}) f
instr = bcode[pc++];

switch (instr) f
case |ADD:
tos = stack|sp]+stack[sp 1];
Sp;
stack[sp] = tos;
break;
g

Listing 2.1: Typical JVM interpreter loop

Interpreter: The simplest realization of the JVM is a program that intetprthe
bytecode instructions. The interpreter itself is usualtitten in C and is there-
fore easy to port to a new computer system. The interpretesris compact,
making this solution a primary choice for resource-comséd systems. The
main disadvantage is the high execution overhead. Fromafcagiment of the
typical interpreter loop, as shown in Listing 2.1, we canmeiee the overhead:
The emulation of the stack in a high-level language resultthiee memory
accesses for a simpledd bytecode. The instruction is decoded through an
indirect jump. Indirect jumps are still a burden for startlaranch prediction
logic.

Just-In-Time Compilation: Interpreting JVMs can be enhanced with just-in-time
(JIT) compilers. A JIT compiler translates Java bytecodesdtive instruc-
tions during runtime. The time spent on compilation is p&the application
execution time. JIT compilers are therefore restrictedhairtoptimization ca-
pacity. To reduce the compilation overhead, current JVMsrage in mixed
mode: Java methods are executed in interpreter mode andltHeequency
is monitored. Often-called methods, the hot spots, are ¢bhempiled to native
code.

JIT compilation has several disadvantages for embeddéemnsgsnotably that
a compiler (with the intrinsic memory overhead) is necessarthe target sys-

16 2 JAVA AND THE JAVA VIRTUAL MACHINE

tem. Due to compilation during runtime, execution timesraoepredictabl@.

Batch Compilation: Java can be compiled, in advance, to the native instrucgbn s
of the target. Precompiled libraries are linked with theligggpion during run-
time. This is quite similar to C/C++ applications with shddéraries. This
solution undermines the exibility of Java: dynamic clasading during run-
time. However, this is not a major concern for embedded Byste

Hardware Implementation: A Java processor is the implementation of the JVM in
hardware. The JVM bytecode is the native instruction setiohs processor.
This solution can result in quite a small processor, as & ftezhitecture can
be implemented very ef ciently. A Java processor is memeirgient as an
interpreting JVM, but avoids the execution overhead. Thenrdesadvantage
of a Java processor is the lack of capability to execute C/@egrams.

2.3 Summary

Java is a unique combination of the language de nition, la dass library and a run-
time environment. A Java program is compiled to bytecodasdhe executed by a
Java virtual machine. Strong typing, runtime checks anidavee of pointers make
Java asafelanguage. The intermediate bytecode representation isesmplorting of
Java to different computer systems. An interpreting JVMaisyeto implement and
needs few system resources. However, the execution spiers$tom interpreting.
JVMs with a just-in-time compiler are state-of-the-art ftesktop and server sys-
tems. These compilers require large amounts of memory avel thabe ported for
each processor architecture, which means they are not shetace for embedded
systems. A Java processor is the implementation of the JVMcaascrete machine.
A Java processor avoids the slow execution model of an irdéng JVM and the
memory requirements of a compiler, thus making it an intergsexecution system
for Java in embedded systems.

3Even if the time for the compilation is known, the WCET for athm® has to include the compile
time!

3 Related Work

Two different approaches can be found to improve Java bgieeesecution by hard-
ware. The rst type operates as a Java coprocessor in cdiganwith a general-

purpose microprocessor. This coprocessor is placed im#teuction fetch path of
the main processor and translates Java bytecodes to sequehmstructions for

the host CPU or directly executes basic Java bytecodes. dielex instructions

are emulated by the main processor. Java chips in the seeabagocy replace the
general-purpose CPU. All applications therefore have tavbtten in Java. While

the rst type enables systems with mixed code capabilities, additional compo-
nent signi cantly raises costs. Table 3.1 provides an aesvwof the described Java
hardware.

Blank elds in the table indicate that the information is retailable or not ap-
plicable (e.g. for simulation-only projects). Minimum CBIthe number of clock
cycles for a simple instruction such asp. One entry, the TINI system, is not a real
Java hardware, but is included in the table since it is ofltrmrirectI)} cited as an
embedded Java processor.

3.1 Hardware Translation and Coprocessors

The simplest enhancement for Java is a translation unitiwdubstitutes the switch
statement of an interpreter JVM (bytecode decoding) thichagydware and/or trans-
lates simple bytecodes to a sequence of RISC instructioniseory.

A standard JVM interpreter contains a loop with a large dwitatement that
decodes the bytecode (see Listing 2.1). This switch statemsecompiled to an
indirect branch. The destinations of these indirect braaathange frequently and
do not bene t from branch-prediction logic. This is the maiverhead for simple
bytecodes on modern processors. The following approaafteanee the execution
of Java programs on a standard processor through the stibstiof the memory read
and switch statement with bytecode fetch and decode thrbagiware.

ITINI is a standard interpreting JVM running on an enhancesilgrocessor.
2J2ME CLDC stands for Java2 Micro Edition, Connected LimiBeice Con guration, which is
described in Section 4.3.1.

3 RELATED WORK

Type Target Size Speed| Java Min.
technology [MHz] | standard CPI
Hard-Int Translation Simulation
only
DELFT Translation Simulation
only
. Xilinx 3800 LCs,
JIFFY Translation FPGA 1KB RAM
Jazelle Co- ASIC0.181 | 12K gates 200
processor
Co- ASIC0.181 | 30K gates + J2ME
JSTAR processor | Softcore 7KB 104 CLDC?
TINI Software Enhanced Java 1.1
JVM 8051 clone subset
picoJava Processor No o 128K gates Full 1
realization + memory
. 25K gates + J2ME
aldile Processor | ASIC 0.25u ROM 100 CLDC2
. 70K gates + J2ME
Cjip Processor | ASIC 0.3%u ROM. RAM 67 CLDC2 6
. Stack pro-| Xilinx
Ignite cessor FPGA 9700 LCs
Moon Processor Altera 3660 LCs,
FPGA 4KB RAM
Lightfoot Processor Xilinx 3400 LCs 40
9 FPGA
Xilinx 3800 LCs
LavaCORE | Processor FPGA 30K gates 20
Xilinx Subset: 50
Komodo Processor FPGA 2600 LCs 20 bytecodes 4
Altera Flex Subset: 69
FemtoJava | Processor 10K 2000 LCs 4 | bytecodes, 3
16-bit ALU
Xilinx
JSM [12] Processor FPGA 3.5 | Java Card

Table 3.1: Java hardware

3.1 HARDWARE TRANSLATION AND COPROCESSORS 19

3.1.1 Hard-Int

Radhakrichnan [80] proposes an additional architectura iandard RISC proces-
sor to speed up a JVM interpreter. The architecture, calladifht, is placed be-
tween the cache and instruction fetch of the RISC proce&somple Java bytecodes
are translated to a sequence of RISC instructions. Foren&BC code, the unit
is bypassed. This architecture implements the expensiitelsstatement of a typi-
cal interpreter in hardware. A simulation of a SPARC prooesgth four execution
units shows a speedup by the factor of 2.6 over JDK 1.2 JIT 8RECjvm98. Since
the architecture is only evaluated in a software simulatibe impact of the inserted
hardware on the clock frequency of the RISC processor isamin No estimation
of the additional hardware cost for the translation unitiveg.

3.1.2 DELFT-JAVA Engine

In his thesis [32], Glossner describes a processor for mettia applications in Java.
A RISC processor is extended with DSP capabilities and Jawei s instructions.
This combination results in a very complex processor. SindplM instructions are
dynamically translated to the DELFT instruction set. Hoerewio explanation is
given as to how this is done. A new register-addressing miod@gect register ad-
dressing with auto increment or decrement, provides suppostack caching in the
register le. The translation of JVM bytecode to the DELF®iruction set maps
stack-based dependencies into pipeline dependenciesauther expects that these
dependencies can be resolved with standard techniquesisuepister renaming and
out-of-order execution. To accelerate dynamic linkingh& translation buffer cache
resolved entries from the constant pool.

The processor is validated through a C++ model. An experiwéh a synthetic
benchmark (vector multiplication) compared a stack mazhwth an ideal register
machine. The ideal register machine performs registermermgand out-of-order
execution on multiple execution units. The achieved spe&ulthis experiment was
2.7. The high-level simulation model is more a proof of cqricnd no estimation
is given for the resources needed to implement this complegessor. Since only
a restricted subset of the JVM was simulated, no Java agiplisacould be used to
estimate the expected speedup.

3.1.3 JIFFY

An interesting approach to enhance Java execution in emeldesidtems is presented
in Acher's thesis [1]. He states that JIT-compilation inta@fre is not possible on
most embedded devices because of resource constrainisy, ABIT in an FPGA,

20 3 RELATED WORK

is proposed as a solution to this problem. The compilatiashoise in the following
steps:

The Java bytecode is translated into an intermediate lgggudth three regis-
ters and a stack. The reduction to three registers is dueetéatit that bytecodes
are using a maximum of three stack operands, and it simplrasslation to CISC-
architectures with a low register count. In the next stejs itistruction sequence,
which is still stack-based, is optimized. The main effectto$ optimization is to
transform stack-based operations into register-basecites. These optimized in-
structions in the intermediate language are translatedatoeninstructions of the
target architecture in the last step.

The quality of the generated code was tested with softwargores of JIFFY for
a CISC (80586) and a RISC (Alpha 21164) architecture. Thdtieg code is about
1.1 to 7.5 times faster than interpreting Java bytecode enx®6 architecture. The
speedup is similar to Suns rst JIT compiler (sunwjit in JDKLL The compilation
time is estimated to be 50 to 70 clock cycles for one bytecdtiés is 10 times faster
than the ef cient CACAO JIT [53]. A rst prototype implemeation in an FPGA
used 3800 LCs and 8KBits RAM (80 % of a Xilinx XC2S200).

3.1.4 Jazelle

Jazelle [3] is an extension of the ARM 32-bit RISC processmnilar to the Thumb
state (a 16-bit mode for reduced memory consumption). Thell@acoprocessor is
integrated into the same chip as the ARM processor. The lzaedlbytecode decoder
logic is implemented in less than 12K gates. It acceleratesyrding to ARM, some
95% of the executed bytecodes. 140 bytecodes are execustlydin hardware,
while the remaining 94 are emulated by sequences of ARMuastms. This solu-
tion also uses code modi cation wittuick instructions to substitute certain object-
related instructions after link resolution. All Java byddes, including the emulated
sequences, are re-startable to enable a fast interruginsspime.

A new ARM instruction puts the processor into Java state e@ydes are fetched
and decoded in two stages, compared to a single stage in ARM $tour registers
of the ARM core are used to cache the top stack elements. Stakkland Il is
handled automatically by the hardware. Additional regsste reused for the Java
stack pointer, the variable pointer, the constant pool teoiand locale variable 0
(thethis pointer in methods). Keeping the complete state of the Jandenm ARM
registers simpli es its integration into existing operafisystems.

3.1 HARDWARE TRANSLATION AND COPROCESSORS 21

3.1.5 JSTAR, JA108

Nozomi's JA108 [14], previously known as JSTAR, Java copssor sits between
the native processor and the memory subsystem. JA108 $efieva bytecodes from
memory and translates them into native microprocessaictgdns. JA108 acts as a
pass-through when the core processor's native instructoa being executed. The
JA108 is targeted for use in mobile phones to increase pedoce of Java multime-
dia applications. The coprocessor is available as standgdackage or with included
memory and can be operated up to 104MHz. The resource usafefdSTAR is
known to be about 30K gates plus 45Kbits for the microcode.

3.1.6 A Co-Designed Virtual Machine

In his thesis [49], Kent proposes an interesting new formavhJcoprocessor. He
investigates hardware/software co-design for a JVM with@acontext of a desktop
workstation. The execution of the JVM is partitioned betwesm FPGA and the
host processor. An FPGA board with local memory is conneciedhe PCI bus to
the host. This solution provides an add-on acceleratorauttichanging the system.
Moreover, as the FPGA can be con gured for a different takk,add-on hardware
can be used for non-Java applications.

The critical issue in this approach is the partitioning & WM and the memory
regions between hardware and software. Not all Java byéscodn be executed in
hardware. All object-oriented bytecodes are performedftware. However, once
these bytecodes are replaced by tlugiick variants, some of them can then be ex-
ecuted in hardware. The most accessed data structurethei.method's bytecode,
execution stack and local variables, are placed in the FPG#&domemory. The
constant pool and the heap reside in the PC's main memory.softerare part of
the JVM decides during runtime which instruction sequemeesbe executed by the
hardware. Due to the high cost of a context switch, this ist&cal decision. Kent
explored various algorithms with different block sizes tal the optimum partition-
ing of the instructions between the host processor and tl&@AFRests with small
benchmarks on a simulation showed performance gains byt@ faic6 to 11, when
compared with an interpreting JVM. Kent is now working on tmacurrent use of
the FPGA and the host system to execute Java applicatiorditidkthl performance
increases are expected for multi-threaded applications.

In our view, there are two potential problems with this apgyata Firstly, the execu-
tion context for the hardware is too small. #&sokevirtual and the quick version
are implemented in the software partition, the maximumexiris one method body.
As shown in Section 5.1.2, Java methods are usually small{&89% are less than 9
bytes long), resulting in many context switches. The sedssuk is the raw speedup,

22 3 RELATED WORK

without communication overhead, of the FPGA solution. T™¥psedup is stated to
be around of 10 times greater, with the same clock frequdtiewever, FPGA clock
rate will never reach the clock rate of a general-purposeqasor. With a meaningful
design, such as a CPU, the clock rate of an FPGA is about 20ttmB6 lower. How-
ever, everyone who uses an FPGA as target technology forcegsor design faces
this problem. It is better not to try to compete against nteé@en PC technology.

3.2 Java Processors

Java Processors are primarily used in an embedded systesuchna system, Java
is the native programming language and all operating sysetated code, such as
device drivers, are implemented in Java. Java processosinaple or extended stack
architectures with an instruction set that resembles motess the bytecodes from
the JVM.

3.2.1 picoJava

Sun’s picoJava is the Java processor most often cited imnesgapers. It is used
as a reference for new Java processors and as the basisdaratesnto improving
various aspects of a Java processor. lronically, this gsmrevas never released as a
product by Sun. After Sun decided to not produce picoJavdiaos, Sun licensed
picoJava to Fujitsu, IBM, LG Semicon and NEC. However, tresapanies also did
not produce a chip and Sun nally provided the full Verilogdsounder an open-
source license.

Sun introduced the rst version of picoJava [73] in 1997. Thmecessor was tar-
geted at the embedded systems market as a pure Java proedissestricted support
of C. picoJava-1 contains four pipeline stages. A redesidjoed in 1999, known as
picoJava-Il. This is the version described below. picodaisnow freely available
with a rich set of documentation [89, 90].

Simple Java bytecodes are directly implemented in hardwaost of them execute
in one to three cycles. Other performance critical instom, for instance invoking
a method, are implemented in microcode. picoJava trapseorethaining complex
instructions, such as creation of an object, and emulatesrtstruction. To access
memory, internal registers and for cache management piaddgplements 115 ex-
tended instructions with 2-byte opcodes. These instrustiére necessary to write
system-level code to support the JVM.

Traps are generated on interrupts, exceptions and foucigin emulation. A trap
is rather expensive and has a minimum overhead of 16 clodksyc

3.2 AVA PROCESSORS 23

Memory and I/O interface

Bus Interface Unit

Instruction > Instruction Data Cache
cache RAM/tag Cache Unit Unit
P Data cache
- RAM/tag
Microcode = P Floating-
ROM g e point ROM
Stack cache >
Integer Floating Point
Unit Unit and Control

Powerdown, Clock Stack
|:| Megacells | | and Scan Unit Manager Unit

Processor Interface

Figure 3.1: Block diagram of picoJava-II (from [89])

6 clocks trap execution

n clocks trap code

2 clocks set VARS register
8 clocks return from trap

This minimum value can only be achieved if the trap tableyeistin the data cache
and the rst instruction of the trap routine is in the insttioa cache. The worst-case
interrupt latency is 926 clock cycles [90].

Figure 3.1 shows the major function units of picoJava. Theger unit decodes
and executes picoJava instructions. The instruction cach&éect-mapped, while
the data cache is two-way set-associative, both with a lire af 16 bytes. The
caches can be con gured between 0 and 16 Kbytes. An instruttiffer decouples
the instruction cache from the decode unit. The FPU is omgahas a microcode
engine with a 32-bit datapath supporting single- and doepbéeision operations.
Most single-precision operations require four cycles. Iletprecision operations
require four times the number of cycles as single-precisioerations. For low-cost
designs, the FPU can be removed and the core traps on opting-instructions to
a software routine to emulate these instructions. picopaveides a 64-entry stack
cache as aregister le. The core manages this register ke @scular buffer, with a
pointer to the top of stack. The stack management unit autoatig performs spill

24 3 RELATED WORK

A Java instruction

c=a+hb

translates to the following bytecodes:

iload_1
iload_2
iadd

istore_3

Figure 3.2: A common folding pattern that is executed in a single cycle

to and Il from the data cache to avoid over ow and under ow thfe stack buffer. To
provide this functionality the register le contains ve mmory ports. Computation
needs two read ports and one write port, the concurrentamill Il operations the
two additional read and write ports. The processor coreistnsf following six

pipeline stages:

Fetch: Fetch 8 bytes from the instruction cache or 4 bytes from tlseilerface to
the 16-byte-deep prefetch buffer.

Decode: Group and precode instructions (up to 7 bytes) from the mefbuffer.
Instruction folding is performed on up to four bytecodes.

Register: Read up to two operands from the register le (stack cache).

Execute: Execute simple instructions in one cycle or microcode fottrmycle in-
structions.

Cache: Access the data cache.
Writeback: Write the result back into the register le.

The integer unit together with the stack unit provides a rma@m, called instruction
folding, to speed up common code patterns found in stacktaotbres, as shown in
Figure 3.2. When all entries are contained in the stack ¢ableepicoJava core can
fold these four instructions to one RISC-style single cyiperation.

picoJava contains a simple mechanism to speed-up the cormmaserfor monitor
enter and exit. The two low order bits of an object refereneeuaed to indicate the

3.2 AVA PROCESSORS 25

lock holding or a request to a lock held by another thread sé&ldéts are examined by
monitorenter ~ andmonitorexit . For all other operations on the reference, these
two bits are masked out by the hardware. Hardware registatsecup to two locks
held by a single thread.

To ef ciently implement a generational or an incrementatbgae collector pi-
coJava offers hardware support for write barriers througimoery segments. The
hardware checks all stores of an object reference if theseate points to a different
segment (compared to the store address). In this case, &tggmerated and the
garbage collector can take the appropriate action. Adwitiovo reserved bits in the
object reference can be used for a write barrier trap.

The architecture of picoJava is a stack-based CISC procesptementing 341
different instructions [73] and is the most complex Javacpssor available. The
processor can be implemented [23] in about 440K gates (128Khk logic and
314K for the memory components: 284x80 bits microcode ROK192x64 bits
FPU ROM and 2x16KB caches).

3.2.2 alile JEMCore

alile's JEMCore is a direct-execution Java processor thatailable as both an IP
core and a stand alone processor [2, 37]. It is based on thé 3EM2 Java chip de-
veloped by Rockwell-Collins. JEM2 is an enhanced versiai&dil1, created in 1997
by the Rockwell-Collins Advanced Architecture Microprgser group. Rockwell-
Collins originally developed JEM for avionics applicat®ohy adapting an existing
design for a stack-based embedded processor. Rockwéih€decided not to sell
the chip on the open market. Instead, it licensed the designsvely to alJile Sys-
tems Inc., which was founded in 1999 by engineers from Roti@alins, Centaur

Technologies, Sun Microsystems, and IDT.

The core contains 24 32-bit wide registers. Six of them aegl tie cache the top
elements of the stack. The datapath consists of a 32-bit ALRR-bit barrel shifter
and the support for oating point operations (disassenddgémbly, over ow and
NaN detection). The control store is a 4K by 56 ROM to hold theratode that
implements the Java bytecode. An additional RAM controfesttan be used for
custom instructions. This feature is used to implement #sedsynchronization and
thread scheduling routines in microcode. This results w éxecution overheads
with thread-to-thread vyield of less than ope (at 100MHz). An optional Multiple
JVM Manager (MJM) supports two independent, memory prettdVMs. The two
JVMs execute time-sliced on the processor. According tie abie processor can be
implemented in 25K gates (without the microcode ROM). Thé/Mikeds additional
10K gates.

26 3 RELATED WORK

Two silicon versions of JEM exist today: the aJ-80 and th&Ggl- Both versions
comprise a JEM2 core, the MJM, 48KB zero wait state RAM andpperal compo-
nents, such as timer and UART. 16KB of the RAM is used for thialte control
store. The remaining 32KB is used for storage of the procestsgk. The aJ-100
provides a generic 8-bit, 16-bit or 32-bit external busrifaee, while the aJ-80 only
provides an 8-bit interface. The aJ-100 can be clocked up@Hz and the aJ-80
up to 66MHz. The power consumption is about 1mwW per MHz.

Since aldile was a member of the Real-Time for Java Expert;the complete
RTSJ will be available in the near future. One nice featur¢ghis processor is its
availability. A relatively cheap development system, t&¢ainp [91], was used to
compare this processor with JOP.

3.2.3 Cjip

The Cjip processor [36, 43] supports multiple instructietssallowing Java, C, C++
and assembler to coexist. Internally, the Cjip uses 72 ldewmicrocode instructions,
to support the different instruction sets. At its core, @i 16-bit CISC architecture
with on-chip 36KB ROM and 18KB RAM for xed and loadable microde. Another
1KB RAM is used for eight independent register banks, sthoffer and two stack
caches. Cijip is implemented in 0.35-micron technology asul loe clocked up to
66MHz. The logic core consumes about 20% of the 1.4-miltramsistor chip. The
Cjip has 40 program controlled 1/O pins, a high-speed 8 kitlus with hardware
DMA and an 8/16 bit DRAM interface.

The JVM is implemented largely in microcode (about 88% oflaea bytecodes).
Java thread scheduling and garbage collection are implechers processes in mi-
crocode. Microcode is also used to implement virtual penipls such as watchdog
timers, display and keyboard interfaces, sound generatatsnultimedia codecs.

Microcode instructions execute in two or three cycles. A JWMecode requires
several microcode instructions. The Cjip Java instructiehand the extensions are
described in detail in [42]. For example: a bytecode executes in 6 cycles while
aniadd takes 12 cycles. Conditional bytecode branches are exkt@utg3 to 36
cycles. Object oriented instructions sughfield , putfield oOr invokevirtual
are not part of the instruction set.

3.2.4 Ignite, PSC1000

The PSC1000 [77] is a stack processor, based on ShBoomn@hgidesigned by
Chuck Moore [68]), designed for high speed Forth applicetioThe PSC1000 was
later renamed to Ignite and promoted as a Java-processaglthit has it roots in

3.2 AVA PROCESSORS 27

Forth. The instruction set, called ROSC (Removed Operah@&mputer), is differ-
ent from Java bytecodes. A small JVM driver converts Javadnde into the stack
instruction set of the processor.

The processor contains two on-chip stacks, as usual in pootessors [52], and
additional 16 global registers. The rst elements of thecksaare directly accessi-
ble. The bottleneck of instruction fetching without a cathavoided by fetching
up to four 8-bit instructions from a 32-bit memory. To sinfiplinstruction decoding
immediate values and branch offsets are placed right aligmsuch an instruction
group. The PSC1000 is available as ASIC at 80MHz and as aceddtfor Xilinx
FPGAs (9700 LCs).

3.2.5 Moon

Vulcan ASIC's Moon processor is an implementation of the Jidun in an FPGA.
The execution model is the often-used mix of direct, micdecand trapped exe-
cution. As described in [63], a simple stack folding is impknted in order to re-
duce ve memory cycles to three for instruction sequendesgdush-push-addThe
rst version of Moon uses 3.840 LCs and 10 embedded memorgkklin an Altera
FPGA. The Moon2 processor [64] is available as an encrypted $ource for Altera
FPGAs (22% of an APEX 20K400E equates to 3660 LCs) or as VHDVerilog
source code. The minimum silicon cost is given as 27K gates KB ROM and
1KB single port RAM. The single port RAM is used to implemebbZntries of the
stack.

3.2.6 Lightfoot

The Lightfoot 32-bit core [62] is a hybrid 8/32-bit procesdmsed on the Harvard
architecture. Program memory is 8 bits wide and data mensoBp ibits wide. The
core contains a 3-stage pipeline with an integer ALU, a badter and a 2-bit
multiply step unit. There are two different stacks with tdpneents implemented as
registers and memory extension. The data stack is useddddraporary data — it is
not used to implement the JVM stack frame. As the name impiiesreturn stack
holds return addresses for subroutines and it can be usedasdiary stack. The
TOS element is also used to access memory. The processdteeiate speci es
three different instruction formats: soft bytecodes, meturnable instructions and
single-byte instructions that can be folded with a returstrirction. Soft bytecode
instructions cause the processor to branch to one of 12&doesain low program
memory, where the implementation of the soft bytecodeslessiThis operation has
a single cycle overhead and the address of the followinguagon is pushed onto

28 3 RELATED WORK

the return stack. The instruction set implies that it is mjated to write an ef cient
interpreted JVM.

The core is available in VHDL and can be implemented in less tBOK gates.
According to DCT, the performance is typically 8 times betten RISC interpreters
running at the same clock speed. The core is also provided &D# netlist for
dedicated Xilinx devices. It needs 1710 CLBs (= 3400 LCs) 2@lock RAMs. In
a Vertex-Il (2v1000-5), it can be clocked up to 40MHz.

3.2.7 LavaCORE

LavaCORE [44] is another Java processor targeted at XilP& A& architectures. It
implements a set of instructions in hardware and rmwareakhg-point operations
are not implemented. A 32x32-bit dual-ported RAM implenseategister- le. For
specialized embedded applications, a tool is provided &tyaa which subset of the
JVM instructions is used. The unused instructions can bétedhirom the design.
The core can be implemented in 1926 CLBs (= 3800 LCs) in a X4it¢2VV1000-5)
and runs at 20MHz.

3.2.8 Komodo

Komodo [95] is a multithreaded Java processor with a foagetpipeline. It is in-
tended as a basis for research on real-time scheduling onltéahmaaded micro-
controller [55]. Simple bytecodes are directly implementerhile more complex
bytecodes, such asload , are implemented as a microcode sequence. The unique
feature of Komodo is the instruction fetch unit with four eémendent program coun-
ters and status ags for four threads. A priority manageeiponsible for hardware
real-time scheduling and can select a new thread after agebdule instruction.

The rst version of Komodo in an FPGA implements a very resad subset of
the JVM (only 50 bytecodes). The design can be clocked at 20M#tbwever, the
pipeline runs at 5MHz for single cycle external memory as@w three-port access
of stack memory in one pipeline stage. The resource usadgg0li3 CLBs (= 2600
LCs) in a Xilinix XC 4036 XL.

3.2.9 FemtoJava

FemtoJava [45] is a research project to build an applicagjpeci ¢ Java proces-
sor. The bytecode usage of the embedded application iszthfnd a customized
version of FemtoJava is generated. FemtoJava implements 69 bytecode in-
structions for an 8 or 16 bit datapath. These instructioke 8 4, 7 or 14 cycles to
execute. Analysis of small applications (50 to 280 byte ¢ath@wed that between

3.3 ADDITIONAL COMMENTS 29

22 and 69 distinct bytecodes are used. The resulting resagage of the FPGA
varies between 1000 and 2000 LCs. With the reduction of titegpdth to 16 bits the
processor is not Java conformant.

3.3 Additional Comments

The two classes of hardware accelerators for Java can befaubdivided as shown
in Figure 3.3. Many of the Java processors are stack mactiiaebave been derived
from Forth processors. Two different stacks in these sieaaava processors (Cjip,
Ignite and Lightfoot) do not t very well for the JVM. Althoug stack based, Forth
is different from Java bytecode. Instruction mix in Fortlowsis about 25% call and
returns [52], so Forth processors are optimized for fadtazad return. In Java, the
percentage of call/return is only about 6% (see Section BVith subroutine exits so
common, it is no wonder that most of the Forth stack machiage b mechanism for
combining subroutine exits with other instructions andvie two stacks to avoid

the mixture of parameters and return addresses. HowewN athck frame is more

complex than in Forth (see Section 5.5) and there is no ussuithi a mechanism.
An additional return stack provides no advantage for the JVM

In Forth only the top elements can be accessed, which resuttssimple stack
design with only one access port. In the JVM parameters foethod are explicitly
pushed on the stack before invocation. These parametetbereaccessed in the
method relative to a variable pointer. This mechanism needisal ported memory
with simultaneous read and write access. These basic afiffes between Forth
and the JVM lead to a sub-optimal implementation of the JVMaoRorth based
processor.

There are problems in getting information about commemmiatiucts. When new
companies started developing Java processors, a lot aimafon was available.
This information was usually more of a presentation of thecept, nevertheless it
gave some insights into how they approached the differesigdgproblems. How-
ever, at the point at which the projects reached productiglity, this information
quietly disappeared from their websites. It was replaceith wolorful marketing
prospectuses about the wonderful world of the new Javalethabobile phones.
Only one company, adile Ltd., presented information abbeir tproduct in a ref-
ereed conference paper.

Many research projects for a Java processor in an FPGA extstamples can
be found in [45], [50] and [69]. These projects have much imown — the basic
implementation of a stack machine with integer instrudis easy. However, the
realization of the complete JVM is the hard part and theeefmeyond the scope of
these projects.

30 3 RELATED WORK

Java Hardware

Coprocessor Stack Processor
Translation Execution Forth based JVM based

Hard-Int Jazelle Cijip

DEFLT Ignite N

JIFFY Lightfoot Full Subset

JSTAR picoJava Komodo
alile FemtoJava
Moon

Figure 3.3: Java hardware

Other than the aJile processor and the Komodo project, mti@oladdresses the
problem of real-time predictability. For this reason, adlas its availability, the
alJile processor is used for comparison with JOP.

3.4 Research Objectives

In Table 3.2, features of selected Java processors are cethpaategory "Pre-
dictability' means how well the processor is time-preditéa In category "Size',
the chip size is estimated and category "Performance' maagrmge performance.
The category "JVM conformance' lists how complete the impatation of the JVM
speci cation [60] is. The “Flexibility' parameter indicas how well the processor can
be adapted to different application domains.

The assessment of the various parameters is, however, $@nsubjective as the
information is mainly derived from written documentatidn.Section 7.3, the overall
performance of various Java systems, including the aJilegsisor, is compared with
JOP.

The last column of the table shows the features requireddéx Jhis is, therefore,
our research objective in a nutshell.

Due to the great variation in execution times for a trap, Jge@ is given a double
minus in the “Predictability' category. picoJava is alse thrgest processor in the
list. However, its performance and JVM compatibility argpested to be superior to
those of other processors.

3.4 RESEARCHOBJECTIVES 31

picoJava aldile Komodo FemtoJava JOP

Predictability ++
Size + ++
Performance ++ + +
JVM conformance ++ +

Flexibility + ++ ++

Table 3.2: Feature comparison of selected Java processors

The alile processor is intended as a solution for real-tiystems. However, no
information is available about bytecode execution timestiAs processor is a com-
mercial product and has been on the market for some timegxfiscted that its JVM
implementation would conform to Java standards, as de nyeSun.

Komodos multithreading is similar to hyper-threading indam processors that
are trying to hide latencies in instruction fetching. Hoeethis feature leads to very
pessimistic WCET values (in effect rendering the perforoeagain useless). The fact
that the pipeline clock is only a quarter of the system cldsk aastes a considerable
amount of potential performance.

FemtoJava is given a double plus for exibility, due to thepbgation-dependent
generation of the processor. However, FemtoJava is onlytat J8ocessor and there-
fore not JVM compliant. The resource usage is also very higimpared to the
minimal Java subset implemented and the low performandeegbtocessor.

So far, all processors in the list perform weakly in the aré&me-predictable
execution of Java bytecodes. However, a low-level anatylsexecution times is of
primary importance for WCET analysis. Therefore, the mdijective of this thesis
is to de ne and implement a processor architecture that ipradictable as possi-
ble. However, it is equally important that this does not teisua low performance
solution. Performance shall not suffer as a result of the{predictable architecture.

The second main aim of this work is to design a small procesiiae and the re-
sulting energy consumption are a main concern in embeddstdrag. The proposed
Java processor needs to be small enough to be implementddvincast FPGA de-
vice. With this constraint, an implementation in an ASIChailso result in a very
small core that can be part of a larger system-on-a-chip.

The embedded market is diverse and one size does not t all.o\gurable
processor in which we can trade size for performance previe exibility for a
variety of application domains. The aim of the architectoifd OP is to support this
exibility.

As this thesis is more a technical than a theoretical stidyatithor believes that

32 3 RELATED WORK

it is important to demonstrate the implementation of theppsed architecture. With
a simulation, the ideas proposed cannot be veri ed to thergxtecessary. Small
details that are overlooked during simulation can rendeidaa impractical. Only
a working version (ideally in a real-world project) of theopessor can therefore
provide the con dence that the above criteria are met.

The de nition of Java does not work for hard real-time apations (described in
detail in Chapter 4). In order to prove that JOP is a viabl&qien for real-time Java,
part of this thesis looks at a de nition of a real-time profer Java.

The following list summarizes the research objectives lfier proposed Java pro-
cessor:

Primary Objectives:
Time-predictable Java platform for embedded real-timéesys
Small design that ts into a low-cost FPGA

A working processor, not merely a proposed architecture

Secondary Objectives:

Acceptable performance compared with mainstream nontireal-Java sys-
tems

A exible architecture that allows different con guratienfor different appli-
cation domains

De nition of a real-time pro le for Java

4 Restrictions of Java for Embedded
Real-Time Systems

Java was created as a part of the Green project speci callgrieembedded device,
a handheld wireless PDA. The device was never released aslagbrand Java was
launched as the new language for the Internet. Over the dava got very popular
to build desktop applications and web services. Howevebeglded systems are still
programmed in C or C++. The pragmatic approach of Java tabbjentation, the
huge standard library and enhancements over C lead to agtnatjuincrease, which
now also attracts embedded system programmers. A buittiowrrency model and
an elegant language construct to express synchronizagittvebn threads also sim-
plify typical programming idioms in this area.

On the other hand, there are some issues with Java in an estbsgstem. Em-
bedded systems are usually too small for JIT-compilatiGulteg in a slow inter-
preting execution model. Moreover, a major problem for edaleel systems, which
are usually also real-time systems, is the under specooatif the scheduler. Even
an implementation without preemption is allowed. The ititenfor thisloosede ni-
tion of the scheduler is to be able to implement the JVM on n@atforms where no
good multitasking support is available. The Real Time Spatbn for Java (RTSJ)
[8] addresses many of these problems.

This section summarizes the issues with standard Java oadelath systems and
describes various de nitions for small devices given by Suinis followed by an
overview of the two real-time extensions of Java and appresdor restricting the
RTSJ for high-integrity applications. If, and how, thesedations are suf cient
for small embedded systems in general and speci cally foP Jj®analyzed. The
missing de nition for small embedded real-time systemsravjged in Section 6.1.

4.1 Java Support for Embedded Systems

When not using the cyclic executive approach, programmirgnibedded (real-time)
systems is all about concurrent programming with time gaids. The basic func-
tions can be summarized as:

Threads

34 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

Communication
Activation

Low level hardware access

Threads and Communication Java has a built-in model for concurrency, the class
Thread . All threads share the same heap resulting in a shared meroamgnuni-
cation model. Mutual exclusion can be de ned on methods dedadocks with the
keywordsynchronized . Synchronized methods acquire a lock on the object of the
method. For synchronized code blocks, the object to be tbikexplicitly stated.

Activation Every object inherits the methodsit() ,notify() andnotifyAll()
from Object . These methods in conjunction with synchronization on thea
support activation.

The classefava.util. TimerTask andjava.util. Timer (since JDK 1.3) can
be used to schedule tasks for future execution in a backdrthuead.

4.2 |Issues with Java in Embedded Systems

Although Java has language features that simplify conotipegramming the de -
nition of these features is too vague for real-time systems.

Threads and Synchronization Java, as described in [33], de nes a very loose be-
havior of threads and scheduling. For example, the spetibnaallows even low
priority threads to preempt high priority threads. Thistpobs threads from starva-
tion in general purpose applications, but is not acceptaieal-time programming.
Wakeup of a single thread witlotify() is not precisely de nedthe choice is ar-
bitrary and occurs at the discretion of the implementatitiis not mandatory for a
JVM to deal with the priority inversion problem.

No notation of periodic activities, which are common in ewitbed systems pro-
gramming, is available with the standarbread class.

Garbage Collector ~ Garbage collection greatly simpli es programming and Belp
to avoid classic programming errors (e.g. memory leakshaigh real-time garbage
collectors evolve, they are usually avoided in hard reaktsystems. A more conser-
vative approach to memory allocation is necessary.

4.2 ISSUES WITHJAVA IN EMBEDDED SYSTEMS 35

WCET on Interfaces (OOP) Method overriding and Interfaces, the simpli ed con-
cept of multiple inheritance in Java, are the key concept¥aira to support object
oriented programming. Like function pointers in C, the dyiaselection of the ac-
tual function at runtime complicates WCET analysis. Impdemation of interface
look up usually requires a search of the class hierarchyrdinne or very large dis-
patch tables.

Dynamic Class Loading ~ Dynamic class loading requires the resolution and veri-
cation of classes. This is a function that is usually too gdex (and consumes too
much memory) for embedded devices. An upper bound of exectitine for this
function is almost impossible to predict (or too large). Shesults in the complete
avoidance of dynamic class loading in real-time systems.

Standard Library For an implementation to be Java-conformant, it must irelud
the full library (JDK). The JAR les for this library constite about 15MB (in JDK
1.3, without native libraries), which is far too large for nyaembedded systems.
Since Java was designed to be a safe language with a saf¢ieremvironment, no
classes are de ned for low-level access of hardware featufde standard library
was not de ned and coded with real-time applications in mind

Execution Model ~ The rst execution model for the JVM was an interpreter. The
interpreter is now enhanced with Just-In-Time (JIT) comatmin. Interpreting Java
bytecodes is too slow and JIT compilation is not applicableeial-time systems.
The time for the compilation process had to be included inWIH@ET, resulting in
impracticable values.

Implementation Issues ~ The problems mentioned in this section are absolute
problems for real-time systems. However, they result inowst execution model
with a higher WCET.

According to [60] the static initializers of a class C are@xed immediately be-
fore one of the following occurs: (i) an instance of C is ceelt(ii) a static method
of C is invoked or (iii) a static eld of C is used or assignedheTissue with this
de nition is that it is not allowed to invoke the static iratizers at JVM startup and
it is not so obvious when it gets invoked.

It follows that the bytecodegetstatic , putstatic , invokestatic and new
can lead to class initialization and the possibility of \WCET values. In the JVM,
it is necessary to check every execution of these bytecddbe iclass is already

36 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

public class Problem f

private static Abc a;

public static int cnt; /I implicitly set to 0
static f

/l do some class initializaion

a = new Abc(); /leven this is ok.
g

public Problem() f
++cnt;
g
g

/I anywhere in some other class, in situation,

/I when no instance of Problem has been created
/I the following code can lead to

/I the execution of the initializer

int nrOfProblems = Problem.cnt;

Listing 4.1: Class initialization can occur very late

initialized. This leads to a loss of performance and is vedan some existing im-
plementations of the JVM. For example in CACAO [54] the statitializer is called
at compilation time. Listing 4.1 shows an example of thisabem.

Synchronization is possible with methods and on code bloElegh object has a
monitor associated with it and there are two different waygdin and release own-
ership of a monitor. Bytecodesonitorenter ~ andmonitorexit ~ explicitly handle
synchronization. In other cases, synchronized methodsnar&ed in the class le
with the access ags. This means that all bytecodes for nietheocation and re-
turn must check this access ag. This results in an unnecgssarhead on methods
without synchronization. It would be preferable to encdgtsuthe bytecode of syn-
chronized methods with bytecodesnitorenter ~ andmonitorexit . This solution
is used in Suns picoJava-ll [90]. The code is manipulatedhénclass loader. Two
different ways of coding synchronization, in the bytecotteam and as access ags,
are inconsistent.

4.3 AVA MICRO EDITION 37

4.3 Java Micro Edition

The de nition of Java also includes the de nition of the dddibrary (JDK). This is a
huge library and too large for some systems. To compensate for this Sutehaesd
the Java 2 Platform, Micro Edition(J2ME) [66]. As Sun has changed the focus of
Java targets several times, the speci cations re ect thiedgh their slightly chaotic
manner. J2ME reduces the function of the JVM (e.g. no oatint support) to
make implementation easier on smaller processors. It athaces the library (API).
J2ME de nes three layers of software built upon the host atieg system of the
device:

Java Virtual Machine: This layer is just the JVM as in every Java implementation.
Sun has assumed that the JVM will be implemented on top of edpesating
system. There are no additional de nitions for the J2ME iiis tayer.

Con guration: ~ The con guration de nes the minimum set of JVM features andal
class libraries available on a particular category of desidn a way, a con g-
uration de nes the lowest common denominator of the JavHqula features
and libraries that the developers can assume to be avadald# devices.

Prole: The pro le de nes the minimum set of Application Programrgimterfaces
(APIs) available on a particular family of devices. Pro lasee implemented
upon a particular con guration. Applications are writter & particular pro le
and are thus portable to any device that supports that prodadevice can
support multiple pro les.

There is an overlap of the layecen guration andpro le: Both de ne/restrict Java
class libraries. Sun statesA pro le is an additional way of specifying the subset
of Java APIs, class libraries, and virtual machine featuteat targets a specic
family of devices. However, in the current available de nitions JVM featureg a
only speci ed incon gurations

4.3.1 Connected Limited Device Con guration (CLDC)

CLDC is a con guration for connected devices with at leas?KB of total memory
and a 16-bit or 32-bit processor. As the main target deviceselular phones, this
con guration has become very popular (Su@LDC was designed to meet the rigor-
ous memory footprint requirements of cellular phohe3he CLDC is composed of
the K Virtual Machine (KVM) and core class libraries. Theléoling features have
been removed from the Java language de nition:

1in JDK 1.4 the main runtime library, rt.jar, is 25MB.

38 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

Floating point support
Finalization

Error handling has been altered so that the JVM halts in ateimgntation-speci ¢
manner. The following features have been removed from thé:JV

Floating point support

Java Native Interface (INI)

Re ection

Finalization

Weak references

User-de ned class loaders

Thread groups and daemon threads
Asynchronous exceptions

Data typelong is optional

These restrictions are de ned in the nal version 1.0 of CLDXOhewer version (1.1)
again adds oating-point support. All currently availaldevices (as listed by Sun)
support version 1.0.

The CLDC de nes a subset of the following Java class libsari¢ava.io

java.lang , java.lang.ref and java.util . An additional library favax.
microedition.io) de nes a simpler interface for communication th@ama.io
and java.net . Examples of connections are: HTTP, datagrams, sockets and

communication ports.

A small-footprint JVM, known as K Virtual Machine (KVM), isagit of the CLDC
distribution. KVM is suitable for 16/32-bit microprocessowith a total memory
budget of about 128KB.

When implementing CLDC, one may choose to preload/prelotkesclasses. A
utility (JavaCodeCompaktombines one or more Java class les and produces a C
le that can be compiled and linked directly with the KVM.

There is only one pro le de ned under CLDC: the Mobile Infoation Device
Pro le (MIDP) de nes a user interface for LC displays, a madilayer and a game
API.

4.3 AVA MICRO EDITION 39

4.3.2 Connected Device Con guration (CDC)

The CDC de nes a con guration for devices with network contien and assumes
a minimum of a 32-bit processor and 2MB memory. CDC de nesasirictions for
the JVM. A virtual machine, the CVM, is part of the distritati The CVM expects
the following functionality from the underlying OS:

Threads

Synchronization (mutexes and condition variables)
Dynamic linking

malloc (POSIX memory allocation utility) or equivalent
Input/output (1/0) functions

Berkeley Standard Distribution (BSD) sockets

File system support

Function libraries must be thread-safe. A thread blockimg library should
not block any other VM threads.

The toolsJavaCodeCompadaind JavaMemberDependre part of the distribution.
JavaMemberDepengdenerates lists of dependencies at the class member level. T
existence oflavaCodeCompadmplies that preloading of classes is allowed in CDC.
Three pro les are de ned for CDC:

Foundation Prole is a set of Java APIs that support resource-constraineadatevi
without a standards-based GUI system. The basic classiéibriiom the Java
standard editionjgva.io , java.lang andjava.net) are supported and a
connection frameworkjgvax.microedition.io) is added.

Personal Basis Prole is a set of Java APIs that support resource-constrained de-
vices with a standards-based GUI framework based on lightweompo-
nents. It adds some parts of the Abstract Window Toolkit (AWTpport (rel-
ative to JDK 1.1 AWT).

Personal Prole completes the AWT libraries and includes support for theletpp
interface.

Although a device can support multiple pro les additionddraries for RMI and
ODBC are known asptional packages

40 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

4.3.3 Additional Speci cations

The following speci cations do not tinto the layer schemé&I2ME. However, they
are de ned in the same way as the above: subsets of the JVMunsets/extensions
of Java classes (API):

Java Card is a de nition for the resource-constrained world of smaatds. The
execution lifetime of the JVM is the lifetime of the card. T&&éM is highly
restricted (e.g. no threads, data type is optional) and de nes a different
instructions set (i.e. new bytecodes to support smallegittypes).

Java Embedded Server is an API de nition for services such as HTTP.

Personal Java was intended as a Java platform on Windows CE and is how marked
as end of life.

Java TV is an extension to produce interactive television contadtraanage digital
media. The description states that the JVM runs on top of a@RTbut no
real-time speci ¢ extensions are de ned.

Other than Sun’'s, the few speci cations that exist for endestiJava are:

leJOS [85] is a JVM for Lego Mindstorm with stronger restrictions ¢he core
classes than the CLDC.

RTDA [87] although named "Real-Time Data Access' the de niti@msists of two
parts:

An 1/O data access API speci cation applicable for realdgimnd non
real-time applications.

A minimal set of real-time extensions to enable the 1/0 datzsas also
to cover hard real-time capable response handling.

4.3.4 Discussion

Many of the speci cations (i.econ gurations andpro les) are developed using the
Java Community Process (JCP). JCP is not an open standasitryart of the open-
source concept. Although the acronym J2ME implies Javaorei (i.e. JDK 1.2
and later) almost all technologies under J2ME are still daseJDK 1.1.

Besides Java Card, CLDC is the “smallest' de nition from Suhassumes an
operating system and is quite large (the JAR le for the atass about 450KB).
There are no API de nitions for low-level hardware accesd.DC is not suitable

4.4 REAL-TIME EXTENSIONS 41

for small embedded devices. Java Card de nes a different W¥uction set and
thus compromises basic ideas of Java. A more restricteditinnwith following
features is needed:

JVM restrictions, such as in CLDC 1.0
A package for low-level hardware access
A minimum subset of core libraries

Additional pro les for different application domains

4.4 Real-Time Extensions

In 1999, a document de ning the requirements for real-tirmealwas published by
NIST [47]. Based on these requirements, two groups de netisgations for real-
time Java. A comparison of these two speci cations and a @ispn with Ada 95's
Real-Time Annex can be found in [9]. The following sectioneg an overview of
these speci cations and additional de ned restrictionghef RTSJ.

4.4.1 Real-Time Core Extension

The Real-Time Core Extension [86] is a speci cation pubdidhunder the J Consor-
tium. It is still in a draft version.

Two execution environments are de ned: @ereenvironment is the special real-
time component. It can be combined with a traditional JVM,Blaseline For com-
munication between these two domains, every Core objediNmaPls, one for the
Core domain and one for the Baseline domain. Baseline coemteican synchronize
with Core components via semaphores.

Two forms of source code are supported to annotate attabstglizedcode with
calls of static methods of special classes symtacticcode with new keywords. Syn-
tactic code has to be processed by a special compiler orquegsor.

Memory A new object hierarchy witlCoreObject as root is introduced. To over-
ride nal methods fromObject the semantics of the class loader is changed. It
replaces these methods with special named methodsdtoe®bject . A Core task

is only allowed to allocate instances ObreObject and its subclasses. These ob-
jects are allocated in a special allocation context or onstaek. The objects are
not garbage collected. However, an allocation context @aexplicit freed by the
application.

42 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

Tasks and Asynchrony Core tasks represent the analogavf.lang.Threads

All real-time tasks must extentloreTask or one of its subclasses. No interface such
asjava.lang.Runnable is de ned. Tasks are scheduled preemptive priority-based
(128 levels) with FIFO order within priorities. Time sligrcan be supported, but is
not required.

Although stop() is depreciated in Java 2 it is allowed in thereTask for the
asynchronous transfer of control (besides a chasEvent). To prevent the problem
of inconsistent objects after stopping a taskaaomic synchronizedegion defers
abortion. A special task class is de ned to implement intptrservice routines.
The code for this handler is executatbmically and must be WCET analyzable.
SporadicTask is used to implement responses to sporadic events, trigdsrén-
voking thetrigger() method of the task. No enforcement of a minimum time
between arrivals of events is available. No special evarissi types are de ned for
periodic work. The methodseep() andsleepUntil() of CoreTask can be used
to program periodic activities.

Exceptions References from thgava.lang.Throwable class hierarchy are
silently replaced by the class loader with referencesdie classes. A new scoped
exception, which needs special support from the JVM, is dd.n

Synchronization ~ Javassynchronized is only allowed orthis. To compensate for
this restriction additional synchronization objects sashsemaphores and mutexes
are de ned. Queues on monitors, locks and semaphores anétyprand FIFO or-
dered. Priority inversion is avoided by using the priorigjlimg emulation protocol.
To allow locks to be implemented without waiting queues, aCGask is not allowed
to execute a blocking operation while it holds a lock.

Helper Classes The standard representation of time is a long (64-bit) etegth
nanosecond resolution. Aime class with static methods is provided for conver-
sions. A helper class supports treating signed integerasigned values. Low-level
hardware ports can be accessedi@iRort .

4.4.2 Discussion of the RT Core

A new introduced object hierarchy and new language keywlwad to changes in
the class veri er and loader semantics. The behavior of YHd has changed, so it
would make sense to change the method3péct to tto the Core de nition. This
would result in a single object hierarchy. The restrictiarsgnchronized disables
the elegant style of expressing general synchronizatioblems in Java.

4.4 REAL-TIME EXTENSIONS 43

Although Nilsen lead the group, NewMonics PERC systems §tijports a dif-
ferent API.

4.4.3 Real-Time Speci cation for Java

The Real-Time Speci cation for Java (RTSJ) de nes a new ARthvgupport from
the JVM [8]. The following guiding principles led to the detion:

No restriction of the Java runtime environment

Backward compatibility for non-real-time Java programs

No syntactic extension to the Java language or new keywords
Predictable execution

Address current real-time system practice

Allow future implementations to add advanced features

A Reference Implementation (RI) of the RTSJ forms part ofspeci cation. The

RTSJ is backward compatible with existing non-real-timeaJarograms, which im-
plies that the RTSJ is intended to run on top of J2SE (and nd2ME). The follow-

ing section presents an overview of the RTSJ.

Threads and Scheduling The behavior of the scheduler is clearer de ned as in
standard Java. A priority-based, preemptive scheduldr atiteast 28 real-time pri-
orities is de ned as base scheduler. Additional levels)(fen the traditional Java
threads need to be available. Threads with the same pramgtgueued in FIFO order.
Additional schedulers (e.g. EDF) can be dynamically load€ke class Scheduler
and associated classes provide optional support for iégsdnalysis.

Any instances of classes that implement the interf&uhedulable are
scheduled. In the RTSRealtimeThread , NoHeapRealtimeThread , and
AsyncEventHandler are schedulable objects NoHeapRealtimeThread has
andAsyncEventHandler ~ can have a priority higher than the garbage collector. As
the available release-parameters indicate, threads #mer gieriodic or bound to
asynchronous events. Threads can be grouped togetherddharexecution cost
and deadline for a period.

44 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

Memory As garbage collection is problematic in real-time applmad, the RTSJ
de nes new memory areas:

Scoped memory is a memory area with bounded lifetime. When a scope is ahtere
(with a new thread or througénter()), all new objects are allocated in this
memory area. Scoped memory areas can be nested and sharegitaneads.
On exit of the last thread from a scope, all nalizers of tHeedted objects are
invoked and the memory area is freed.

Physical memory is used to control allocation in memories with different esx
time.

Raw memory allows byte-level access to physical memory or memory-radpfoO.

Immortal memory is a memory area shared between all threads without a garbage
collector. All objects created in this memory area have #mseslifetime as the
application (a new de nition ofmmortal).

Heap memory is the traditional garbage collected memory area.

Maximum memory usage and the maximum allocation rate peathcan be limited.
Strict assignment rules between the different memory dnass to be checked by
the implementation.

Synchronization ~ The implementation ofynchronized has to include an algo-
rithm to prevent priority inversion. The priority inhenitee protocol is the default
and the priority ceiling emulation protocol can be used @uest. Threads waiting
to enter a synchronized block are priority ordered and FIFdemd within each
priority. Wait free queues are provided for communicatiaiween instances of
java.lang.Thread andRealtimeThread

Time and Timers Classes to represent relative and absolute time with naonde
accuracy are de ned. All time parameters are split tong for milliseconds and an
int for nanoseconds within those milliseconds. Each time élijas an associated
Clock object. Multiple clocks can represent different sourcesnoé and resolution.
This allows for the reduction of queue management overhieadasks with different
tolerance for jitter. A new type, rationale time, can be usedescribe periods with
a requested resolution over a longer period (i.e. allowglgase jitter between the
points of theouter period). Timer classes can generate time-triggered eents
shot and periodic).

4.4 REAL-TIME EXTENSIONS 45

Asynchrony Program logic representing external world events is sdieedand
dispatched by the scheduler. AsyncEvent object represents an external event
(such as a POSIX signal or a hardware interrupt) or an intesrent (through call of
fire()). Event handlers are associated to these events and canie tooa regular
real-time thread or represent somethsagilar to a thread. The relationship between
events and handlers can be many-to-many. Release of hauedieibe restricted to a
minimum interarrival time.

Java's exception handling is extended to represent asgnobs transfer
of control (ATC). RealtimeThread overloads interrupt() to generate an
AsynchronousinterruptedException (AIE). The AIE is deferred until the
execution of a method that is willing to accept an ATC. Thehodtindicates this by
including AIE in its throw clause. The semanticsoafch is changed so that, even
when it catches an AIE, the AIE is still propagated until tta@pened() method
of the AIE is invoked. Timed, a subclass of AIE, simpli es the programming of
timeouts.

Support for the RTSJ Implementations of the RTSJ are still rare and under devel-
opment:
RI is the freely available reference implementation for a kisystem [93].

jRate is an open-source implementation [19] based on aheadref-tompilation
with the GNU compiler for Java.

FLEX is a compiler infrastructure for embedded systems devdlgeMIT [30].
Real-time Java is implemented with region-based memoryagement and a
scheduler framework.

OVM is an open-source framework for Java [74]. The emphasis & $viM that
is compliant with the RTSJ. RTSJ support is based on thelatims of the
complete Java application (including the library) to C ahdnt compiling it
into a native executable.

adile will support the RTSJ with CLDC 1.0 on top of the aJ-80 and @J-dhips.

4.4.4 Discussion of the RTSJ

The RTSJ is a complex speci cation leading to a big memorygaot. The follow-
ing list shows the size of the main components of the Rl onXinu

Classes in javax/realtime: 343KB

46 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

All classes in library foundation.jar: 2MB
Timesys JVM executable: 2.6MB

The RTSJ assumes an RTOS and the RI runs on a heavyweighn@X-dystem. The
RTSJ is too complex for low-end embedded systems. This aaxitplalso hampers
programming of high-integrity applications. The runtimemory allocation of the
RTSJ classes has not been documented.

Threads and Scheduling If a real-time thread is preempted by a higher priority
thread, it is not de ned if the preempted thread is placedront or back of the
waiting queue. It is not speci ed whether the default schedperforms, or has to
perform, time slicing between threads of equal priority.

Memory It would be ideal if real-time systems were able to allocdtere&mory
during the initialization phase and forbid dynamic memdtgaation in the mission
phase. However, this restricts many of Java's library fiomst

The solution to this problem in the RTSJSsopedMemory , a memory space with
limited lifetime. However, it can only be used as a paraméterthread creation
or with enter(Runnable r) . In a system without dynamic thread creation, using
scoped memory at creation time of the thread leads to the batmavior as using
immortal memory.

The syntax withenter() leads to a cumbersome programming style: for each
code part where limited lifetime memory is needed, a newschas to be de ned
and a single instance of this class allocated at initidbpatime. Trying to solve this
problem elegantly with anonymous classes, as in Listingexample from [10], p.
623), leads to an error.

On every call ofcomputation() , an object of the anonymous class (and a
LTMemory object) is allocated in immortal memory, leading to a menmleak. The
correct usage of scoped memory is shown as a code fragmetisting_4.3. The
classUseMemonly exists to execute the methegh() in scoped memory. One
instance of this class is created outside of the scoped nyemor

A simpler syntax is shown in Listing 4.4. The main drawback of this ayris
that the programmer is responsible for its correct usage.

New objects and arrays of objects have to be initialized éir thefault value after
allocation [60]. This usually results in zeroing the memairthe JVM level and leads
to variable (but linear) allocation time. This is the reagarthe typeL TMemoryArea

2This syntax isnot part of the RTSJ. Is is a suggested change and part of théimeapro le de ned
in Section 6.1.

4.4 REAL-TIME EXTENSIONS

47

import javax.realtime. ;
public class ThreadCode implements Runnable

f
private void computation()
f
final int min = 1 1024;
final int max = 1 1024,
final LTMemory myMem = new LTMemeory(min, max);
myMem.enter(new Runnable()
f
public void run()
f
/I access to temporary memory
f
g)
g
public void run()
f
computation();
g
g

Listing 4.2: Scoped memory usage with a memory leak

48

4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

class UseMem implements Runnable f

public void run() f

/I inside scoped memory
Integer[] = new Integer[100];

/I outside of scoped memory

/I in immortal? at initialization?

LTMemory mem = new LTMemory(1024, 1024);
UseMem um = new UseMem();

/I usage
computation() f
mem.enter(um);

Listing 4.3: Correct usage of scoped memory in the RTSJ

4.4 REAL-TIME EXTENSIONS 49

LTMemory myMem,

/I Create the memory object once
/[in the constructor
MyThread() f
myMem = new LTMemeory(min, max);

g
public void run() f
myMem.enter();
f /I A new code block disables access
/l to new objects in outer scope.
/I Access to temporary memory:
Abc a = new Abc();
g
myMem.exit();
g

Listing 4.4: Simpler syntax for scoped memory

50 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

in the RTSJ. As suggested in [19], this initialization cobkllumped together with
the creation time and exit time of the scoped memory. Thigli®# constant time
for allocation (and usually faster zeroing of the memory).

With the RTSJ memory areas, it is dif cult to move data fronearea to another
[70]. This results in a completely different programmingdebfrom that of standard
Java. This can result in the programmer developing his/her memory manage-
ment.

Time and Timers Why is the time split into milliseconds and nanoseconds?
In the RI, it is converted to ns for add/subtract. After allppang and convert-
ing (AbsoluteTime , HighResolutionTime , Clock and RealTimeClock) the
System.currentTimeMillis() time, with a ms resolution, is used.

Since time triggered release of tasks can be modeled witbdierthreads, the
additional concept of timers is super uous.

Asynchrony ~ An unbound AsyncEventHandler is not allowed toenter() a
scoped memory. However, it is not clear if scoped memoryldsvald as a parameter
in the construction of a handler.

An unboundAsyncEventHandler leads to the implicit start of a thread on an
event. This can (and, in the RI, does — see [19]) lead to sotist@verheads. From
the application perspective, bound and unbound event éembehave in the same
way. This is an implementation hint expressed through iiffeclasses. A consistent
way to express th@nportanceof events would be a scheduling parameter for the
minimum allowed latency of the handler.

The syntax that is used in the throws clause of a method te #tat ATC will
be accepted is misleading. Exceptiongtirows clauses of a method are usually
generatedn that method and naccepted

J2SE Library It is not specied which classes are safe to be used in
RealTimeThread and NoHeapRealTimeThread . Several operating system func-
tions can cause unbound blocking and their usage shoulddigeav The memory
allocation in standard JDK methods is not documented anid tise in immortal
memory context can lead to memory leaks.

Missing Features There is no concept such as start mission. Changing schgduli
parameters during runtime can lead to inconsistent scimgdioéhavior.

There is no provision for low-level blocking such as disaplinterrupts. This is
a common technigue in device drivers where some hardwanatipes have to be

4.4 REAL-TIME EXTENSIONS 51

atomic without affecting the priority level of the requesfithread (e.g. a low priority
thread for a ash le system shall not get preempted duringt@ewrite as the chip
internal write starts after a timeout).

On Small Systems ~ Many embedded systems are still built with 8 or 16-bit CPUs.
32-bit processors are seldom used. Java's default intggeris 32-bit, still large
enough for almost all data types needed in embedded systmesdesign decision

in the RTSJ to use (often expensive) 644bily data is questionable.

4.4.5 Subsets of the RTSJ

The RTSJ is complex to implement and applications develapitit the RTSJ are
dif cult to analyze (because of some of the sophisticateatees of the RTSJ). Var-
ious pro les have been suggested for high-integrity r@alktapplications that result
in restrictions of the RTSJ.

A Pro le for High-Integrity Real-Time Java Programs

In [79], a subset of the RTSJ for the high-integrity applimatdomain with hard real-
time constraints is proposed. It is inspired by the Ravenggale for Ada [24] and
focuses on exact temporal predictability.

Application structure: ~ The application is divided in two different phaséstializa-
tion andmission All non time-critical initialization, global object altmtions,
thread creation and startup are performed in the initiatimgphase. All classes
need to be loaded and initialized in this phase. The misdiase starts after
returning frommain() , which is assumed to execute with maximum priority.
The number of threads is xed and the assigned prioritiesaiaranchanged.

Threads: Two types of tasks are de nedPeriodic time-triggered activitieexecute
an in nite loop with at least one call ofvaitForNextPeriod() . Sporadic
activitiesare modeled with a new clasporadicEvent . A SporadicEvent
is bound to a thread and an external event on creation. Unbexsnt handlers
are not allowed. It is not clear if the event can also be trigdeby software
(invocation offire()). Arestriction for a minimum interarrival time of events
is not de ned. Timers are not supported as time-triggerdiities are well
supported by periodic threads. Asynchronous transfersmfal, overrun and
miss handles and calls &teep() are not allowed.

Concurrency: Synchronized methods with priority ceiling emulation al pro-
vide mutual exclusion to shared resources. Threads aratdigd in FIFO

52 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

order within each priority level. Sporadic events are usestieiad ofwait()
notify() andnotifyAll() for signaling.

Memory: Since garbage collection is still not time-predictablesihot supported.
This implicitly converts the traditional heap to immortalemory. Scoped
memory (TMemory) is provided for object allocation during the mission
phase.LTMemory has to be created during the initialization phase withahiti
size equal maximum size.

Implementation: For each thread and for the operations of the JVM the WCET must
be computable. Code is restricted to bound loops and bowndsiens. Anno-
tations for WCET analysis are suggested. The JVM needs ttkdhe timing
of events and thread execution. It is not stated how the Jvddishreact to a
timing error.

Ravenscar-Java

The Ravenscar-Java (RJ) pro le [56] is a restricted subs&tie@RTSJ and is based
on the work mentioned above. As the name implies it resenitéeenscar Ada [24]
concepts in Java.

To simplify the initialization phase, RJ de ndsitializer , a class that has
to be extended by the application class which contaias() . The use of time
scoped memory is further restrictedTMemory areas are not allowed to be nested
nor shared between threads. Traditional Java threadssaiogied by changing the
classjava.lang.Thread . The same is true for all schedulable objects from the
RTSJ. Two new classes are de ned:

PeriodicThread ~ whererun() gets called periodically, removing the loop
construct withwaitForNextPeriod()

SporadicEventHandler binds a single thread with a single event. The event
can be an interrupt or a software event.

Criticisms of Subsets of the RTSJ

If a new real-time pro le is de ned as a subset of the RTSJ ih&der for the pro-
grammer to nd out which functions are available or not. Thiem of compatibility
causes confusion. The use of different classes for a diffexgeci cation is clearer
and less error prone.

Ravenscar-Java, as a subset of the RTSJ, claims to be cbtapaiih the RTSJ,
in the sense that programs written according to the pro &alid RTSJ programs.

4.5 SUMMARY 53

However, mandatory usages of new classes sucte@sdicThread need an em-
ulation layer to run on an RTSJ system. In this case, it issbétt de ne complete
new classes for a subset and provide the mapping to the RTig&Jallows a clearer
distinction to be made between the two de nitions.

It is not necessary to distinguish between heap and immarahory. Without a
garbage collector, the heap implicitly equals to immortaihmory.

Objects are allocated in immortal memory in the initialiaatphase. In the mis-
sion phase, no objects should be allocated in immortal mgm8coped memory
can be entered and subsequent new objects are allocatezlsodped memory area.
Since there are no circumstances in which allocation iretivee® memory areas are
mixed, nonewlinstance() such as those in the RTSJ or Ravenscar-Java are neces-
sary.

4.4.6 Extensions to the RTSJ

The Distributed Real-Time Speci cation for Java [46] exdsrRMI within the RTSJ.
In 2000, it was accepted in the Sun Community Process as 0SIRhis speci cation
is still under development. According to [94], three levalsntegration between the
RTSJ and RMI are de ned:

Level 0: No changes in RMI and the RTSJ are necessary. The proxy tioresue
server acts as an ordinary Java thread. Real-time threadstcassume timely
delivery of the RMI request.

Level 1: RMIis extended to Real-Time RMI. The server thread is a tiead-thread
that inherits scheduling parameters from the calling tlien

Level 2: RMI and the RTSJ are extended to form the concepligifibuted real-time
threads These threads have a unique system-wide identi er and cavem
freely in the distributed system.

4.5 Summary

In this section, we described de nitions for embedded dewvigiven by Sun. Most
of these de nitions are targeted for the mobile phone masket not for classical
embedded systems.

Standard Java is under-speci ed for real-time systems. davopeting de nitions,
the "Real-Time Core Extension' and the "Real Time Speciarafor Java', address
this problem. The RTSJ has been further restricted for mgggrity applications.

54 4 RESTRICTIONS OFJAVA FOR EMBEDDED REAL-TIME SYSTEMS

A similar de nition that avoids inheritance of complex RT8asses is provided in
Section 6.1.

5 JOP Architecture

This chapter presents the architecture for JOP and the atiotivbehind the various
different design decisions we faced. First, we benchmagkthV, in order to extract
execution frequencies for the different bytecodes. Thedaeg will then guide the
processor design.

Pipelined instruction processing calls for a high memomdyédth. Caches are
needed in order to avoid bottlenecks resulting from the memory bandwidth. As
seen in Chapter 2, there are two memory areas that are friygjaesessed by the
JVM: the stack and the method area. In this chapter, we walbg@nt time-predictable
cache solutions for both areas.

5.1 Benchmarking the JVM

The rationale behind this section is best introduced wighwiarning from Computer
Architecture: A Quantitative Approach [40] p. 63:

Virtually every practicing computer architect knows Amtiahaw. De-
spite this, we almost all occasionally fall into the trap afpending
tremendous effort optimizing some aspect of a system beferenea-
sure its usage. Only when the overall speedup is unrewamtnge
recall that we should have measured the usage of that fdatfwee we
spent so much effort enhancing it!

We measured how Java programs use the bytecode instrueti@m@ explored the
typical and worst-case method sizes. Our measurementsthadreports are pre-
sented in the following sections.

5.1.1 Bytecode Frequency

The dynamic instruction frequency is the main measuren@nddtermining a pro-
cessor implementation. We can identify those instructiiwas should be fast. For
seldom-used instructions, a trade-off can be made betwedarmance and hard-
ware resources.

56 5 JOP ARCHITECTURE

Many reports have been written about JVM bytecode freqesn@.g. [34, 81,
73]). Most of these reports provide only a coarse categioizaf the bytecodes. For
example, the bytecoddisad _n (load anint from a local variable) andetfield
(fetch a eld from an object) are combined in one instructicategory. However,
these instructions are very different in terms of their iempéntation complexity. We
have chosen a ne-grained categorization of the bytecaalgait greater insight into
the bytecode usage. In Table 5.1 all 201 bytecode instngtioe listed by category.

Three different applications were run on an instrumented &/measure dynamic
bytecode frequency. The results were compared with thdtseom the above-
mentioned reports. In Table 5.2 the dynamic instructiomtdor the three different
benchmarks is shown. The last column is the average of tee thsts weighted by
the individual instructions count.

Kaffe [48] is an independent implementation of the JVM dlstred under the
GNU Public License. Kaffe was instrumented to collect datadgnamic bytecode
usage. Three different applications were used as bencknadbtain the dynamic
instruction count: JLex, KCJ and javac. JLex [6] is a lexiaahlyzer generator,
written for Java in Java. The data was collected by runnirexJkith the provided
sample.lex as the input le. KJC [31] is a Java compiler in Java, freelpitable
under the terms of the GNU General Public License. javaceas3tn Java com-
piler. Both compilers were compiling part of the KJC sourdasng the benchmark.
These benchmarks are similar to the benchmarks used inrefhents and the results
are therefore comparable. However, typical embedded agtjghs can result in a
slightly different instruction set usage pattern. Embelddpplications are usually
tightly connected with the environment and are therefoteamailable as stand-alone
programs to serve as benchmark. An embedded applicationvdsadeveloped on
JOP was adapted to serve as benchmark for Section 5.8 ante€hiap

In [25] the relationship between static and dynamic ingtomcfrequency of 19
programs from the SPECjvm98 [17] and Java Grande benchnugtsk vsere mea-
sured. The bytecodes categories were chosen differentf@above measurements,
but detailed enough to verify our own measurements. Tallelows the average
dynamic execution frequency in percemif selected bytecode categories from the
SPEC and Java Grande benchmarks, compared with the relstaisen by our mea-
surements. The numbers in bold are categories or sums gfocege that are com-
parable. The frequency of the load & const instructions 1y g@milar to that in our
measurements. However, eld access, control instructeom$ method invocations
are more frequent in our measurements. The higher countldraceess instructions
and method invocation can result from a more object orieptedramming style in

1The values do not add up to 100% as only the most signi carednyde categories are shown

5.1 BENCHMARKING THE JVM 57

Type

Bytecode

load
load (short)

store
store (short)

const
const (short)

get
put
alu

iinc
stack
array

branch

compare
switch

call

return
conversion
new

other

aload, dload, oad, iload, lload

aload, aloadl, aload2, aload3,
dload O, dload1, dload?2, dload3,

oad_0, oad_1, oad_2, oad._3,
iload.0, iload 1, iload 2, iload 3,
lload 0, lload 1, lload 2, lload 3

astore, dstore, fstore, istore, Istore

astor®, astorel, astore2, astore3,
dstore0, dstorel, dstore2, dstore3,
fstore O, fstorel, fstore2, fstore3,
istore 0, istorel, istore2, istore3,
Istore 0, Istorel, Istore?2, Istore3

bipush, Idc, Idev, Idc2.w, sipush

aconstull, dconst0, dconstl, fconstO, fconst1, fconst2,
iconst0, iconst1, iconst2, iconst3, iconst4, iconst5,
iconstml, IconstO, Iconst1

get eld, getstatic

put eld, putstatic

dadd, ddiv, dmul, dneg, drem, dsub,
fadd, fdiv, fmul, fneg, frem, fsub,

iadd, iand, idiv, imul, ineg, ior, irem, ishl, ishr, isub sior, ixor,
ladd, land, Idiv, Imul, Ineg, lor, Irem, Ishl, Ishr, Isubslor, Ixor
iinc

dup, dupx1, dupx2, dup2, dup21, dup2x2, pop, pop2, swap
aaload, aastore, baload, bastore, caload, castdoadddastore,
faload, fastore, iaload, iastore, laload, lastore, salsastore
goto, gotav, if_acmpeq, ifacmpne, ificmpeq,

if _icmpge, iticmpgt, if.icmple, if.icmplt, if_icmpne,

ifeq, ifge, ifgt, i e, i t, ifne, ifnonnull, ifnull

dcmpg, dempl, fcmpg, fempl, lcmp

lookupswitch, tableswitch

invokeinterface, invokespecial, invokestatic, ikewairtual
areturn, dreturn, freturn, ireturn, Ireturn, retur

d2f, d2i, d2l, f2d, f2i, f2l, i2b, i2c, i2d, i2l i2s, 12d, |12f, 12i
anewarray, multianewarray, new, newarray

arraylength, athrow, checkcast, instanceof, jsmwjs
monitorenter, monitorexit, nop, ret, wide

Table 5.1: The 201 Java bytecodes and their assignment to differeegaaes

58

5 JOP ARCHITECTURE

JLex KJC javac Average
load (short) 32.72 31.45 27.24 30.37
get 12.02 14.39 17.04 15.04
branch 11.26 10.40 10.71 10.49
invoke 6.87 6.31 4.24 5.77
return 6.82 6.20 4.17 5.68
load 759 419 7.48 5.09
alu 260 443 4.74 4.48
const (short) 4.61 4.26 4.74 4.39
array 422 407 3.22 3.85
put 0.78 214 3.65 2.52
iinc 1.81 238 141 2.12
stack 1.30 211 211 2.10
store (short) 261 218 171 2.06
other 163 222 1.21 1.95
const 0.85 156 2.80 1.87
store 205 085 194 1.15
conversion 0.02 0.36 0.58 0.42
switch 0.00 0.20 0.60 0.30
new 0.08 0.28 0.20 0.25
compare 0.14 0.03 0.22 0.08

Table 5.2: Dynamic bytecode frequency in %

5.1 BENCHMARKING THE JVM

59

JLex, KJC and javac

SPEC and Java Grande

Instruction Frequency Instruction Frequency
load (short) 30.37 acnst 0.07
load 5.09 aload 16.23
const (short) 4.39 fenst 0.33
const 1.87 oad 6.33
icnst 3.21
iload 18.06
load & const 41.72 44,77
get 15.04 eld 11.12
put 2.52
eld access 17.56 11.12
branch 10.49 cjump 5.67
compare 0.08 ujump 0.51
control 10.57 6.18
invoke 5.77 fcall 3.63
return 5.68 retrn 2.07

Table 5.3: Dynamic bytecode frequency compared with the measurenfrems[25]

60 5 JOP ARCHITECTURE

virtual special static interface

Java Grande 57.1 87 34.2 0.0
SPEC JVYM98 81.0 10.9 2.9 5.2

Table 5.4: Types of different dynamic method calls for two benchmafkang [76])

our selected applications than in the SPEC and Java Gramdfirbarks. The big
difference, not seen in our measurements, between thearaolt return frequency
in the SPEC and Java Grande benchmarks is not explained]in [25

In all measurements, the load of local variables and cotsstamto the stack ac-
counts for more than 40% of instructions executed. Thisufeashows that an ef -
cient realization of the local variable memory area, thelstand the transfer between
these memory areas is mandatory.

The next most executed bytecodgstfield andgetstatic) are the instructions
that load an object or class eld onto the operand stack. Toaat for these frequent
instructions, the class layout for the runtime system haset@ptimized for quick
resolution of eld addresses (i.e. minimum memory indireas).

The frequency of branches is comparable with the SPECiGt208asurements
on RISC processors [40]. With such a high branch frequengypeessor without
branch prediction logic is put under pressure in terms oélpie length.

It is interesting to note that there are more method invokéruigtions than return
instructions. Two facts are responsible for this diffe=rmative methods are invoked
by a bytecode, but the return is inside the native methodbaarexception can result
in a method exit without return.

5.1.2 Methods Types and Length

Table 5.4 shows the number of dynamic method calls of the &amde and
SPECjvm98 benchmarks. It can be seen that the distributfomeihod types
depends on the application type. Usage of virtual methodsrdarfaces is common
in OO programming. Static methods result from the simplediation of procedural
programs to Java.

As a basis for the proposed cache solution in Section 5.8, Wexplore static
distribution of method sizes. In the JVM, only relative lxhas are de ned. The
conditional branches and goto have an offset of 16 bits)tregun a practical limit
of the method length of 32KB. Although there is a goto indinrcwith a wide index
(gotaw) that takes a 4-byte branch offset, other factors (e.gcewdin the exception
table) limit the size of a method to 65535 bytes.

5.1 BENCHMARKING THE JVM 61

Length Methods Percentage Cumulative

percentage

1 1,388 1.94 1.94

2 1,580 2.21 4.16

4 1,871 2.62 6.78

8 16,192 22.67 29.45

16 12,363 17.31 46.76

32 12,638 17.70 64.45

64 11,178 15.65 80.10
128 7,287 10.20 90.31
256 4,304 6.03 96.33
512 1,727 2.42 98.75
1,024 592 0.83 99.58
2,048 175 0.25 99.83
4,096 75 0.11 99.93
8,192 37 0.05 99.98
16,384 11 0.02 100.00
32,768 1 0.00 100.00
65,536 0 0.00 100.00

Table 5.5: Static method count of different sizes from the runtimediyr(JDK 1.4).

Radhakrishnan et al. [81] measured the dynamic method $iteedSPEC suit.
They observed a “tri-nodal' distribution, where most of thethods were 1, 9, or 26
bytecodes long. No explanation is given for the sizes of 9%orThe explanation of
the 1 bytecode long methods asapper methodss wrong. For a wrapper method,
the method needs to contain a minimum of two instructionsriagoke and a return).
A single instruction method caonly contain a return. However, this observation is
in sharp contrast to the measurements obtained by Power althtfdf in [76].

In Table 5.5, the number of methods of different sizes in the Juntime library
(JDK 1.4) is shown. The library consists of 71419 methods |dngest being 16706
bytes. The size is classi ed by powers of 2 because we arecistid in the size of
cache memory for complete methods. In the table, the ronwoofexample, size 32
includes all methods of a size from 17 to 32 bytes. It can ba Hest methods are
typically very short. In fact, 99% of the methods are less1tha3 bytes in size. This
property is important for the proposed method cache in 8e&ti8, where a complete
method has to tinto the instruction cache.

All larger methods are different kinds of initializationrfetions, in most cases

62 5 JOP ARCHITECTURE

HHHH H Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂnﬂﬂﬂnnnnnn

Figure 5.1: Static method count for methods of size up to 32 bytes in th¢ 12
runtime library. The horizontal axis indicates the methize.s

<clinit >() 2 The large class initialization methods typically resutinfi the ini-
tialization of arrays with constant data. This is necessmgause of the lack of
initialized data segments, such as the BSS in C, in the Jass de. These ini-
tialization methods contain straight-line code and cametfoge be split to smaller
methods automatically, if necessary.

In Figure 5.1, the distribution of small methods up to a siz82bytes is shown.
Figure 5.2 shows the method count for methods up to 300 byesxpected, we
see fewer methods as size increases. We observed no sumptise distribution,
unlike the “tri-nodal’ distribution in [81]. The only metlcsize that is very common
is 5 bytes. These methods are the typical setter and gettbodsein object-oriented
programming as shown in Listing 5.1.

The methodyetval() translates to three bytecodes of 1, 3 and 1 bytes in length
respectively. These methods should show up in [81] as a pgelkydecodes.

The static distribution of method sizes in an applicati@vdg, the Java compiler)
is quite similar to the distribution in the library. In theask le that contains the Java
compiler, 98% of the methods are smaller than 513 bytes,lenthtger methods are
class initializers.

2The class or interface initialization method is static ahel $pecial name clinit> is supplied by
the compiler. These initialization methods are invokedliaigy by the JVM. The de nition when
these methods get invoked is problematic for the WCET aisa(gse Section 4.2).

5.1 BENCHMARKING THE JVM 63

Figure 5.2: Static method count from the JDK 1.4 runtime library. Theitamtal
axis indicates the method size in bytes.

private int val;

public int getVal() f
return val,
g
public int getVal();
Code:
0: aload _0
1. getfield #2; /IField val:l
4: ireturn

Listing 5.1: Bytecodes for a getter method

64 5 JOP ARCHITECTURE

5.1.3 Summary

In this section, we performed dynamic measurements on tié iligtruction set.
We saw that more than 40% of the executed instructions aed \@ciables or con-
stants loads onto the stack. This high frequency of stacksaccalls for an ef cient
implementation of the stack, as described in Section 5.5.

In addition, we have statically measured method sizes. ddistlare typically very
short. 30% of the methods are shorter than 9 bytes and 99%r@cfoy methods of
up to 512 bytes. The maximum length is further limited by teendtion of the class
le. We will use this property in the proposadethod caché Section 5.8.

Instruction-usage data is an important input for the desitgaprocessor architec-
ture, as seen in the following sections.

5.2 Overview of JOP

This section gives an overview of JOP architecture. FiguBesbows JOP's major
function units. A typical con guration of JOP contains theopessor core, a mem-
ory interface and a number of 10 devices. The module extansiovides the link
between the processor core, and the memory and 10 modules.

The processor core contains the four pipeline stdggecode fetchmicrocode
fetch decodeandexecute The ports to the other modules are the address and data
bus for the bytecode instructions, the two top elementsaétack (A and B), input to
the top-of-stack (Data) and a number of control signals.ré&eno direct connection
between the processor core and the external world.

The memory interface provides a connection between the mamory and the
processor core. It also contains the bytecode cache. Thasah module controls
data read and write. THeusysignal is used by the microcode instructimait 2 to
synchronize the processor core with the memory unit. The peads bytecode in-
structions through dedicated buses (BC address and BCfdatajhe memory sub-
system. The request for a method to be placed in the cachefasmped through the
extension module, but the cache hit detection and load fenpeed by the memory
interface independently of the processor core (and thexefoncurrently).

The I/O interface contains peripheral devices, such asybiers time and timer
interrupt, a serial interface and application-speci ¢ ideg. Read and write to and

3The busy signal can also be used to stall the whole procegseline. This was the change made to
JOP by Flavius Gruian [35]. However, in this synchronizatinode, the concurrency between the
memory access module and the main pipeline is lost.

5.2 OVERVIEW OFJOP

65

10

JOP Core D O — Memory Interface
BC Address |
Bytecode < 2chaa Bytecode
Fetch — Cache
—
A
Data i Control
Fetch
----- contel |1...» Extension
Data
- —
Decode A Multiplier
—
—]
wData Control
v
Stack
L=—=) /O Interface
|- neret

Figure 5.3: Block diagram of JOP

66 5 JOP ARCHITECTURE

from this module are controlled by the extension module. ektiernal devicesare
connected to the I/O interface.

The extension module performs three functions: (a) it dosthardware accelera-
tors (such as the multiplier unit in this example), (b) thetcol for the memory and
the I/O module, and (c) the multiplexer for the read data ihéiaded in the top-of-
stack register. The write data from the top-of-stack (A)asrmected directly to all
modules.

The division of the processor into those four modules gyesithpli es the adap-
tation of JOP for different application domains or hardwalaforms. Porting JOP
to a new FPGA board usually results in changes in the memodute@lone. Using
the same board for different applications only involves mglchanges to the 1/0O
module. JOP has been ported to several different FPGAs anokyping boards and
has been used in different applications (see Chapter 7it hewer proved necessary
to change the processor core.

5.3 Microcode

The following discussion concerns two different instrantisets:bytecodeand mi-
crocode Bytecodes are the instructions that make up a compiledptagaam. These
instructions are executed by a Java virtual machine. The dg& not assume any
particular implementation technology. Microcode is theéugginstruction set for JOP.
Bytecodes are translated, during their execution, into d@fPocode. Both instruc-
tion sets are designed for an extertisthck machine.

5.3.1 Translation of Bytecodes to Microcode

To date, no hardware implementation of the JVM exists thaasble of executing
all bytecodes in hardware alone. This is due to the followingnestytecodes, such
asnew, which creates and initializes a new object, are too comgérmplement in
hardware. These bytecodes have to be emulated by software.

To build a self contained JVM without an underlying opergtgystem, direct ac-
cess to the memory and I/O devices is hecessary. There angetmbes de ned for
low-level access. These low-level services are usually@mpnted innative func-
tions, which means that another language (C) is native tpribeessor. However, for

4The external device can be as simple as a line driver for thal seterface that forms part of the
interface module, or a complete bus interface, such as th&UlS used to connect e.g. an Ethernet
chip.

5An extended stack machine is one in which there are instmgtvailable to access elements deeper
down in the stack.

5.3 MICROCODE 67

Java Jump JOP microcode
bytecode table

jadd: add nxt
iload_1 &dmul sub: sub mxt

B | e |

idiv -
i &fdiv idiv: stm b
|”s.lore_3 &ddiv stm a

Idm c nxt

Java instruction Startaddress of idiv irem: stm b

(e.g. Ox6c¢) in JVM ROM \f

Figure 5.4: Data ow from the Java program counter to JOP microcode

a Java processor, bytecode is tiaivelanguage.

One way to solve this problem is to implement simple bytesddéhardware and
to emulate the more complex amative functions in software with a different in-
struction set (sometimes called microcode). However, agasor with two different
instruction sets results in a complex design.

Another common solution, used in Sun's picoJava [89], isxecate a subset of
the bytecode native and to use a software trap to executenaimder. This solution
entails an overhead (a minimum of 16 cycles in picoJava, s&)Jor the software
trap.

In JOP, this problem is solved in a much simpler way. JOP hdsglesative
instruction set, the so-called microcode. During execytevery Java bytecode is
translated to either one, or a sequence of microcode inigtngc This translation
merely adds one pipeline stage to the core processor antisr@suno execution
overheads. With this solution, we are free to de ne the JG#rirction set to map
smoothly to the stack architecture of the JVM, and to nd astrinction coding that
can be implemented with minimal hardware.

Figure 5.4 gives an example of this data ow from the Java mogcounter to
JOP microcode. The fetched bytecode acts as an index fourttye gable. The jump
table contains the start addresses for the JVM implementati microcode. This
address is loaded into the JOP program counter for evergagéeexecuted.

Every bytecode is translated to an address in the microdwaterhplements the
JVM. If there exists an equivalent JOP instruction for théebgde, it is executed in
one cycle and the next bytecode is translated. For a morelegroptecode, JOP just
continues to execute microcode in the subsequent cyclaseiith of this sequence is
coded in the microcode instruction (as ting bit).

68 5 JOP ARCHITECTURE

5.3.2 Compact Microcode

For the JVM to be implemented ef ciently, the microcode hag tto the Java byte-
code. Since the JVM is a stack machine, the microcode is tdsk-sriented. How-
ever, the JVM is not a pure stack machine. Method parametetdoaal variables
are de ned adocals These locals can reside in a stack frame of the method and are
accessed with an offset relative to the start of ibczals area.

Additional local variables (16) are available at the micrde level. These variables
serve as scratch variables, like registers in a conventi©R&). However, arithmetic
and logic operations are performed on the stack.

Some bytecodes, such as ALU operations and the short foresatdocals are
directly implemented by an equivalent microcode instarcijwith a different encod-
ing). Additional instructions are available to accessrimdregisters, main memory
and 1/0 devices. A relative conditional branch (zero/nomz# TOS) performs con-
trol ow decisions at the microcode level. For optimum usela# available memory
resources, all instructions are 8 bits long. There are nabig-length instructions
and every instruction, with the exceptionwidit , is executed in a single cycle. To
keep the instruction set this dense, two concepts are applie

Two types of operands, immediate values and branch distanoemally force an
instruction set to be longer than 8 bits. The instructioniseither expanded to 16
or 32 bits, as in typical RISC processors, or allowed to beapiable length at byte
boundaries. A rstimplementation of the JVM with a 16-bistnuction set showed
that only a small number of different constants are necedsarimmediate values
and relative branch distances.

In the current realization of JOP, the different immediatkigs are collected while
the microcode is being assembled and are put into the inét&dn le for the local
RAM. These constants are accessed indirectly in the samesvidne local variables.
They are similar to initialized variables, apart from thetfthat there are no opera-
tions to change their value during runtime, which would sar@ purpose and would
waste instruction codes.

A similar solution is used for branch distances. The asseng#@nerates a VHDL

le with a table for all found branch constants. This tabléndexed using instruction
bits during runtime. These indirections during runtime mélpossible to retain an 8-
bit instruction set, and provide 16 different immediateues and 32 different branch
constants. For a general purpose instruction set, thegedtidns would impose too
many restrictions. As the microcode only implements the JWh\s solution is a
viable option.

To simplify the logic for instruction decoding, the insttiom coding is carefully
chosen. For example, one bit in the instruction speci estiviethe instruction will

5.3 MICROCODE 69

increment or decrement the stack pointer. The offset tosactteelocalsis directly
encoded in the instruction. This is not the case for the waigéncoding of the equiv-
alent bytecodes (e.gload_0 is Ox1la andload_1 is Ox1b). Whenever a multiplexer
depends on an instruction, the selection is directly enddaléhe instruction.

5.3.3 Instruction Set

JOP implements 43 different microcode instructions. Tliestuctions are encoded
in 8 bits. With the addition of thext andopd bits in every instruction, the effective
instruction length is 10 bits.

Bytecode equivalent: These instructions are direct implementations of bytesode
and result in one cycle execution time for the bytecode (eixse andld):
pop, and, or , xor , add, sub, st <n>, st , ushr , shl , shr ,nop,Id <n>,Id ,
dup

Local memory access: The rst 16 words in the internal stack memory are reserved
for internal variables. The next 16 words contain constafiisese memory
locations are accessed using the following instructiems:, ldm, Idi

Register manipulation: The stack pointer, the variable pointer and the Java program
counter are loaded or stored witktvp , stjpc , stsp , Idvp , Idjpc , Idsp

Bytecode operand: The operand is loaded from the bytecode RAM, converted to a
32-bit word and pushed on the stack wildh: opd 8s,Id _opd 8u,ld _opd _16s,
Id _opd_16u

External memory access: The autonomous memory subsystem is accessed using
the following instructions: stmra , stmwa, stmwd, wait , ldmrd , stbcrd
Idbcstart

IO device access: The following instructions permit access to the 10 subsyste
stioa ,stiod , Idiod

Multiplier: The multiplier is accessed witktmul , Idmul

Microcode branches: Two conditional branches in microcode are availabte;
bnz

Bytecode branch: All 17 bytecode branch instructions are mapped to one iastru
tion: jbr

A detailed description of the microcode instructions cardomd in Appendix C.

70 5 JOP ARCHITECTURE

5.3.4 Bytecode Example

The example in Listing 5.2 shows the implementation of alsiegcle bytecode and
an infrequent bytecode as a sequence of JOP instructioribislexample, thelup
bytecode is mapped to the equivalénp microcode and executed in a single cycle,
whereasdup x1 takes ve cycles to execute, and after the last instructidm (a

nxt), the rstinstruction for the next bytecode is executed.

dup: dup nxt /I '1 to 1 mapping

/I a and b are scratch variables for the

/[JVM code.

dup x1: stm a /I save TOS
stm b /I and TOS 1
Idm a /I duplicate former TOS
Idm b /I restore TOS 1

ldm a nxt /I restore TOS and fetch next bytecode
Listing 5.2: Implementation otiup anddup x1

Some bytecodes are followed by operands of between one aredliiites in length
(exceptiookupswitch andtableswitch). Due to pipelining, the rst operand byte
that follows the bytecode instruction is available when teemicrocode instruction
enters the execution stage. If this is a one-byte long opleriais ready to be ac-
cessed. The increment of the Java program counter afteediokaf an operand byte
is coded in the JOP instruction (apd bit similar to thenxt bit).

In Listing 5.3, the implementation afpush is shown. The bytecode is followed
by a two-byte operand. Since the access to bytecode memamfyisne byte per cy-
cle,opdandnxtare not allowed at the same time. This implies a minimum ei@&cu
time ofn+ 1 cycles for a bytecode with operand bytes.

sipush: nop opd /I fetch next byte
nop opd /[and one more
Id _opd_16s nxt // load 16 bit operand

Listing 5.3: Bytecode operand load

5.3.5 Flexible Implementation of Bytecodes

As mentioned above, some Java bytecodes are very complexsd@ution already
described is to emulate them through a sequence of micrdostteictions. How-
ever, some of the more complex bytecodes are very seldom Usddrther reduce

5.4 THE PROCESSORPIPELINE 71

the resource implications for JOP, in this case local memioytecodes can even
be implemented bysing Java bytecodes. During the assembly of the JVM, all la-
bels that represent an entry point for the bytecode impl¢atien are used to gen-
erate the translation table. For all bytecodes for which uhdabel is found, i.e.
there is no implementation in microcode hat-implementediddress is generated.
The instruction sequence at this address invokes a statfwohérom a system class
(com.jopdesign.sys.JVM). This class contains 256 static methods, one for each
possible bytecode, ordered by the bytecode value. The djg¢eis used as the index

in the method table of this system class. As described in@e6t6, this feature also
allows for the easy con guration of resource usage versu®paance.

5.3.6 Summary

In order to handle the great variation in the complexity ofalaytecodes we have
proposed a translation to a different instruction set, thealed microcode. This
microcode is still an instruction set for a stack machiné rbare RISC-like than the
CISC-like JVM bytecodes.

In the next section we will see how this translation is haddfe JOP's pipeline
and how it can simplify interrupt handling.

5.4 The Processor Pipeline

JOP is a fully pipelined architecture with single cycle axém of microcode instruc-
tions and a novel approach to mapping Java bytecode to the&tsedtions. Figure 5.5
shows the datapath for JOP.

Three stages form the JOP core, executing microcode itisingsc An additional
stage in the front of the core pipeline fetches Java bytexedtne instructions of
the JVM — and translates these bytecodes into addressescinamile. Bytecode
branches are also decoded and executed in this stage. Tdredsgipeline stage
fetches JOP instructions from the internal microcode mgnaord executes mi-
crocode branches. Besides the usual decode function, ithepipeline stage also
generates addresses for the stack RAM. As every stack negicisimuction has either
pop or pushcharacteristics, it is possible to generate Il or spill aglskes for the
following instruction at this stage. The last pipeline stage perfokind operations,
load, store and stack spill or Il. At the execution stagegmgtions are performed
with the two topmost elements of the stack.

The stack architecture allows for a short pipeline, whickuhes in short branch
delays. Two branch delay slots are available after a camdgitimicrocode branch.

72 5 JOP ARCHITECTURE

bytecode branch condition

next bytecode microcode branch condition
Vo |
Bytecode Microcode Microcode Microcode
Fetch, translate : Fetch and i‘> Decode : Execute
and branch branch
t T branch ‘

spill,
bytecode branch fill

Stack Stack
—_,\ > Address — RAM
generation

Figure 5.5: Datapath of JOP

The method cacheéBfitecode RAY microcode ROM, and stack RAM are imple-
mented with single cycle access in the FPGA's internal mésor

5.4.1 Java Bytecode Fetch

In the rst pipeline stage, as shown in Figure 5.6, the Javiednydes are fetched
from the internal memoryBytecode RAM The bytecode is mapped through the
translation table into the addregpggddr) for the microcode ROM.

The fetched bytecode results in an absolute jump in the mock® (the second
stage). If the bytecode is mapped one-to-one with a JORugi&in, the following
fetched bytecode again results in a jump in the microcodbarfdllowing cycle. If
the bytecode is a complex one, JOP continues to execute coideo At the end of
this instruction sequence the next bytecode, and ther¢fiereew jump address, is
requested (signaixt).

The bytecode RAM serves as instruction cache and is lled athod invoke
and return. Details about this time-predictable instarctcache can be found in
Section 5.8.

The bytecode is also stored in a register for later use as eraong (requested by
signalopd). Bytecode branches are also decoded and executed indhis. sBince
jpcis also used to read the operands, the program counter id sgjpebr during an
instruction fetch.jinstr is used to decode the branch type @oabr to calculate the

5.4 THE PROCESSORPIPELINE 73

L 5 lpe Bytecode RAM
—>
A—>
— > Translation | jpaddr
addr data > table F——»
jpcbr

opd opd jinstr
high | _ low
< < >

Figure 5.6: Java bytecode fetch

branch target address.

5.4.2 JOP Instruction Fetch

The second pipeline stage, as shown in Figure 5.7, fetchesrructions from the
internal microcode memory and executes microcode branches

The JOP microcode, which implements the JVM, is stored imilegocode ROM.
The program countegscis incremented during normal execution. If the instruci®n
labeled withnxta new bytecode is requested from the rst stage jpoid loaded with
jpaddr. jpaddr is the starting address for the implementation of that mdec The
label nxt is the ag that marks the end of the microcode instructioeatn for one
bytecode. Another agppd, indicates that a bytecode operand needs to be fetched in
the rst pipeline stage. Both ags are stored in a table tisahdexed by the program
counter.

brdly contains the target address for a conditional branch. Tine sdfset is shared
by a number of branch destinations. A talideafch offsétis used to store these rel-
ative offsets. This indirection means that only 5 bits nedokt used in the instruction
coding for branch targets and thereby allow greater offSéis three tableBC fetch
table branch offsetandtranslation table(from the bytecode fetch stage) are gener-

74 5 JOP ARCHITECTURE

nxt, opd BC fetch
< table D a—

nxt, Microcode
br, ROM
jpaddr wait
- pc rd ir | . i
5 - | addr |nstruct|on‘
—p w kg >

brdly —
« + Branch
4 offset D

Figure 5.7: JOP instruction fetch

ated during the assembly of the JVM code. The outputs ara plEIDL les. For
an implementation in an FPGA, recompiling the design aftemnging the JVM im-
plementation is a straightforward operation. For an ASI@wailoadable JVM, it is
necessary to implement a different solution.

FPGAs available to date do not allow asynchronous memorgsaccTlhey there-
fore force us to use the registers in the memory blocks. Hewéhe output of these
registers is not accessible. To avoid having to create aitiauall pipeline stage
just for a register-register move, the read address reg$thie microcode ROM is
clocked on the negative edge.

An alternative solution for this problem would be to use thipaot of the multi-
plexer for thepc and the read address register of the memory. However, thisso
results in a longer critical path, as the multiplexer canamger be combined with
the ip- ops that form thepcin the same LCs. This is an example of how implemen-
tation technology (the FPGA) can in uence the architecture

5.4.3 Decode and Address Generation

Besides the usual decode function, the third pipeline, asshn Figure 5.8, also
generates addresses for the stack RAM.
As we can see in Section 5.5 Table 5.10, read and write addrass either relative

5.4 THE PROCESSORPIPELINE 75

dec
| reg sel_ex‘
instruction | Decode &
Emm—
Sp l
vp[0..3] \ rd
—_— addr
vp+jopd >
_—
ir /
Stack
RAM
sp+1
0..3 wr wr
e[0.3] dly addr
vp+jopd > >
—_—
r > d

Figure 5.8: Decode and address generation

to the stack pointer or to the variable pointer. The selactibthe pre-calculated
address can be performed in the decode stage. When an adidadise to the stack
pointer is used (either as read or as write address, nevepth) the stack pointer is
also decremented or incremented in the decode stage.

Stack machine instructions can be categorized from a stacikpulation perspec-
tive as eithepopor push This allows us to generate |l or spill TOS-1 addresses for
the following instruction during the decode stage, thereby saving onma exbeline
stage.

5.4.4 Execute

At the execution stage, as shown in Figure 5.9, operatiomperformed using two
discrete registers: TOS and TOS-1, labeteaindB.

Each arithmetic/logical operation is performed with régisA andB as the source,
and registeA as the destination. All load operations (local variableteral register,
external memory and periphery) result in a value being Idad® registelA. There
is therefore no need for a write-back pipeline stage. Regists also the source for
the store operations. RegistBris never accessed directly. It is read as an implicit
operand or for stack spill on push instructions. It is writtkiring the stack spill with
the content of the stack RAM or the stack Il with the conteftregisterA.

Beside the Java stack, the stack RAM also contains microcadables and con-
stants. This resource-sharing arrangement not only redibheenumber of memory
blocks needed for the processor, but also the number of @ltes po and from the

76

5 JOP ARCHITECTURE

din

Wr
addr

rd
add

Stack
RAM

dout

} "
>
L B
Id, logic >
>
Ly
shift
SP. VP, JpC,
din
e
jopd imm
jopd _| dly Type val
— —>| conversion > >

Figure 5.9: Execution stage

5.4 THE PROCESSORPIPELINE 77

registerA.
The inverted clock on data-in and on the write address mgidtthe stack RAM
is used, for the same reason, as on the read address refjtiemuicrocode ROM.
A stack machine with two explicit registers for the two toghstack elements and
automatic II/spill needs neither an extra write-back stagpr any data forwarding.
Details of this two-level stack architecture are descrilbe8ection 5.5.

5.4.5 Interrupt Logic

Interrupts are considered hard to handle in a pipelinedgssr, meaning implemen-
tation tends to be complex (and therefore resource cong)nimJOP, the bytecode-
microcode translation is used cleverly to avoid having todb@ interrupts in the core
pipeline.

Interrupts are implemented as special bytecodes. Thesedngs are inserted by
the hardware in the Java instruction stream. When an iggeisupending and the
next fetched byte from the bytecode RAM is an instructioniakécated by thenxt
bit in the microcode), the associated special bytecodedd imstead of the instruc-
tion from the bytecode RAM. The result is that interrupts aceepted at bytecode
boundaries. The worst-case preemption delay is the exectithe of theslowest
bytecode that is implemented in microcode. Bytecodes teainaplemented in Java
can be interrupted.

The implementation of interrupts at the bytecode-micrecothpping stage keeps
interrupts transparent in the core pipeline and avoids déexnpgic. Interrupt han-
dlers can be implemented in the same way as standard byteaoeémplemented
i.e. in microcode or Java.

This special bytecode can resultin a call of a JVM internahoe in the context of
the interrupted thread. This mechanism implicitly stolescst the complete context
of the current active thread on the stack.

5.4.6 Summary

In this section, we have analyzed JOP's pipeline. The corth@fstack machine
constitutes a three-stage pipeline. In the following segtive will see that this orga-
nization is an optimal solution for the stack access patéthe JVM.

An additional pipeline stage in front of this core pipelinage performs bytecode
fetch and the translation to microcode. This organizat@asero overheads for more
complex bytecodes and results in the short pipeline thadessary for any processor
without branch prediction. This additional translatioags also presents an elegant
way of incorporating interrupts virtuallfor free

78 5 JOP ARCHITECTURE

5.5 An Ef cient Stack Machine

The concept of a stack has a long tradition, but stack masimaéonger form part of
mainstream computers. Although stacks are no longer usedfoession evaluation,
they are still used for the context save on a function call. i¢h@ language, Forth
[52], is stack-based and known as an ef cient language foitrodler applications.
Some hardware implementations of the Forth abstract madurexist. These Forth
processors are stack machines.

The Java programming language de nes not only the languagalbo a binary
representation of the program and an abstract machine Mk tb execute this
binary. The JVM is similar to the Forth abstract machine iatti is also a stack
machine. However, the usage of the stack differs from Fartbuich a way that a
Forth processor is not an ideal hardware platform to exetaita programs.

In this section, the stack usage in the JVM is analyzed. Wesed that, besides
the access to the top elements of the stack, an additionesagath to an arbitrary
element of the stack is necessary for an ef cient implentgriaof the JVM. Two
architectures will be presented for this mixed access médecostack. Both archi-
tectures are used in Java processors. However, we will htse that the JVM does
not need a full three-port access to the stack as impleméntad two architectures.
This allows for a simple and more elegant design of the staclaflava processor.
This proposed architecture will then be compared with themotwo at the end of this
section.

5.5.1 Java Computing Model

The JVM is not a pure stack machine in the sense of, for inetahe stack model in
Forth. The JVM operates on a LIFO stack asoperand stack The JVM supplies
instructions to load values on the operand stack, and otistruictions take their
operands from the stack, operate on them and push the resiitdmto the stack.
For example, theéadd instruction pops two values from the stack and pushes the
result back onto the stack. These instructions are the stachine's typical zero-
address instructions. The maximum depth of this operaruk steknown at compile
time. In typical Java programs, the maximum depth is verylisria illustrate the
operation notation of the JVM, Table 5.6 shows the evaluadican expression for a
stack machine notation and the JVM bytecodes. Instrudtiad _n loads an integer
value from a local variable at positionand pushes the value on TOS.

The JVM contains another memory area for method local ddis. area is known
aslocal variables Primitive type values, such as integer and oat, and refees
to objects are stored in these local variables. Arrays afettscannot be allocated

5.5 AN EFFICIENT STACK MACHINE 79

A=B+C*D
Stack JVM
push B iloadl
push C iload2
push D iload3
* imul
+ iadd

pop A istore0

Table 5.6: Standard stack notation and the corresponding JVM insbmnst

in a local variable, as in C/C++. They have to be placed on #aph Different
instructions transfer data between the operand stack aniddhl variables. Access
to the rst four elements is optimized with dedicated sinbige instructions, while
up to 256 local variables are accessed with a two-byte ictitruand, with thevide
modi er, the area can contain up to 65536 values.

These local variables are very similar to registers andgeaps that some of these
locals can be mapped to the registers of a general purposeo€Phplemented as
registers in a Java processor. On method invocation, larées could be saved
in a frame on a stack, different from the operand stack, tegetith the return ad-
dress, in much the same way as in C on a typical processorwrthikl result in the
following memory hierarchy:

On-chip hardware stack for ALU operations
A small register le for frequently-accessed variables

A method stack in main memory containing the return addredsaaditional
local variables

However, the semantics of method invocation suggest areliffenodel. The argu-
ments of a method are pushed on the operand stack. In theeihvokthod, these
arguments are not on the operand stack but are instead ad@sthe rst variables
in the local variable area. Theal method local variables are placed at higher in-
dices. Listing 5.4 gives an example of the argument passeghanism in the JVM.
These arguments could be copied to the local variable arte @fivoked method. To
avoid this memory transfer, the entire variable area (tbaraentsand the variables
of the method) is allocated on the operand stack. Howevéherinvoked method,
the arguments are buried deep in the stack.

80

5 JOP ARCHITECTURE

The Java source:
int val = foo(1, 2);

public int foo(int a, int b)
int c = 1;
return a+b+c;

g

Compiled bytecode instructions for the JVM:

The invocation sequence:
aload _0 1

iconst _1 I
iconst 2 I
invokevirtual #2 I

istore _1 I

public int foo(int,int):

iconst 1 1l
istore 3 1
iload _1 1l
iload _2 1
iadd 1
iload _3 1l
iadd

ireturn 1l

Push the object reference
and the parameter onto the
operand stack.

Invoke method foo:(lI)l.
Store the result in val.

The constant is stored in a method
local variable (at position 3).
Arguments are accessed as locals
and pushed onto the operand stack.
Operation on the operand stack.
Push c onto the operand stack.

Return value is on top of stack.

Listing 5.4: Example of parameter passing and access

5.5 AN EFFICIENT STACK MACHINE 81

Operand stack
SP —»| Context of
Caller
var_3
SP——| arg 2 var_2
arg_1 var_1
arg_0 VP —| var 0
Operand stack Operand stack
Context of Context of
Caller Old frame < Caller
var_2 var_2
var_1 var_1
VP —»| var 0 var_0

Figure 5.10: Stack change on method invocation

This asymmetry in the argument handling prohibits passiogrd parameters
through multiple levels of subroutine calls, as in Forth.efi@diore, an extra stack
for return addresses is of no use for the JVM. This singlekstawv contains the
following items in a frame per method:

The local variable area
Saved context of the caller

The operand stack

A possible implementation of this layout is shown in Figur&® A method with two
argumentsarg _1 andarg 2 (arg _0 is thethis pointer), is invoked in this example.
The invoked methodeeghe arguments agr _1 andvar 2. var _3 is the only local
variable of the method. SP is a pointer to the top of stack aRg¥ints to the start
of the variable area.

5.5.2 Access Patterns on the Java Stack

The pipelined architecture of a Java processor executes ipatructions in a sin-
gle cycle. A stack that contains the operand staictt the local variables results in
following access patterns:

Stack Operation: Read of the two top elements, operate on them and push back the
result on the top of the stack. The pipeline stages for thisaifon are:

82 5 JOP ARCHITECTURE

valuel stack[sp], value2 stack[sp-1]
result valuel op value2, sp sp-1
stack[sp] result

Variable Load: Read of a data element deeper down in the stack, relative #oi-a v
able base address pointer (VP), and push this data on thé tiop stack. This
operation needs two pipeline stages:
value stack[vp+offset], sp sp+l
stack[sp] value

Variable Store: Pop the top element of the stack and write it in the varialitive
to the variable base address:
value stack[sp]
stack[vp+offset] value, sp sp-1

For pipelined execution of these operations, a three-perhany or register le (two
read ports and one write port) is necessary.

5.5.3 Common Realizations of a Stack Cache

As the stack is a heavily accessed memory region, the stackarpof it — has to be
placed in the upper level of the memory hierarchy. This pathe stack is referred
to asstack cachan this thesis. As described in [40], a typical memory hiehgr
contains the following elements, with increasing access @nd size:

CPU register

On-chip cache memory

Off-chip cache memory

Main memory

Magnetic disk for virtual memory
For a stack cache, a register le is the solution with the sksiraccess time. How-
ever, in order to store more than a few elements in the cachen-ahip memory re-

alization can provide a larger cache. Both variants have heed and are described
below.

5.5 AN EFFICIENT STACK MACHINE 83

The Register File as a Stack Cache

An example of a Java processor that uses a register le issSuicoJava [89]. It con-
tains 64 registers, organized as a circular buffer. To corsgte for thissmall stack
cache, an automatic spill and Il circuit needs another reaite port to the register
le. aJile's JEMCore [37] is a direct-execution Java prag@score that contains 24
registers. Only six of them are used to cache the top elenodritee stack. With
this small register count, local variables are not part ef¢thche. The Ignite [77]
(formerly known as PSC1000) is a stack processor, origirgdisigned as a Forth
processor and now promoted as a Java processor, has andpiekthat contains
18 registers with automatic spill and |I.

A basic pipeline for a stack processor with a register le teams the following
stages:

1. IF —instruction fetch

2. ID —instruction decode

3. EX —read register le and execute
4. WB — write result back to register le

With this pipeline structure, a single data-forwardinghpbetween WB and EX is
necessary. The ALU with the register le (with a size of 16, @ranon size for
RISC processors) and the bypass unit are shown in Figure 3SrilTable 5.8 the
hardware resources of this type of stack cache are apprtedinasing the values
given in Table 5.7 (a MUX not found in this table is assumedde combinations of
the basic types; e.g. two 8:1 and one 2:1 for a 16:1). An ewparial evaluation of
this architecture in an FPGA is described in Section 5.5.5.

Basic function Gate count

D-Flip-Flop 5
2:1 MUX 3
4:1 MUX 5
8:1 MUX 9
SRAM Bit 15

Table 5.7: Simpli ed gate count for basic functions

84

5 JOP ARCHITECTURE

!

vy

RO AN |_>
—>
- —> —> ALU
—>
/
R2 —e
> ™
> I
—> Result
> buffer
/
R15

Figure 5.11: A stack cache with registers

Function block Basic function Gate count

Register File 512 D-Flip-Flops ;360
Read MUX 2x32 16:1 MUX 1344

Forward MUX 32 2:1 MUX 96
ALU buffer 32 D-Flip-Flops 160
Total 4;160

Table 5.8: Estimated gate count for a register stack cache

5.5 AN EFFICIENT STACK MACHINE 85

On-chip Memory as a Stack Cache

Using SRAM on the chip provideslarge stack cache (e.g. 128 entries). However,
as we have seen in Section 5.5.2, a three-port memory issagesAn additional
pipeline stage performs the cache memory read:

1. IF —instruction fetch

2. ID —instruction decode

3. RD — memory read

4. EX —execute

5. WB — write result back to memory

With this pipeline structure, two data forwarding paths aeeessary. The resulting
architecture is shown in Figure 5.12 and a gate count estiipatrovided in Table 5.9.
This version needs 70% more resources than the rst one,rbuides an eight times
larger stack cache.

Example designs that use this kind of stack cache are (i) Konj85], a Java
processor intended as a basis for research on multithreadetime scheduling, and
(i) FemtoJava [45], a research project to build an appbecespeci ¢ Java processor.

A three-port memory is an expensive option for an ASIC andsualin an FPGA.
It can be emulated in an FPGA by two memories with a single esatiwrite port.
The write data is written in both memory blocks and each mgrbtwck provides a
different read port. However, this solution also doublasadmount of memory.

Both designs (Komodo and FemtoJava) avoid the memory daubly serializing
the two reads. This serialization results in minimum of tdack cycles execution
time for basic instructions or halves the clock frequencthefwhole pipeline.

5.5.4 A Two-Level Stack Cache

In this section, we will discuss access patterns of the JVMtarir implication on
the functional units of the pipeline. A faster and smalleh#ecture is proposed for
the stack cache of a Java processor.

JVM Stack Access Revised

If we analyze the JVM's access patterns to the stack in mai@ldere can see that
a two-port read is only performed with the two top elementthefstack. All other
operations with elements deeper in the stack, local vazidblad and store, only need

86

5 JOP ARCHITECTURE

Addr. 1

Read
Read
Addr. 2

Write
Addr.

Write
Data

Port 1
buffer |_>
L
Stack ALU
rRaM | [%
L » L Result | Forward
buffer buffer

Port 2
buffer

Figure 5.12: A stack cache with on-chip RAM

Function block Basic function Gate count
Stack RAM e.g. 128x32 Bits 644
Port buffer 2x32 D-Flip-Flops 320
Forward MUX 32x 2:1 MUX, 3:1 MUX 288
ALU buffer 2x32 D-Flip-Flops 320
Total 7,072

Table 5.9: Estimated gate count for a stack cache with RAM

5.5 AN EFFICIENT STACK MACHINE 87

one read port. If we only implement the two top elements ofdfagk in registers,
we can use a standard on-chip RAM with one read and one write po

We will show that all operations can be performed with thia garation. Let A
be the top-of-stackB the element below top-of-stack. The memory that serveseas th
second level cache is represented by the asmayTwo indices in this array are used:
p points to the logical third element of the stack and changebea stack grows or
shrinks,v points to the base of the local variables area in the stack &he address
offset of a variable.op is a two operand stack operation with a single result (i.e. a
typical ALU operation).

Case 1: ALU operation

A AopB
B smip]
p p-1

The two operands are provided by the two top level registérsingle read
access fronsmis necessary to 1B with a new value.

Case 2: Variable load Push

sm[p+l] B
B A

A sm[v+n]
p ptl

One read access froemis necessary for the variable read. The former TOS
value moves down t8 and the data previously B is written tosm

Case 3: Variable storeRop

smv+n] A
A B

B sm[p]

p p-1

The TOS value is written tem Ais lled with BandB is lled in an identical
manner to Case 1, needing a single read accesssnom

We can see that all three basic operations can be perfornte@wiack memory with
one read and one write port. Assuming a memory is used thataraaie concurrent
read and write access, there is no structural access cdieteteermd, B andsm That
means that all operations can be performed concurrentlysingde cycle.

As we can see in Figure 5.10 the operand stack and the lodables area are
distinct regions of the stack. A concurrent read from andeatio the stack is only
performed on a variable load or store. When the read is frenattal variables area

88 5 JOP ARCHITECTURE

the write goes to the operand area; a read from the operaadsatencurrent with a
write to the local variables area. Therefore there is no goeat read and write to
the same location ism There is no constraint on the read-during-write behavior o
the memory (old data, unde ned or new data), which simplitee memory design.
In a design where read and write-back are located in diffgugeline stages, as in
the architectures described above, either the memory mogde the new data on a
read-during-write, or external forward logic is necessary

From the three cases described, we can derive the memorgsagdrfor the read
and write port of the memory, as shown in Table 5.10.

Read address Write address

p p+l
v+n v+

Table 5.10: Stack memory addresses

The Datapath

The architecture of the two-level stack cache can be seeigurd-5.13. Register
A represents the top-of-stack and regisethe data below the top-of-stack. ALU
operations are performed with these two registers and that ie placed irA. During
such an ALU operatiorB is lled with new data from the stack RAM. A new value
from the local variable area is loaded directly from the ls8&M into A. The data
previously inA is moved toB and the data fronB is spilled to the stack RAMA is
stored in the stack RAM on a store instruction to the locaiak@de. The data fronB
is moved toA andBis lled with a new value from the stack RAM.

With this architecture, the pipeline can be reduced to thtages:

1. IF —instruction fetch
2. ID —instruction decode

3. EX —execute, load or store

The estimated resource usage of this two-level stack cacéexcture is given in
Table 5.11. It can be seen that this architecture is roughoanplex as the solution
given above (about 5% less gates). However, the reducedleritypwith the two-
port RAM instead of a three-port RAM is not included in thelgablhe critical path
through the ALU contains only one 2:1 MUX to regist&rin this solution, rather
than one 3:1 MUX in one ALU path and one 2:1 MUX in the other AL&atlp As no
data forwarding logic is necessary, the decoding logicge aimpler.

5.5 AN EFFICIENT STACK MACHINE 89

L ALU
Read A
Addr. Stack |—> >
RAM >
>
Writ
Addr —>
Write L B >
Data > D_> >
Figure 5.13: Two-level stack cache
Function block Basic function Gate count
Stack RAM e. g. 128x32 Bits 844
TOS, TOS-1 buffer 2x32 D-Flip-Flops 320
Three MUX 3x32 2:1 MUX 288
Total 6,752

Table 5.11: Estimated gate count for a two-level stack cache

90 5 JOP ARCHITECTURE

Data Forwarding — A Non-Issue

Data dependencies in the instruction stream result in theaed data hazard$40]
in the pipeline. Data forwarding is a technique that movea é@m a later pipeline
stage back to an earlier one to solve this problem. The fermard is correct in
the temporal domain as data is transferred to an instruatione future. However,
it is misleading in the structural domain as the forward dim is towards théast
pipeline stage for an instruction.

As the probability of data dependency is very high in a staag&ed architecture,
one would expect several data forwarding paths to be negessawever, in the two-
level architecture proposed, with its resulting thregystaipeline, no data hazards
will occur and no data forwarding is therefore necessarys $impli es the decoding
stage and reduces the number of multiplexers in the execptath. We will show
that none of the three data hazard types [40] are an issuésianthitecture. With
instructionsi and j, wherei is issued beforg, the data hazard types are:

Read after write: | reads a source befoiewrites it. This is the most common
type of hazard and, in the architectures described abosgelued by using the ALU
buffers and the forwarding multiplexer in the ALU datapaiim a stack architecture,
write takes three forms:

Implicit write of TOS during an ALU operation

Write to the TOS during a load instruction

Write to an arbitrary entry of the stack with a store instioret
A read also occurs in three different forms:

Read two top values from the stack for an ALU operation

Read TOS for a store instruction

Read an arbitrary entry of the stack with the load instrurctio

With the two top elements of the stack as discrete registeese values are read,
operated on and written back in the same cycle. No read thndis on TOS or
TOS-1 suffers from a data hazard. Read and write access tmbJariable is also
performed in the same pipeline stage. Thus, the read after erder is not affected.
However, there is also an additional hidden read and write Hkand spill of register
B:

5.5 AN EFFICIENT STACK MACHINE 91

B II. B is written during an ALU operation and on a variable store.riby

an ALU operation, the operands are the values floand the old value from

B. The new value foB is read from the stack memory and does not depend
on the new value oA. During a variable store operatioA,is written to the
stack memory and does not dependBnThe new value foB is also read
from the stack memory and it is not obvious that this valuesdust depend

on the written value. However, the variable area and theampkstack are
distinct areas in the stack (this changes only on methodatian and return),
guaranteeing that concurrent read/write access doesoduge a data hazard.

B spill: B is read on a load operation. The new valueBdé the old value of
A and does not therefore depend on the stack memory Bdwritten to the
stack. For the read value from the stack memory that gods tiwe argument
concerning the distinct stack areas in the cas® df described above still
applies.

Write after read: j writes a destination before it is read by This cannot take
place as all reads and writes are performed in the same qepsiage keeping the
instruction order.

Write after write: | writes an operand before it is written by This hazard is not
present in this architecture as all writes are performetéstime pipeline stage.

5.5.5 Resource Usage Compared

The three architectures described above are implementgiteira's EP1C6Q240C6
[16] FPGA. The three-port memory for the second solutiormsikted with two em-
bedded memory blocks. The ALU for this comparison is keppéemvith the follow-
ing functions: NOP, ADD, SUB, POP, AND, OR, XOR and load emtdrdata. The
load of external data is nhecessary in order to prevent thinegizer from optimizing
away the whole design. A real implementation of an ALU foreaJarocessor, as de-
scribed in Section 5.4, is a little bit more complex with arbashifter and additional
load paths. In order to gain the maximum operating frequéacyhe design, the
testbed for this architecture contains registers for theraal data, the RAM address
buses, and the control and select signals. Table 5.12 sli@ugs$ource usage and
maximum operation frequency of the three different architees.

LC stands for "Logic Cell' and is the basic element in an FP@A-bit lookup
table with a register. The LC count in the table includes #gister count. The
ALU alone without any stack cache needs 194 LCs. In the rstlithe testbed is

92 5 JOP ARCHITECTURE

Design Total Cache Memory fmax Size
LCs Reg. LCs Reg. [bit] [MHz] [word]

Testbed w. ALU 261 166 - - - 237 -

16 register cache 968 657 707 491 0 110 16

SRAM cache 372 185 111 19 8,192 153 128
Two-level cache 373 184 112 18 4,096 213 130

Table 5.12: Resource and performance compared

combined with the ALU without any stack caching, as a refeeetiesign. With this
con guration, we can obtain the maximum possible speed efrégistered ALU in
this FPGA technology, in this case an operating frequenc33a@MHz or a 4.2 ns
delay. This value is an upper bound of the system frequenagryEpipelined archi-
tecture needs one or more multiplexer in the ALU path, eitbedata forwarding
or for operand selection, resulting in a longer delay. Thetfoand fth columns
represent the resource usage of the cache logic withoutstigeid and ALU. The last
column shows the effective cache size in data words.

The version with the 16 registers was synthesized with tfergint synthesizer
settings. In the rst setting, the register le is implemedtwith discrete registers
while, with a different setting, the register le is autoriwaily implemented in two
32-bits embedded RAM blocks. Two different RAM blocks areessary to provide
two read ports and one write port. In both versions, the difag to read the register
le (delay through the 16:1 MUX of 4.9 ns or RAM access time o 4s) is in the
same order as the delay time through the ALU, resulting instesy frequency of
half the theoretical frequency of that with the ALU alone. t#he structure of the
version with the embedded RAM block is very similar with the/AV cache, only
the version with the discrete registers is shown in Tablg 5.1

The stack cache with a RAM and registers on the RAM output éthditional
pipeline stage) performs better than the rst solution. Hwer, the 3:1 MUX in the
critical path still adds 2.3 ns to the delay time. Compareith Wie proposed solution
(in the last line), we see that double the amount of RAM is edddr the two read
ports.

The two-level stack cache solution performs at 213MHz ailmost the theoretical
system frequency (in practice, about 10% slower). Only aMUX is added to the
critical path. The single read port memory needs half thebmmof memory bits of
the other two solutions.

5.6 HW/SW QDESIGN 93

5.5.6 Summary

In this section, the stack architecture of the JVM was amalyAVe have seen that
the JVM is different from the classical stack architectufdie JVM uses the stack
both as an operand staakd as the storage place for local variables. Local variables
are placed in the stack atdeeperposition. To load and store these variables, an
access path to an arbitrary position in the stack is negesaarthe stack is the most
frequently accessed memory area in the JVM, caching of teimany is mandatory
for a high-performing Java processor.

A common solution, found in a number of different Java preoes is to imple-
ment this stack cache as a standard three-port registeritfeadditional support to
address this register le in a stack like manner. The archites presented above dif-
fer in the realization of the register le: as a discrete sdgi or in on-chip memory.
Implementing the stack cache as discrete registers is vgrgnsive. A three-port
memory is also an expensive option for an ASIC and unusuat IRRGA. It can be
emulated by two memories with a single read and write porivéler, this solution
also doubles the amount of memory.

Detailed analysis of the access patterns to the stack shihaednly the two top
elements of the stack are accessed in a single cycle. Giveffatit, the proposed
architecture uses registers to cache only the two top elenoéithe stack. The next
level of the stack cache is provided by a simple on-chip mgmiine memory auto-
matically spills and lls the second register. Implemenqtithe two top elements of
the stack as xed registers, instead of elements that arexed by a stack pointer,
also greatly simpli es the overall pipeline.

The proposed stack architecture has the following advasta)) Simpler cache
memory results in having half the memory usage of the othetisas in an FPGA.
(i) Minimal impact on the raw speed of the ALU. Operates at@st the theoretical
maximum system frequency of the ALU. (iii) Single read, axecand write-back
pipeline stage results in an overall 3-stage pipeline msmedesign. (iv) No data
forwarding is necessary, which simpli es instruction ddedogic and reduces the
multiplexer count in the critical path.

5.6 HW/SW Codesign

Using a hardware description language and loading the nl@s@n FPGA the former
strict border between hardware and software gets blurredom guring an FPGA
not more like loading a program for execution?

This looser distinction makes it possible to move functieasily between hard-
ware and software resulting in a highly con gurable desighspeed is an issue,

94 5 JOP ARCHITECTURE

more functions are realized in hardware. If cost is the prn@ncern these func-
tions are moved to software and a smaller FPGA can be usedislestamine these
possibilities on a relatively expensive function: mulikion.

In Java bytecodémul performs a 32 bit signed multiplication with a 32 bit re-
sult. There are no exceptions on over ow. Since 32 bit sirgylele multiplications
are far beyond the possibilities of current, mainstream A®te rst solution is a
sequential multiplier.

Sequential Booth Multiplier in VHDL Listing 5.5 shows the VHDL code of the
multiplier. Two microcode instructions are used to acchissftinction:stmul stores
the two operands (from TOS and TOS-1) and starts the sequemtitiplier. After
33 cycles, the result is loaded wittmul . Listing 5.6 shows the microcode fonul .

Multiplication in Microcode If we run out of resources in the FPGA, we can move
the function to microcode. The implementationiafil is almost identical with the
Java code in Listing 5.7 and needs 73 microcode instructions

Bytecode imul in Java Microcode is stored in an embedded memory block
of the FPGA. This is also a resource of the FPGA. We can movectite to
external memory by implementingnul in Java bytecode. Bytecodes not im-
plemented in microcode result in a static Java method caihfa special class
(com.jopdesign.sys.JVM). This class has prototypes for each bytecode ordered
by the bytecode value. This allows us to nd the right methgditdexing the
method table with the value of the bytecode. Listing 5.7 shdlwe Java method
for imul . The additional overhead for this implementation is a cafl eeturn with
cache re lls.

Implementations Compared Table 5.13 lists the resource usage and execution
time for the three implementations. Execution time is messwith both operands
negative, the worst-case execution time for the softway@ementations. The im-
plementation in Java is slower than the microcode impleai&mt as the Java method
is loaded from main memory into the bytecode cache.

Only a few lines of code have to be changed to select one ofhite timple-
mentations. The shown principle can also be applied to @hpensive bytecodes:
e.g.idiv ,ishr ,iushr andishl . As a result, the resource usage of JOP is highly
con gurable and can be selected for each application adogtd the needs of the ap-
plication. Treating VHDL as a software language allows eagyement of function
blocks between hardware and software.

5.6 HW/SW QDESIGN

95

process(clk, wr

variable count

variable pa . signed(64) downto 0);
variable a _1 : std _logic;
alias p . signed(32 downto 0)
is pa(64 downto 32);
begin
if rising —edge(clk) then
if wr _a="'1l"' then
p := (others = > '0;
pa(width 1 downto 0) := signed(din);
elsif wr _b='1" then
b <= din;
a_l :="'0,
count := width;
else
if count > 0 then
case std _ulogic _vector'(pa(0), a
when "01" = >
p = p + signed(b);
when "10" = >
p=p signed(b);
when others = >
null;
end case;
a_l := pa(0);
pa := shift _right(pa, 1);
count := count 1;
end if;
end if;
end if;

dout <= std _logic

end process;

_a, wr _b)

: integer range 0 to width;

_vector(pa(31 downto 0));

Listing 5.5: Booth multiplier in VHDL

1) i

96 5 JOP ARCHITECTURE

imul:

stmul /| store both operands and start
pop /I pop second operand
Idi 5 /I 6 5+3 cycles wait

imul _loop: /I wait loop
dup
nop
bnz imul _loop
Idi 1 /I decrement in branch slot
add
pop /I remove counter

Idmul nxt // load result
Listing 5.6: Microcode to access the Booth multiplier

Hardware Microcode Time

[LC] [Byte] [Cycle]
VHDL 156 10 35
Microcode 0 73 750
Java 0 0 2300

Table 5.13: Different implementations dfnul compared

5.6 HW/SW QDESIGN

public static int imul(int a, int b) f

int ¢, i
boolean neg = false;
if @ <0) f
neg = true;
a= a
g
if b <0) f
neg = !neg;
b= b
g
c = 0;
for (i=0; i <32, ++i) f
c<<=1;
if ((a & 0x80000000)!=0) c += b;
A<=l
g
if (neg) ¢ = c
return c;

Listing 5.7: Implementation of bytecodienul in Java

98 5 JOP ARCHITECTURE

5.7 Real-Time Predictability

General-purpose processors are optimized for averageghpot and non real-time
operating systems are responsible for fair and ef cienesiciting of resources. Real-
time systems need a processor with low and known WCET ofuiastms. Real-
time operating systems have properties, such as fastupteesponse, rapid context
switch, short blocking times and a scheduler that implesargimple, in most cases
strict priority driven, scheduling algorithm. This sectidescribes design decisions
for JOP to support such real-time systems.

5.7.1 Interrupts

Interrupts are usually associated with low-level prograngnof device drivers. The
priorities of interrupts and their handler functions areabtask priorities and yield

to an immediate context switch. In this form, interrupts reainbe integrated in a
schedule withnormal tasks. The execution time of the interrupt handler has to be
integrated in the schedulability analysis as additionatkihg time. A better solution

is to handle interrupts, which represent external evestschedulable objects with
priority levels in the range of real-time tasks, as suggkstéhe RTSJ.

The Timer Interrupt ~ The timer or clock interrupt has a different semantic thdmeot
interrupts. The main purpose of the timer interrupt is repngation of time and re-
lease of periodic or time triggered tasks. One common imeteation is a clock tick.
The interrupt occurs at a regular interval (e.g. 10 ms) andcisibn has to be taken
whether a task has to be released. This approach is simpheplernent, but there
are two major drawbacks: The resolution of timed events imiddoy the resolution
of the clock tick and clock ticks without a task switch are sstezof execution time.

A better approach, used in JOP, is to generate timer interatghe release times
of the tasks. The scheduler is now responsible for reprogriagnthe timer after each
occurrence of atimer interrupt. The list of sleeping theehds to be searched to nd
the nearest release time in the future of a higher prioritgetti than the one that will
be released now. This time is used for the next timer intérrup

External Events Hardware interrupts, other than the timer interrupt, amree
sented as asynchronous events with an associated thresdn&hns that the event
is anormal schedulable object under the control of the scheduler. Withinimum
interarrival time, enforced by hardware, these events @mtorporated into the
priority assignment and schedulability analysis in the savay as periodic tasks.

5.7 REAL-TIME PREDICTABILITY 99

Software Interrupts ~ The common software generated interrupts, such as illegal
memory access or divide by zero, are represented by Javanauekceptions and
need no special handler. They can be detected with a trir&éck.

Asynchronous noti cation from the program is supported,tlie same way as
an external event, as a schedulable object with an asstdiatead. The event is
triggered through the call dfre() . The thread with the handler is placed in the
runnable state and scheduled according to priority.

Hardware Failures Serious hardware failures, such as illegal opcode or parnityr
from the memory systems, lead to a shutdown of the system.ekienwvalast try to
call a handler that changes the state of the system to a saéeasid inform an upper
level system, can improve the integrity of the overall syste

5.7.2 Task Switch

An important issue in real-time systems is the time for a g®g#ich. A task switch
consists of two actions:

Schedulings the selection of the task order and timing

Dispatchingis the term for the context switch between tasks

Scheduling Most real-time systems use a xed-priority preemptive sither.
Tasks with the same priority are usually scheduled in a FIFd@ro Two common
ways to assign priorities are rate monotonic or, in a moreeg@rform, deadline
monotonic assignment. When two tasks get the same priaréygan choose one of
them and assign a higher priority to that task and the tasis sétl schedulable. We
get a strictly monotonic priority order and do not have toldgth FIFO order. This
eliminates queues for each priority level and results imglsi priority ordered task
list.

Strictly xed priority schedulers suffer from a problem = priority inversion
[84]. The problem where a low priority task blocks a high ptiotask on a shared
resource is solved by raising the priority of the low priptiask. Two standard prior-
ity inversion avoidance protocols are common:

Priority Inheritance Protocol: A lock assigns the priority of the highest-priority
waiting task to the task holding the lock until that task askes the resource.

Priority Ceiling Emulation Protocol: A lock gets a priority assigned above the pri-
ority of the highest-priority task that will ever acquiresttock. Every task will
be immediately assigned the priority of that lock when agggiit.

100 5 JOP ARCHITECTURE

The priority inheritance protocol is more complex to imptrhand the time when
the priority of a task is raised is not so obvious. It is nosedl because the task does
anything, but because another task reaches some poinexeitsition path.

Using priority ceiling emulation with unique prioritiesjfigrent from task prior-
ities, the priority order is still strictly monotonic. Theiprity ordered task list is
expanded with slots for each lock. If a task acquires a Iddk,placed in the corre-
sponding slot. With this extension to the task list, schiagyis still simple and can
be ef ciently implemented.

Dispatching The time for a context switch depends on the size of the sfateeo

tasks. For a stack machine it is not so obvious what belongjsetstate of a task.
If the stack resides in main memory, only a few registers. (ptggram counter and
stack pointer) need to be saved and restored. However, dok & a frequently

accessed memory region of the JVM. The stack can be seen da aathe and

should be placed near the execution unit (in this casey means on the chip and
not in external memory). However, on-chip memory is usutdtly small to hold the

stack content for all tasks. This means that the stack isgbdine execution context
and has to be saved and restored on a context switch.

In JOP, the stack is placed in local (on-chip) FPGA memonhwinhgle cycle
access time. With this con guration, the next question isviauch of the stack
to place there. Either the complete stack of a thread or ddystack frame of the
current method can reside locally. If the complete stacktbf@ad is stored in local
memory, the invocation of methods and returns are fast,Heutontext is large. For
fast context switches, it is preferable to have only a shadksin local memory. This
results in less data being transferred to and from main mgnbot more memory
transfers on method invocation and return. The local staokoe further divided into
small pieces, each holding only one stack frame of one thr@adting the context
switch, only the stack pointer needs to be saved and restdredoutcome of this is
a very fast context switch, although the size of the local mgrfimits the maximum
number of threads.

Since JOP is a soft-core processor, these different snhitian be con gured for
different application requirements. It is even possiblenig of these policies: some
stack slots can be assigneditoportantthreads, while the remaining threads share
one slot. This stack slot only needs to be exchanged with #ie memory when
switchingto a lessimportantthread.

5.7 REAL-TIME PREDICTABILITY 101

5.7.3 Architectural Design Decisions

In hard real-time systems, meeting temporal requiremer$ the same importance
as functional correctness. This results in different decitiiral constraints than in a
design for a non real-time system. A low upper bound of theetien time is of
premium importance. Good average execution time is uséess pure hard real-
time system.

Common architectural components, found in general purposeessors to en-
hance average performance, are usually problematic fOMBET analysis. A prag-
matic approach to this problem is to ignore these featurethoanalysis. With a
processor designed for real-time applications, theseifesithave to be substituted
by predictable architecture enhancements.

Branch Prediction As the pipelines of current general-purpose processors get
longer to support higher clock rates the penalty of brangetsoo high. This is
compensated by branch prediction logic with branch targéfelts. However, the
upper bound of the branch execution time is the same as withisueature. In JOP,
branch prediction is avoided. This results in pressure enpipeline length. The
core processor has a pipeline length of as little as thregsteesulting in a branch
execution time of three cycles in microcode. The two slotth&branch delay can

be lled with instructions omop. With the additional bytecode fetch and translation
stage, the overall pipeline is four stages and results imadgcle execution time for

a bytecode branch.

Caches and Instruction Prefetch To reduce the growing gap between the clock
frequency of the processor and memory access times mudii-t@ache architectures
are commonly used. Since even a single level cache is pralliefor WCET analy-
sis, more levels in the memory architecture are almost redyaable. The additional
levels also increase the latency of memory access on a casbe m

In a stack machine, the stack is a frequently accessed mesneay This makes
the stack an ideal candidate to be placed near the executibimthe memory hier-
archy. In JOP the stack is implemented as internal memotytiv two top elements
as explicit registers. This single cycle memory can be seendata cache. However,
unlike in picoJava, this limited memory is not automatigalpilled and lled. Au-
tomatically spill and Il introduces unpredictable accassthe main memory. Data
exchange between internal stack and main memory is undgrasmocontrol and can
be done on method invocation/return or on a thread switch.

The next most accessed memory area is the code area. A simfiéch queue,
as it is found in older processors, could increase instvadtiroughput after execut-

102 5 JOP ARCHITECTURE

ing a multi-cycle bytecode. For a stream of single cycle tyties, prefetching is
useless and the frequent occurrence of branches and metramiions, about 12—
23% (see Section 5.1) in typical Java programs, reduceseitiermance gain. The
prefetch queue also results in (probably unbounded) exectitne dependencies
over a stream of instructions, which complicates timinglysia.

JOP has a method cache with a novel replace policy. Sincealypiethods in
Java programs are short and there are only relative bramtlesethod, a complete
method is loaded in the cache on invocation and on returns Géche |l strategy
lumps all cache misses together and is very simple to analyizalso simpli es
the hardware of the cache since no tag memory or addressatianss necessary.
Theromizertool JavaCodeCompact checks the maximum allowed methed Sex-
tion 5.8 describes the proposed cache solution in detaimdg areas for the heap
and class description with the constant pool are not cachd@Pp.

Superscalar Processors A superscalar processor consists of several execution
units and tries to extract instruction level parallelisrhR) with out of order exe-
cution. Again, this is a nightmare for timing analysis. Tlogle for a stack machine
has less implicit parallelism than a register machine.

One form of enhancement, usually implemented in stack mashiis instruc-
tion folding. The instruction stream is scanned to nd frequ patterns like load-
load-add-store and substitutes these four instructiotis avie, RISC-like, operation.
There are two issues with instruction folding in JOP: The bimmd instruction needs
two read and one write access to the stack in a single cycis.vilduld result in dou-
bling of the internal memory usage in the FPGA. It also neatisninimum, four
bytes read access to the method cache. To overcome word d@s)dorefetching
has to be introduced after the method cache. This results additional pipeline
stage, time dependency of instructions with a more compiakyais and more hard-
ware resources for the multiplexers.

Programs for embedded and real-time systems are usualty-thmeladed. In fu-
ture work, it will be investigated if the additional hardwearesources needed for ILP
can be better used with additional processor cores utjittirs implicit thread-level
parallelism.

Garbage Collection As use of the heap is avoided in hard real-time systems, no
garbage collector is implemented. Without a garbage doltethe memory layout of
objects can be simpli ed. Every reference points direatlyhte object. No indirection
through a handle, which would simplify memory compactiothiegarbage collector,

is needed. This reduces access time to object elds and mgtho

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 103

Time-Predictable Instructions A good model of a processor with accurate timing
information is essential for a tight WCET analysis. The #stgture of JOP and the
microcode are designed with this in mind. Execution time yiebodes is known
cycle accurately (see Section 7.4 and Appendix D). It is iptsgo analyze the
WCET on the bytecode level [7] without the uncertaintiesrofraerpreting JVM [5]

or generated native code from ahead-of-time compilerséea.J

5.7.4 Summary

In this section, we argued that, while common techniquesaagssor architectures
increase average throughput, they are not feasible fottireal systems. The in u-
ence of these architectural enhancements is at best haidiWanalyzable.

The proposed alternatives in uence the processor ardhitecas described in ear-
lier sections, as well as the software architecture thdatweitescribed in Section 6.1.

However, the most important architectural enhancemenpifeelined machines
is caching, which is necessary even in embedded systems.aVéeshown in Sec-
tion 5.5 how a time-predictable data cache for a stack maatam be implemented.
In the following section, we will propose a time-predictlgiache for instructions.

5.8 A Time-Predictable Instruction Cache

Worst-case execution time (WCET) analysis [78] of realetiprograms is essential
for any schedulability analysis. To provide a low WCET valaegood processor
model is necessary. However, the architectural advandemeanodern processor
designs is dominated by the ruléake the common case fastThis is the opposite
of 'Reduce the worst casand complicates WCET analysis.

Cache memory for the instructions and data is a classic eapfiphis paradigm.
Avoiding or ignoring this feature in real-time systems, dués unpredictable behav-
ior, results in a very pessimistic WCET value. Plenty of dffas gone into research
into integrating the instruction cache in the timing aneys tasks [4, 38, 58] and
the in uence of the cache on task preemption [57, 11]. Theuence of different
cache architectures on WCET analysis is described in [39].

We will tackle this problem from the architectural side —astiuction cache orga-
nization in which simpler and more accurate WCET analysiaase important than
average case performance.

In this section, we will propose a method cache with a novelaeement policy.
In Java bytecode only relative branches exist, and a methdiderefore only left

104 5 JOP ARCHITECTURE

when a return instruction has been execBitdétihas been observed that methods are
typically short (see Section 5.1.2) in Java applicationsese properties are utilized
by a cache architecture that stores complete methods. Aletenmpethod is loaded
into the cache on both invocation and return. This cachetriitegy lumps all cache
misses together and is very simple to analyze.

5.8.1 Cache Performance

In real-time systems we prefer time-predictable architest over those with a high
average performance. However, performance is still ingmart In this section, we
will give a short overview of the formulas from [40] that arsed to calculate the
cache's in uence on execution time. We will extend the stngleasurememhiss rate

to a two value set, memory read and transaction rate, thath#ecture independent
and better re ects the two properties (bandwidth and latgot the main memory.
To evaluate cache performandédE Mqx memory stall cycles are added to the CPU
execution timetgye equation:

texe= (CPUgk+ MEMcik) — toik
ME Mgk = Misses MPq

The miss penalty P is the cost per miss, measured in clock cycles. When the
instruction countC is given as the number of instructions executeB] the average
clock cycles per instruction and the number of misses péniction, we obtain the
following result:

CPUgk = IC CPleye

Misses
clk Instruction clk
Misses
texe= IC (CPleyet ———— MP, t
exe (exe Instruction clk) clk

As this section is only concerned with the instruction caeewill split the memory
stall cycles into misses caused by the instruction fetchrars$es caused by data
access.

CPI = CPlexet CPly + CPlpum

CPlexelis the average number of clock cycles per instruction, garideal memory
system without any stallSCPl;y are the additional clock cycles caused by instruc-
tion cache misses ar@PIpy the data miss portion of the CPI. This split between

6An uncaught exception also results in a method exit.

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 105

instruction and data portions of the CPI better re ects thi@ sf the cache between
instruction and data cache found in actual processors. TégeBper instruction are
often given as misses per 1000 instructions. However, terseveral drawbacks to
using a single number:

Architecture dependent: The average number of memory accesses per instruction

differs greatly between a RISC processor and the Java Yivtaehine (JVM).

A typical RISC processor needs one memory word (4 bytes) nsruiction
word, and about 40% of the instructions [40] doad or store instructions.
Using the example of a 32-bit RISC processor, this resulis@ribytes memory
access per instruction. The average length of a JVM byteicsdieiction is 1.7
bytes and about 18% of the instructions access the memonatarload and
store.

Block size dependent: Misses per instruction depends subtly on the block size. On
a single cache miss, a whole block of the cache is lled. Tfoeee the proba-
bility that a future instruction request is a hit is highetiwa larger block size.
However, a larger block size results in a higher miss persdtynore memory
is transferred.

Main memory is usually composed of DRAMs. Access time to tidsnory is mea-

sured in terms of latency (the time taken to access the rsdvad a larger block)

and bandwidth (the number of bytes read or written in a sirgf@est per time unit).
These two values, along with the block size of a cache, ar tasgalculate the miss
penalty:

Block size

Bandwidth

To better evaluate different cache organizations andrdififieinstruction sets (RISC

versus JVM), we will introduce two performance measurememhemory bytes read
per instruction byte and memory transactions per instadiyte:

MPgk = Latency+

Memor r
MBIB = e oypytes ead
Instruction bytes
Memory transactions
Instruction bytes

MTIB=

These two measures are closely related to memory bandwidtHadéency. With
these two values and the properties of the main memory, wealaunlate the average
memory cycles per instruction by#CIB andCPly, i.e. the values we are concerned

106 5 JOP ARCHITECTURE

in this section.

MBIB
Bandwith
CPlm = MCIB Instruction length

MCIB = (+ MTIB Latency

The misses per instruction can be converted to MBIB and MTH&mvthe following

parameters are known: the average instruction length oéitigtecture, the block
size of the cache and the miss penalty in latency and bandwitie will examine

this further in the following example:

We use the following architecture to illustrate the conersa RISC architecture
with a 4 bytes instruction length, an 8KB instruction cacht\84-byte blocks and
a miss rate of 8.16 per 1000 instructions [40]. The miss pgmall00 clock cycles.
The memory system is assumed to deliver one word (4 bytes)ypés.

Firstly, we need to calculate the latency of the memory syste

Blocksize

Bandwidth

4
= 100 % = 84 clock cycles

Latency= MP;k

With Miss rate= Sachemiss ye gptain MBIB.

Memory bytes read
Instruction bytes
Cache miss Block size
~ Cache access Instruction length

MBIB

. Block size
= Missrate -
Instruction length
=816 103 65

= 0:131

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 107

MTIB is calculated in a similar way:

Memory transactions
Instruction bytes
Cache miss

Cache access Instruction length
Miss rate

" Instruction length
816 103
L
2:04 103

MTIB=

For a quick check, we can calculd@®ly:

MBIB
MCIB= 25 L uTIB L
CIB= Sandwith atency

- G131, 204 102 84

= 0:204

CPl = MCIB Instruction length
= 0204 4
= 0:816

This is the same value as that which we get from using the rateswith the miss
penalty:

CPlm

Missrate Miss penalty
816 103 100
= 0:816

However, MBIB and MTIB are architecture independent antdbee ect the latency
and bandwidth of the main memory.

5.8.2 Proposed Cache Solution

In this section, we will develop a solution for a predictablehe. Typical Java pro-
grams consist of short methods. There are no branches obeohéthod and all
branches inside are relative. In the proposed architedthuedull code of a method is
loaded into the cache before execution. The cache is llethencations and returns.
This means that all cache llIs are lumped together with a kmewecution time. The

108 5 JOP ARCHITECTURE

full loaded method and relative addressing inside a mettsml rasult in a simpler
cache. Tag memory and address translation are not necessary

However, we will rst discuss an even simpler solution — neluag at all. With-
out an instruction cache, prefetching is mandatory, eaflgavith a variable length
instruction set. The issues surrounding prefetching aeudised in the next section.

Instruction Prefetching

A simple prefetch queue, as found in older processors, carease instruction
throughput after a multi-cycle bytecode is executed. Haxdor a stream of single-
cycle bytecodes, prefetching is useless and the frequanirrenice of branches,
method invocations, and method returns (see Section Sdlipes the performance
gain. Using a prefetch queue also results in execution tispendencies over a
stream of instructions, which complicates timing analysis

For a variable length instruction set, prefetching is alsbanstraightforward op-
tion. The prefetching unit needs to guarantee the avaiiabil a complete instruction
for the fetch unit. As the actual length of the instructiond known at this stage, the
prefetch unit must be a minimum ofaximum length 1 bytes ahead of the requested
instruction. This can lead to unnecessary memory transférs return instruction is
a typical example of this. It is 1 byte long and the additiopfetched instruction
bytes are never used.

A memory interface with a bus width greater than one byte addsti cial bound-
ary to the instruction stream. For the purpose of this exampé are assuming a 4
byte memory interface. In this case we need an 8 byte prefetffbr. On a branch
to an addresaddress mod > 4 maximum instruction lengthiwo words need to
be loaded from main memory before the processor can continue

A memory technology, such as synchronous DRAM, has a latgada for the
rst accessed word and then a high bandwidth for the follaywvords. Prefetching
that only loads small quantities (one or two words) from themmory is therefore
impracticable with these memory technologies.

Single Method Cache

A single method cache, although less ef cient than a coneaat instruction cache,
can be incorporated very easily into the WCET analysis. Tine heeded for the
memory transfer must be added to the invoke and return oigins.

The method cache also simpli es the hardware of the cach#&,rasans that no
tag memory or address translation is necessary. Othergfatie processor are also
smaller. The program counter, the associated adders arniplexer are shorter than

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 109

in a standard cache solution. For example, for a 1KB cacleessite of these units is
only 10 bits, instead of 32 bits.

The main disadvantage of this single method cache is thedughhead when a
complete method is loaded into the cache and only a smatidraof the code is
executed. This issue is similar to that encountered wittsedulata in a cache line.
However, in extreme cases, this overhead can be very highs@tond problem can
be seen in following example:

foo() f
a();
b();
g

This code sequence results in the following cache loads:
1. methodoo is loaded on invocation dbo()
2. methoda is loaded on invocation af()
3. methodoo is loaded on return from()
4. method is loaded on invocation df()
5. methodoo is loaded on return frorh()

The main drawback of the single method cache is the multiptdhe Il of foo()

on return from methods() andb() . In a conventional cache design, if these three
methods tin the cache memory at the same time and there isazement con ict,
each method is only loaded once. This issue can be overcormmachyng more than
one method. The simplest solution is a two-block cache.

Two-Block Cache

The two-block cache can hold up to two methods in the cachis.rébults in having
to decide which block is replaced on a cache miss. With only iocks, Least-
Recently Used (LRU) is trivial to implement. The code seaqaenow results in the
cache loads and hits as shown in Table 5.14. With the twdkbdache, we have to
double the cache memory or use both blocks for a single laejdod. The WCET
analysis is slightly more complex than with a single block.slort history of the
invocation sequence has to be used to nd the cache lls ated hi

However, a cache that can only hold two methods is still vesyrictive. The next
code sequence shows the con ict. Table 5.15 shows the mggwaiache loads.

110 5 JOP ARCHITECTURE

Instruction Block1l Block2 Cache

foo() foo - load
a() foo a load
return foo a hit
b() foo b load
return foo b hit

Table 5.14: Cache load and hit example with the two-block cache

foo() f
a();

g

a) f
b();

Instruction Block1l Block2 Cache

foo() foo - load
a() foo a load
b() b a load
return b a hit

return foo a load

Table 5.15: Cache con ict example with the two-block cache

A memory (similar to the tag memory) with one word per blocluged to store a
reference to the cached method. However, this memory caitolersthan the tag

memory as it is only accessed on invocation or return, ratmem on every cache
access.

More Blocks

We can improve the hit rate by adding more blocks to the cad€ibaly one block per

method is used, the cache size increases with the numbesadblWith more than
two blocks, LRU replacement policy means that another werdeieded for every
block containing a use counter that is updated on every @naid return. During
replacement, this list is searched for the LRU block. Hied#&bn involves a search
through the list of the method references of the blocks. i #earch is done in

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 111

a) f
for (;}) f
b();
c();

Listing 5.8: Code fragment for the replacement example

microcode, it imposes a limit on the maximum number of blocks

Variable Block Cache

Several cache blocks, all of the size as the largest methed, waste of cache mem-
ory. Using smaller block sizes and allowing a method to spen several blocks, the
blocks become very similar to cache lines. The main diffeeginom a conventional
cache is that the blocks for a method are all loaded at onceeeito be consecutive.

Choosing the block size is now a major design decision. milbck sizes allow
better memory usage, but the search time for a hit also isesea

With varying block numbers per method, an LRU replacemenbiyes impracti-
cal. When the method found to be LRU is smaller than the loadethod, this new
method invalidates two cached methods.

For the replacement, we will use a pointextthat indicates the start of the blocks
to be replaced on a cache miss. Two practical replace polioie

Next block: Atthe very rst beginningnextpoints to the rst block. When a method
of lengthl is loaded into the bloch, nextis updated t¢n+ I) mod block count

Stack oriented: nextis updated in the same way as before on a method load. It is
also updated on a method return — independent of a resuliireg miss — to
point to the rst block of the leaving method.

We will show the operation of these different replacemerlicigs in an example

with three methods: a(), b() and c() of block sizes 2, 2 andhke dache consists of 4
blocks and is therefore too small to hold all the methodsndutihe execution of the
code fragment shown in Listing 5.8. Tables 5.16 and 5.17 gshevcache content
during program execution for both replacement policiese Tantent of the cache
blocks is shown after the execution of the invoke or retustrirction. An uppercase
letter indicates that this block has been newly loaded. Atrggrow depicts the block

112 5 JOP ARCHITECTURE

a) b() ret c) ret b() ret c() ret b() ret
!

Block 1 A a ! a C c B b b ! B b
Block 2 A a a | A la !l a C c B b
Block3 | - B b b A a a ! - A la | a
Block 4 - B b b ! - B b A a a
Fill 2 4 5 7 9 11 13 15
Table 5.16: Next block replacement policy
a) b() ret c) ret b() ret c() ret b() ret
Block 1 A Il a a a a ! a a a a ! a a
Block 2 A a a a a a a a a a a
Block3 ! - B ! b C !ec B !'b C !¢ B !'b
Block 4 - B b | B b I - B b
Fill 2 4 5 7 8 10

Table 5.17: Stack oriented replacement policy

to be replaced on a cache miss (ttextpointer). The last row shows the number of
blocks that are lled during the execution of the program.

In this example, the stack oriented approach needs fewsral only methods b()
and c() are exchanged and method a() stays in the cache. dfefor example,
method b() is the size of one block, all methods can be heldaércache using the
the next blockpolicy, but b() and c¢() would be still exchanged using steckpolicy.
Therefore, the rst approach is used in the proposed cache.

5.8.3 WCET Analysis

The proposed instruction cache is designed to simplify W@Ralysis. Due to the
fact that all cache misses are only included in two instandi{nvokeandreturn), the
instruction cache can be ignored on all other instructidite time needed to load a
complete method is calculated using the memory propeitagsnCy and bandwidth)
and the length of the method. On an invoke, the length of takied method is used,
and on a return, the method length of the caller is used taledéthe load time.
With a single method cache this calculation can be furthmpkied. For every
invoke there is a corresponding return. That means thairtteerieeded for the cache
load on return can be included in the time for the invoke irgtton. This is simpler

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 113

because both methods, the caller and the callee, are knothie atcurrence of the
invoke instruction. The information about which method waes caller need not be
stored for the return instruction to be analyzed.

With more than one method in the cache, a cache hit detecéistolbe performed
as part of the WCET analysis. If there are only two blockss thitrivial, as (i) a hit
on invoke is only possible if the method is the same as therasked (e.g. a single
method in a loop) and (ii) a hit on return is only possible wihigs method is a leaf
in the call tree. In the latter case, it is always a hit.

When the cache contains more blocks (i.e. more than two rdstten be cached),
a part of the call tree has to be taken into account for hitafiete. The variable
block cache further complicates the analysis, as the mddragth also determines
the cache content. However, this analysis is still simgianta cache modeling of a
direct-mapped instruction cache, as cache block replatedepends on the call tree
instead of instruction addresses.

In traditional caches, data access and instruction cadhrequests can compete
for the main memory bus. For example, a load or store at theo&tite processor
pipeline competes with an instruction fetch that resulta tache miss. One of the
two instructions is stalled for additional cycles by theestinstruction. With a data
cache, this situation can be even worse. The worst-casarszdor the memory
stall time for an instruction fetch or a data load is two mishaities when both
cache reads are a miss. This unpredictable behavior leagsyt@essimistic WCET
bounds.

A method cachewith cache llIs only on invoke and return, does not integfevith
data access to the main memory. Data in the main memory issetevithget eld
andput eld, instructions that never overlap withvokeandreturn. This property
removes another uncertainty found in traditional cachédes

5.8.4 Caches Compared

In this section, we will compare the different cache ardtitees in a quantitative way.
Although our primary concern is predictability, perforncarremains important. We
will therefore rst present the results from a conventiodakct-mapped instruction
cache. These measurements will then provide a baselinddoevaluation of the
proposed architecture.

Cache performance varies with different application dommaiAs the proposed
system is intended for real-time applications, the benckrfa these tests should
re ect this fact. However, there are no standard benchmarvislable for embed-
ded real-time systems. A real-time application was theecbmlapted to create this
benchmark. The application is from one node of a distribuedor control system

114 5 JOP ARCHITECTURE

Cache size Blocksize MBIB MTIB

1KB 8 0.28 0.035
1 KB 16 0.38 0.024
1KB 32 0.58 0.018
2KB 8 0.17 0.022
2KB 16 0.25 0.015
2KB 32 0.41 0.013
4 KB 8 0.00 0.001
4 KB 16 0.01 0.000
4 KB 32 0.01 0.000

Table 5.18: Direct-mapped cache

[83] (see also Section 7.5.1). A simulation of the environtn@ensors and actors)
and the communication system (commands from the mastargtédrms part of the
benchmark for simulating the real-world workload.

The data for all measurements was captured using a simulati®OP and running
the application for 500,000 clock cycles. During this tinlee major loop of the
application was executed several hundred times, effdgtiendering any misses
during the initialization code irrelevant to the measuretae

Direct-Mapped Cache

Table 5.18 gives the memory bytes and memory transactiariegieuction byte for
a standard direct-mapped cache. As we can see from the Valuesache size of
4KB, the kernel of the application is small enough to t comitgly into the 4KB
cache. The cache performs better (i.e. fewer bytes ardéraed) with smaller block
sizes. With smaller block sizes, the chance of unused datg bead is reduced and
the larger number of blocks reduces con ict misses. Howeraxtucing the block
size also increases memory transactions (MTIB), whichctifeelates to memory
latency.

Which con guration performs best depends on the relatignbletween memory
bandwidth and memory latency. Examples of average memagsadimes in cycles
per instruction byte for different memory technologies previded in Table 5.19.
The third column shows the cache performance for a Static RBRAM) that is
very common in embedded systems. A latency of 1 clock cyaksaraccess time of
2 clock cycles per 32-bit word are assumed. For the synclubiRAM (SDRAM)
in the forth column, a latency of 5 cycles (3 cycle for the raddiess and 2 cycle

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 115

Cache size Block size SRAM SDRAM DDR

1KB 8 0.18 0.25 0.19
1KB 16 0.22 0.22 0.16
1KB 32 0.31 0.24 0.15
2KB 8 0.11 0.15 0.12
2KB 16 0.14 0.14 0.10
2KB 32 0.22 0.17 0.11

Table 5.19: Direct-mapped cache, average memory access time

CAS latency) is assumed. The memory delivers one word (4spyter cycle. The
Double Data Rate (DDR) SDRAM in the last column has an entdlatency of 4.5
cycles and transfers data on both the rising and falling edi¢fee clock signal.

The data in bold give the best block size for different memeighnologies. As
expected, memories with a higher latency and bandwidttoparbetter with larger
block sizes. For small block sizes, the latency clearly datds the access time.
Although the SRAM has half the bandwidth of the SDRAM and artgraof the
DDR, with a block size of 8 bytes, it is faster than the DRAM nogi@s. In most
cases a block size of 16 bytes is the fastest solution and Wéherefore use this
con guration for comparison with the following cache soduts.

Fixed Block Cache

Cache performance for single method per block architestisrenown in Table 5.20.
The measurements for a simple 8 byte prefetch queue areistsa fpr reference.
With prefetching, we would expect to see an MBIB of about 1e B7% overhead
results from the fact that the prefetch queue fetches 4 laytiese and has to buffer a
minimum of 3 bytes for the instruction fetch stage. On a binamcreturn, the queue
is ushed and these bytes are lost.

A single block that has to be lled on every invoke and retugquires considerable
overheads. More than twice the amount of data is read frormtia memory than
is consumed by the processor. However, the memory transactiunt is 16 times
lower than with simple prefetching, which can compensatette large MBIB for
main memories with high latency.

The solution with two blocks for two methods performs almivgite as well as
the simple one method cache. This is due to the fact that,llfteaves in the call
tree, the caller method can be found on return. If the bloaknt@s doubled again,
the number of misses is reduced by a further 25%, but the csizhealso doubles.

116 5 JOP ARCHITECTURE

Type Cache size MBIB MTIB
Prefetch 8B 1.37 0.342
Single method 1KB 232 0.021
Two blocks 2 KB 1.21 0.013
Four blocks 4 KB 0.90 0.010

Table 5.20: Fixed block cache

Type Cache size SRAM SDRAM DDR
Prefetch 8B 1.02 2.05 1.71
Single Method 1KB 1.18 0.69 0.39
Two blocks 2 KB 0.62 0.37 0.21
Four blocks 4 KB 0.46 0.27 0.16

Table 5.21: Fixed block cache, average memory access time

For this measurement, an LRU replacement policy appliegtwo and four block
caches.

The same memory parameters as in the previous section angsald in Table 5.21.
With the high latency of the DRAMS, even the simple one bloaghe is a faster (and
more accurately predictable) solution than a prefetch quéds MBIB and MTBI
show the same trend as a function of the number of blocks,ighis ected in the
access time in all three memory examples.

Variable Block Cache

Table 5.22 shows the cache performance of the proposedosplue. of a method
cache with several blocks per method, for different cachessand number of blocks.
For this measurement,reext blockreplacement policy applies.

In this scenario, as the MBIB is very high at a cache size of Ja@8 almost
independent of the block count, the cache capacity is sebe tearly dominant.
The most interesting cache size with this benchmark is 2K&eHwe can see the
in uence of the number of blocks on both performance paranset Both values
bene t from more blocks. However, a higher block count regsiimore time or more
hardware for the hit detection. With a cache size of 4KB anough blocks, the
kernel of the application completely ts into the variableotk cache, as we have
seen with a 4KB traditional cache. From the gap between 1&andocks (within
the 4KB cache), we can say that the application consistsvedrféghan 32 different

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 117

Cache size Block count MBIB MTIB

1KB 8 0.80 0.009
1KB 16 0.71 0.008
1KB 32 0.70 0.008
1KB 64 0.70 0.008
2KB 8 0.73 0.008
2KB 16 0.37 0.004
2KB 32 0.24 0.003
2KB 64 0.12 0.001
4 KB 8 0.73 0.008
4 KB 16 0.25 0.003
4 KB 32 0.01 0.000
4 KB 64 0.00 0.000

Table 5.22: Variable block cache

methods.

It can be seen that even the smallest con guration with a eaire of 1KB and
only 8 blocks outperforms xed block caches with 2 or 4KB intlhhgarameters
(MBIB and MTIB). Compared with the xed block solutions, MBlis low in all
con gurations. This is due to the better hit rate, as indidaby the lower MBIB.

In most con gurations, MBIB is higher than for the direct-pped cache. It is
very interesting to note that, in all con gurations (evee gmall 1KB cache), MTIB
is lower than in all 1KB and 2KB con gurations of the directapped cache. This
is a result of the complete method transfers when a miss s@nat is clearly an
advantage for main memory systems with high latency.

As in the previous examples, Table 5.23 shows the averageonyesucess time
per instruction byte for three different main memories.

In the DRAM con gurations, the variable block cache dirgdiiene ts from the
low MTBI. When comparing the values between SDRAM and DDRcae see that
the bandwidth affects the memory access time in a way thaipsoaimately linear.
The high latency of these memories is completely hidden. ddmeguration with
16 or more blocks and dynamic RAMs outperforms the direghmed cache of the
same size. As expected, a memory with low latency (the SRARhi® example)
depends on the MBIB values. The variable block cache is sidian the direct-
mapped cache in the 1KB con guration because of the higheiBUB.7 compared
to 0.3-0.6), and performs very similarly at a cache size d82K

In Table 5.24, the different cache solutions with a size oB2&e summarized.

118 5 JOP ARCHITECTURE

Cache size Block count SRAM SDRAM DDR

1KB 8 0.41 0.24 0.14
1 KB 16 0.36 0.22 0.12
1KB 32 0.36 0.21 0.12
1 KB 64 0.36 0.21 0.12
2 KB 8 0.37 0.22 0.13
2 KB 16 0.19 0.11 0.06
2KB 32 0.12 0.08 0.04
2KB 64 0.06 0.04 0.02

Table 5.23: Variable block cache, average memory access time

Cache type MBIB MTIB
Single method 232 0.021
Two blocks 1.21 0.013

Variable block (16) 0.37 0.004
Variable block (32) 0.24 0.003
Direct-mapped 0.25 0.015

Table 5.24: Caches compared

The detail results of all caches can be found in Appendix Bfullmethod caches
with two or more blocks have a lower MTIB than a conventioredtte solution. This
becomes more signi cant with increasing latency in main roges. The MBIB
value is only quite high for one or two methods in the cacheweéler, the most
surprising result is that the variable block cache with 3k$ outperforms a direct-
mapped cache of the same size at both values.

We can see that predictability is indirectly related to perfance — a trend we had
anticipated. The most predictable solution with a singlélroe cache performs very
poorly compared to a conventional direct-mapped cachee dgcept a slightly more
complex WCET analysis (taking a small part of the call tree imccount), we can
use the two-block cache that is about two times better.

With the variable block cache, it could be argued that the W@Balysis be-
comes too complex, but it is nevertheless simpler than thikt tve direct-mapped
cache. However, every hit in the two-block cache will als@lhét in a variable block
cache (of the same size). A tradeoff might be to analyze tbhgram by assuming
a two-block cache but using a version of the variable bloathea The additional
performance gain can than be used by non- or soft real-tirrte phan application.

5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 119

5.8.5 Summary

In this section, we have extended the single cache perfaenareasuremermiss
rate to a two value set, memory read and transaction rate, in dodeerform a
more detailed evaluation of different cache architecturesom the properties of
the Java language — usually small methods and relative lheane we derived the
novel idea of anethod cache.e. a cache organization in which whole methods are
loaded into the cache on method invocation and the retum &onethod. This cache
organization is time-predictable, as all cache missesarpéd together in these
two instructions. Using only one block for a single methotladuces considerable
overheads in comparison with a conventional cache, butrg sienple to analyze.
We extended this cache to hold more methods, with one blackpthod and several
smaller blocks per method.

Comparing these organizations quantitatively with a beraitk derived from a
real-time application, we have seen that the variable btadhe performs similarly
to (and in one con guration even better than) a direct-mappache, in respect of
the bytes that have to be lled on a cache miss. In all con gioras and sizes of the
variable block cache, the number of memory transactiong;hwielates to memory
latency, is lower than in a traditional cache.

Only lling the cache on method invocation and return singgiWCET analysis
and removes another source of uncertainty, as there is npetdion for the main
memory access between instruction cache and data cache.

6 JOP Runtime System

A Java processor alone is not a complete JVM. This chapterides the de nition
of a real-time pro le for Java and a framework for a user-dednscheduler in Java. It
concludes with the description of the JVM internal datacttrtes to represent classes
and objects.

6.1 A Real-Time Pro le for Embedded Java

As standard Java is under-speci ed for real-time systenasthe RTSJ does not t
for small embedded systems a new and simpler real-time @ns Ide ned in this
section and implemented on JOP. The guidelines of the spemdn are:

High-integrity pro le

Easy syntax, simplicity

Easy to implement

Low runtime overhead

No syntactic extension of Java

Minimum change of Java semantics

Support for time measurement if a WCET analysis tool is natlakile

Known overheads (documentation of runtime behavior and ongmequire-
ments of every JVM operation and all methods have to be peolid

The real-time pro le under discussion is inspired by theneted versions of the
RTSJ described in [79] and [56] (see Section 4.4.5). It isrided for high-integrity
real-time applications and as a test case to evaluate thaeattire of JOP as a Java
processor for real-time systems.

The proposed de nition is not compatible with the RTSJ. 8itlse application
domain for the RTSJ is different from high-integrity systent makes sense forriiot
to be compatible with the RTSJ. Restrictions can be enfdogeatk ning new classes

122 6 JOP RINTIME SYSTEM

(e.g. setting thread priority in the constructor of a realet thread alone, enforcing
minimum interarrival times for sporadic events).

All hardware interrupts are represented by threads undecdhtrol of the sched-
uler. With this solution, a priority is assigned to the devirivers and the execu-
tion time can be incorporated in the schedulability analygith normal tasks. This
solution also avoids problems with preemption latency pked by device drivers.
One example of this problem is tleaps-lockissue in Linux [59]: A device driver
performs a spinlock wait for keyboard acknowledgement amdiyces preemption
latency up to 9166s. With the proposed concept of hardware interrupts undesdsc
uler control, a lower assigned priority to such a devicearavoids preemption de-
lays of more importanteal-time threads and events.

To verify that this speci cation is expressive enough foghrintegrity real-time
applications, Ravenscar-Java (RJ) [56] (see Section)4wuith the additional neces-
sary RTSJ classes, has been implemented on top of it. HowR¥énherits some of
the complexity of the RTSJ. Therefore, the implementatioRbhas a larger memory
and runtime overhead than this simple speci cation.

6.1.1 Application Structure

The application is divided in two different phaséstialization andmission All non
time-critical initialization, global object allocationshread creation and startup are
performed in the initialization phase. All classes needdddaded and initialized in
this phase. The mission phase starts after invocatigraafission() . The num-
ber of threads is xed and the assigned priorities remairhanged. The following
restrictions apply to the application:

Initialization and mission phase
Fixed number of threads
Threads are created at initialization phase

All shared objects are allocated at initialization

6.1.2 Threads

Concurrency is expressed with two typessohedulable objects

Periodic activities ~ are represented by threads that execute in an in nite loopkin
ing waitForNextPeriod() to get rescheduled in prede ned time intervals.

6.1 A REAL-TIME PROFILE FOREMBEDDED JAVA 123

Asynchronous sporadic activities are represented by event handlers. Each event
handler is in fact a thread, which is released by an hardwaegrupt or a
software generated event (invocationfigf()). Minimum interarrival time
has to be speci ed on creation of the event handler.

The classes that implement thehedulable objectsre:

RtThread represents a periodic task. As usual task work is codednify , which
gets invoked omissionStart() . A scoped memory object can be attached
to anRtThread at creation.

HwEvent represents an interrupt with a minimum interarrival timiethe hardware
generates more interrupts, they get lost.

SwEvent represents a software-generated event. It is triggerdictlly and needs
to overridehandle()

Listing 6.1 shows the de nition of the basic classes.
Listing 6.2 shows the principle coding of a worker thread.ekample for creation
of two real-time threads and an event handler can be seerstimd i6.3.

6.1.3 Scheduling

The scheduler is a preemptive, priority-based schedulgrwwilimited priority levels
and a unique priority value for each schedulable object. &&-time threads or
events are scheduled during the initialization phase.

The design decision to use unique priority levels, instdde 6O within priorities,
is based on following facts: Two common ways to assign fréxiare rate monotonic
and, in a more general form, deadline monotonic assignmafiten two tasks are
given the same priority, we can choose one of them and asdighar priority to
that task and the task set will still be schedulable. Thigltesn a strictly monotonic
priority order and we do not need to deal with FIFO order. Télisiinates queues
for each priority level and results in a single, priority erdd task list with unlimited
priority levels.

Synchronized blocks are executed with priority ceiling étian protocol. An
object, used for synchronization, for which the prioritynist set, top priority is as-
sumed. This avoids priority inversions on objects that aeatcessible from the
application (e.g. objects inside a library).

In addition, the scheduler contains methods for worst-tiase measurement for
both the periodic work and handler methods. These measkeedition times can be
used during development when no WCET analysis tool is availa

124

6 JOP RINTIME SYSTEM

public class

public
public
public
public

public

public

public
public

public
g

public class
public
public

public
g

public class

public
public

public
public

RtThread f

RtThread (int priority,
RtThread (int priority,
RtThread (int priority,
RtThread (int priority,

int period)

int period, int offset)

int period, Memory mem)
int period, int offset,

Memory mem)

void
void exitMemory ()
void

boolean

run ()

static void

HwEvent extends

enterMemory ()

waitForNextPeriod

startMission

0

0

RtThread f

HwEvent (int priority, int minTime, int number)
HwEvent (int priority, int minTime, Memory mem,

int number)

void handle ()

SwEvent extends

RtThread f

SwEvent (int priority, int minTime)
SwEvent (int priority, int minTime, Memory mem)

final void fire ()
void handle ()

Listing 6.1: Schedulable objects

6.1 A REAL-TIME PROFILE FOREMBEDDED JAVA 125

6.1.4 Memory

The pro le does not support a garbage collector. All memdmgdd be allocated
at the initialization phase. Without a garbage collectiog, lheap implicitly becomes
immortal memory (as de ned by the RTSJ). For objects crediaihg the mission
phase, a scoped memory is provided. Each scoped memorysaasaigned to one
RtThread . A scoped memory area cannot be shared between threadsfekences
are allowed from the heap to scoped memory. Scoped memokplisidy entered
and left using invocations from the application logic. Mesnareas are cleared both
on creation and when leaving the scope (invocatioaxaMemory()), leading to a
memory area with constant allocation time, as opposed toanemith linear allo-
cation time (as the memory typ&Memory in the RTSJ) [21].

6.1.5 Restriction of Java

A list of some of the language features that should be avdioied CET analyzable
real-time threads and bound memory usage:

WCET: Only analyzable language constructs are allowed (see.[78])

Static class initialization: Since the de nition when to call the static class initialize
is problematic (see Section 4.2), they are disallowed. Mbiecode to a static
method (e.ginit()) and invoke it explicit in the initialization phase.

Inheritance: Reduce usage of interfaces and overridden methods.

String concatenation: In immortal memory scope only string concatenation with
string literals is allowed.

Finalization: finalize() has a weak de nition in Java. Because real-time
systems rurforever, objects in the heap, which is immortal in this speci -
cation, will never be nalized. Objects in scoped memory aeeased on
exitMemory() . However, nalizations on these objects complicate WCET
analysis ofexitMemory()

Dynamic Class Loading: Due to the implementation and WCET analysis complex-
ity dynamic class loading is avoided.

A program analysis tool can greatly help in enforcing thesgrictions.

126 6 JOP RINTIME SYSTEM

public class Worker extends RtThread f
private SwEvent event;

public Worker(int p, int t,
SwEvent ev) f

super(p, t,
/I create a scoped memory area
new Memory(10000)

);
event = ey,
init();
g
private void init() f
/[all initialzation stuff
/I has to be placed here
g
public void run() f
for (;;) f
work(); /I do some work
event.fire(); /I and fire an event
/I some work in scoped memory
enterMemory();
workWithMem();
exitMemory();
/I wait for next period
if (waitForNextPeriod()) f
missedDeadline();
g
g
/I should never reach this point
g

Listing 6.2: A periodic real-time thread

6.1 A REAL-TIME PROFILE FOREMBEDDED JAVA 127

/I create an Event
Handler h = new Handler(3, 1000);

/I create two worker threads with

/I priorities according to their periods
FastWorker fw = new FastWorker(2, 2000);
Worker w = new Worker(1, 10000, h);

/I change to mission phase for all
/I periodic threads and event handler

RtThread.startMission();
/l do some non real time work
/I and invoke sleep() or yield()
for (3;) f
watchdogBlink();
Thread.sleep(500);
g

Listing 6.3: Start of the application

128 6 JOP RINTIME SYSTEM

6.1.6 Implementation Results

The initial idea was to implement scheduling and dispatghimmicrocode. How-
ever, many Java bytecodes have a one to one mapping to a oderastruction,
resulting in a single cycle execution. The performance géaem algorithm coded in
microcode is therefore negligible. As a result, almost ithe scheduling is imple-
mented in Java. Only a small part of the dispatcher, a menupy, ¢s implemented
in microcode and exposed with a special bytecode.

Experimental results of basic scheduling benchmarks, asgteriodic thread jit-
ter, context switch time for threads and asynchronous syean be found in Sec-
tion 7.3.2.

To implement system functions, such as scheduling, in J@ess to JVM and
processor internal data structures have to be availableveiAzr, Java does not al-
low memory access or access to hardware devices. In JORdtess is provided
by way of additional bytecodes. In the Java environmentseh®ytecodes are repre-
sented as static native methods. The compiled invoke etstrufor these methods
(invokestatic) is replaced by these additional bytecodes in the classThes so-
lution provides a very ef cient way to incorporate low-ld¥enctions into a pure Java
system. The translation can be performed during classrgadiavoid non-standard
class les.

A pure Java system, without an underlying RTOS, is an unusisaém with some
interesting new properties. Java is a safer execution @mvient than C (e.g. no
pointers) and the boundary betwedesrnelanduser spacean become quite loose.
Scheduling, usually part of the operating system or the JigNnplemented in Java
and executed in the same context as the application. Thgepsoprovides an easy
path to a framework for user-de ned scheduling.

6.2 User-De ned Scheduler

The novel approach to implement a real-time scheduler ia é@ens up new pos-
sibilities. An obvious next step is to extend this systemrmvje a framework for
user-de ned scheduling in Java. New applications, such alimredia streaming,
result insoft real-time systems that need a more exible scheduler thantrdudi-
tional xed priority based ones. This section provides a@enrto-use framework to
evaluate new scheduling concepts for these applicatioreairtime Java.

The following section analyzes which events are exposedheéostheduler and
which functions from the JVM need to be available in the upacs. It is followed
by the de nition of the framework and examples of how to impknt a scheduler
using this framework.

6.2 USER-DEFINED SCHEDULER 129

6.2.1 Schedule Events

The most important element of the user-de ned schedules detne which events
result in the scheduling of a new task. When such an eventscthe user-de ned
scheduler is invoked. It can update its task list and decidiemtask is dispatched.

Timer interrupt: For timed scheduling decisions, a programmable timer géeer
exact timed interrupts. The scheduler controls the timervat for the next
interrupt.

HW interrupt:. Each hardware-generated interrupt can be associated wigsymn-
chronous event. This allows the execution of a device duweler the control
of the scheduler. Latencies of the device driver can be olvetr by assigning
the right priority in a priority scheduler.

Monitor: To allow different implementations of priority inversiomgtocols, hooks
for monitorenter ~ andmonitorexit ~ are provided.

Thread block: Each thread can cease execution via a call of the schedulds T
function is used to implement methods suchwastForNextPeriod() or
sleep() . The reason for blocking (e.g. end of periodic work) has tacdm-
municated to the scheduler (e.g. next time to be unblocked periodic task).

SW event: Invoking fire() on an event provides support for signalingait()
notify() or notifyAll() are not necessary. However, this mechanism is
not part of the scheduling framework. It can be implementéiti ¥he user-
de ned scheduler and an associated thread class.

6.2.2 Data Structures

To implement a scheduler in Java, some JVM internal datatsies need to be
accessible.

Object: In Java, any object (including an object from the clarss for static meth-
ods) can be used for synchronization. Different priorityeirsion protocols
require different data structures to be associated withlbgect Each object
provides a eld, accessed throughsaheduler method, in which these data
structures can be attached.

Thread: A list of all threads is provided to the scheduler. The sckerds also noti-
ed when a new thread object is created or a thread termindtes scheduler
controls the start of threads.

130 6 JOP RINTIME SYSTEM

6.2.3 Services for the Scheduler

The real-time JVM and the hardware platform have to provim®e minimum ser-
vices. These services are exposed throsigteduler

Dispatch: The current active thread is interrupted and a new threath¢ced in the
run state.

Time: System time with high resolution (microseconds, if the gungk can provide
it) is used for time derived scheduling decisions.

Timer: A programmable timer interrupt (not a timer tick) is necegdar accurate
time triggered scheduling.

Interrupts: To protect the data structures of the scheduler all intésrapn be dis-
abled and enabled.

6.2.4 Class Scheduler

The classscheduler has to be extended to implement a user-de ned scheduler. The
classTask representschedulable objectsFor non-trivial scheduling algorithms,
Task is also extended. The scheduler lives in normal thread spatere is no
special context such as kernel space. The methodshetiuler are categorized by
the caller module and described in detail below.

Application ~ To use a scheduler in an application, the application ondytb&reate
one instance of the scheduler class and has to decide whedudicly starts.

public Scheduler ()
A single instance of the scheduler is created by the apitat
public void start ()

This method initiates the transition to the mission phastefapplication. All cre-
ated tasks are started and scheduled under the control oéé¢nescheduler.

Task A user-de ned scheduler usually needs an associated eseedithread class
(an extension ofask). This class interacts with the scheduler by invoking failog
methods fronscheduler

void addTask (Task t)

6.2 USER-DEFINED SCHEDULER 131

The scheduler has access to the list of created tasks to tlee sthrt of scheduling.
For dynamic task creation after the start of the scheduiertethod is called by the
constructor of Task, to notify the scheduler to update #s li

void isDead (Task t)

The scheduler is noti ed when a Task returns fromiing) method. The scheduler
removes this Task from the list of schedulable objects.

void block ()

EveryTask can cease execution via a call of the scheduler. This methaded to
implement methods such aaitForNextPeriod() orsleep() in a user de ned
thread class.

Java Virtual Machine The methods listed below provide the essential points of
communication between the JVM and the scheduler. As a regptanan interrupt
(hardware or timer), entrance or exit of a synchronized owftilock the JVM in-
vokes a method from the scheduler.

abstract void schedule ()

This is the main entry point for the scheduler. This methosl toabe overridden to
implement the scheduling algorithm. It is called from theMl¥n a timed event or a
software interrupt (segenint()) is issued (e.g. whenT®ask gives up execution).

void interrupt (int nr)

The scheduler is noti ed on a hardware event. It can direzdlyan associated device
driver or use this information to unblock a waiting task.

void monitorEnter (Object 0)
void monitorExit (Object 0)

These methods are invoked by the JVM on synchronized methudiblocks (JVM
bytecodesmonitorenter ~ and monitorexit). They provide hooks for executing
dynamic priority changes in the scheduler.

Scheduler Services of the JVM needed to implement a scheduler are gedvi
through static methods.

static final void genint ()

This service from the JVM schedules a software interruptaAssult,schedule()
is called. This method is the standard way of switching adritr the scheduler. It is
e.g. invoked byblock()

132 6 JOP RINTIME SYSTEM

static final void enableint ()
static final void disableint ()

The scheduler cannot use monitors to protect its data steghas the scheduler itself
is in charge of handling monitors. To protect the data stmest of the scheduler, it
can globally enable and disable interrupts.

static final void dispatch (Task nextTask, int nextTim)
This method dispatchesTask and schedules a timer interruptraitTim .

static final void attachData (Object obj, Object data)
static final Object getAttachedData (Object obj)

The behavior of the priority inversion avoidance protosalé ned by the user sched-
uler. The root of the Java class hierarclav4.lang.Object) contains a JVM in-
ternal reference of generic type Object that can be used dgcheduler to attach
data structures for monitors. The rst argument of thesehmes is the object that is
used as monitor.

Scheduler or Task The following two methods are utility functions useful fowet
scheduler and the thread implementation.

static final int getNow ()

To support time-triggered scheduling, the system provéaesss to a high-resolution
time or counter. The returned value is the time since stdrtupicroseconds. The
exact resolution is implementation-dependent.

static final Task getRunningTask ()

The current runningask (in which context the scheduler is called) is returned by
this method.

6.2.5 Class Task

A basic structure for schedulable objects is shown in Lgs@i. This class is usually
extended to provide a thread implementation that ts to thertde ned scheduler.
The classrask is intended to be minimal. To avoid inheriting methods trandt t
for some applications, it does not extegada.lang.Thread . However,Task can
be used tamplementava.lang.Thread

The methodenterMemory andexitMemory are used by the application to pro-
vide scoped memory for temporary allocated objeTtsk provides a list of active
tasks for the scheduler.

6.2 USER-DEFINED SCHEDULER 133

public class Task f

public Task()
public Task (Memory mem)
void start ()

public void enterMemory ()
public void exitMemory ()

public void run ()

static Task getFirstTask 0
static ~ Task getNextTask ()

Listing 6.4: A basic schedulable object

One issue, raised by the implementation of the frameworkésway in which
access rights to methods need to be de ned in Java. All methextepstart()
should beprivate or protected . However, some methods, suchsakedule() ,
are invoked by a part of the JVM, which is also written in Javd tesides in a
different package. This results in de ning the methods ddip@andhopingthat they
are not invoked by the application code. The C++ conceptiendis would greatly
help in sharing information over package boundaries withoaking this information
public.

6.2.6 A Simple Example Scheduler

Listing 6.5 shows a full example of using this framework tgplement a simple
round robin scheduler.

The only method that needs to be supplieddsedule() . For a more advanced
scheduler, it is necessary to provide a combination of adsered thread class and
a scheduler class. These two classes have to be tightlyratéely as the scheduler
uses information provided by the thread objects for its datieg decisions.

134

6 JOP RINTIME SYSTEM

public class RoundRobin extends Scheduler

1

I test threads

1

static class Work extends Task

private int c;

Work(int ch) f

c = ch;
g
public void run() f
for (;}) f
Dbg.wr(c); /I debug output
/I busy wait to simulate
/I 3 ms workload in Work.
int ts = Scheduler.getNow();
ts += 3000;
while (ts Scheduler.getNow()
g
g
g
I
I user scheduler starts here
I
public void addTask(Task t) f
/I we do not allow tasks to be
/l added after start().
g
I

1 called by the JVM

>0)

6.2 USER-DEFINED SCHEDULER 135

1

public void schedule() f
Task t = getRunningTask().getNextTask();
if (t==null) t = Task.getFirstTask();
dispatch(t, getNow()+10000);

g

public static void main(String[] args) f
new Work('a');
new Work('b");
new Work('c";
RoundRobin rr = new RoundRobin();
rr.start();

g

Listing 6.5: A very simple scheduler

6.2.7 Interaction of Task, Scheduler and the JVM

The framework is used to re-implement the scheduler destiibSection 6.1. In the
original implementation, the interaction between schieguind threads was simple,
as the scheduling was part of the thread class. Using thesfvank, these functions
have to be split to two classes, extendifesk and Scheduler . Both classes are
placed in the same package to provide simpler informati@miisy with some pro-
tection from the rest of the application. For performana@soms data structures are
directly exposed from one class to the other.

The resulting implementation is compatible with the rstmigon, with the ex-
ception thatRtThread now extendsrask . However, no changes in the application
code are necessary.

Figure 6.1 is an interaction example of this scheduler withe framework. The
interaction diagram shows the message sequences betweespphlication tasks,
the scheduler, the JVM and the hardware. The hardware eypeesterrupt and
timer logic. The corresponding code fragments of the appbao, RtThread and
PriorityScheduler are shown in Listing 6.6, 6.7 and 6.8. Task 2 is a periodic task
with a higher priority than Task 1.

136

6 JOP RINTIME SYSTEM

Figure 6.1: Interaction and message exchange between the applictitescheduler,
the JVM and the hardware

Task 1 Task 2 Scheduler JVM Hardware
5 : ! timer
T L interrupt
. schedule
! ! Scheduling - . !
H H decision H H
H ! | dispatch ' :
’7 switch i set timer :
' H resume task | Context I:I
i < " switch :
s wENP s s s
block H genint
set interrupt | L
: __interrupt
5 5 ! schedule 5
: : Scheduling r !
; ; decision s s
! ! dispatch ! !
switch 1 set timer :
" . resume task ' Context I:I
' switch '

- Application I:l User defined

I:l Framework

6.2 USER-DEFINED SCHEDULER 137

for (;;) f
doPeriodicWork();
waitForNextPeriod();

Listing 6.6: Code fragment oft the application

The rst event is a timer event to unblock Task 2 for a new peiridhe generated
timer event results in a call of the user de ned schedulee 3theduler performs its
scheduling decision and issues a context switch to Task th &/ery context switch
the timer is reprogrammed to generate an interrupt at thetimeg triggered event
for a higher priority task. Task 2 performs the periodic warld ceases execution
by invocation ofwaitForNextPeriod() . The scheduler is called and requests an
interrupt from the hardware resulting in the same call segeeas with a timer or
other hardware interrupt. The software generated inteimaposes negligible over-
head and results in a single entry point for the schedulesk Tas the only ready task
in this example and is resumed by the scheduler.

Using a general scheduling framework for a real-time scleeds not without
its costs. Additional methods are invoked from a schedudimgnt until the actual
dispatch takes place. The context switch is about 20% sltiaaT in the original
implementation. It is the opinion of the author that the &iddal cost is outweighed
by the exibility of the framework.

6.2.8 Predictability

The architecture of JOP is designed to simplify WCET analySvery JVM bytecode
maps to one ore more microcode instructions. Every micredogtruction takes
exactly one cycle to execute. Thus, the execution time dbytecode level is known
cycle accurately. The microcode contains no data depermtantbound loops that
would compromise the WCET analysis (see Section 7.4).

The worst-case time for dispatching is known cycle acclyate this architecture.
Only the time behavior of the user scheduler needs to be zgthlyWith the known
WCET of every bytecode, as listed in Appendix D, the WCET & sikheduler can
be obtained by examining it at the bytecode level. This catdpe manually or with
a WCET analysis tool.

138

6 JOP RINTIME SYSTEM

public boolean waitForNextPeriod()
synchronized(monitor) f

/I ps is the instance of
/I the PriorityScheduler
int nxt = ps.next[nr] + period;

int now = Scheduler.getNow()
if (nxt now< 0) f
/I missed deadline
doMissAction();
return false;
g else f
/I time for the next unblock
ps.next[nr] = nxt;
g
/I just schedule an interrupt
/I schedule() gets called.
ps.block();
g

return true;

Listing 6.7: Implementation in RtThread

6.2 USER-DEFINED SCHEDULER 139

public void schedule() f

/I Find the ready thread with
/I the highest priority.
int nr = getReady();

/I Search the list of sleeping threads
/I to find the nearest release time

/I in the future of a higher priority
/I thread than the one that will be
/I released now.

int time = getNextTimer(nr);

/I This time is used for the next

/I timer interrupt.

/I Perform the context switch.
dispatch(task[nr], time);

/I No access to locals after this point.
/I We are running in the NEW context!

Listing 6.8: Implementation of the PriorityScheduler

140 6 JOP RINTIME SYSTEM

6.2.9 Related Work

Several implementations of user-level schedulers in stahdperating systems have
been proposed. In [59], the Linux scheduling mechanism liseced. It is divided
into a dispatcher and an allocator. The dispatcher remaikernel space; while the
allocator is implemented as a user space function. Theatiotransforms four basic
scheduling parameters (priority, start time, nish timedamudget) into scheduling
attributes to be used by the dispatcher. Many existing sdbesican be supported
with this parameter set, but others that are based on diffgr@ameters cannot be
implemented. This solution does not address the implertientaf protocols for
shared resources.

A different approach de nes a new API to enable applicatitmase application-
de ned scheduling in a way compatible with the schedulingdeiae ned in POSIX
[82]. It is implemented in the MaRTE OS, a minimal real-tinerrkel that provides
the C and Ada language POSIX interface. This interface haa babmitted to the
Real-Time POSIX Working Group for consideration.

One approach to user-level scheduling in Java can be foufig9in A thread
multiplexor, as part of the FLEX ahead-of-time compiler system for Javaised
for utility accrual scheduling. However, the underlyingeogting system — in this
case Linux — can still be seen through the framework and ikere support for Java
synchronization.

6.2.10 Summary

This section and Section 6.1 consider the implementatioraiftime scheduling on
a Java processor. The novelty of the described approachinspiementing func-
tions usually associated with an RTOS in Java. That meansgaktime Java is not
based on an RTOS, and therefore not restricted to the funadtip provided by the
RTOS. With JOP, a self-contained real-time system in puva Bacomes possible.
This system is augmented with a framework to provide sclirgldlinctions at the
application level. The implementation of the speci catiakescribed in Section 6.1,
is successfully used as the basis for a commercial realdppécation in the railway
industry. Future work will extend this framework to supportitiple schedulers. A
useful combination of schedulers would be: one for stan@aslang.Thread
(optimized for throughput), one for soft real-time tasksl ame for hard real-time
tasks.

6.3 JVM ARCHITECTURE 141

6.3 JVM Architecture

This section presents the details of the implementatioh@flyM on JOP. The rep-
resentation of objects and the stack frame is chosen to supP® as processor for
real-time systems. However, since the data structuresalieed through microcode
they can be easily changed for a system with different neEdsexample: to sim-
plify a compacting GC a handle to an object can be implemebyedhanging the
microcode ofgetfield , putfield andnew.

6.3.1 Runtime Data Structures

Memory is addressed as 32-bit data, which means that menoamjeps are incre-
mented for every four bytes. No single byte or 16-bit accessecessary. The ab-
stract type reference is a pointer to memory that repregbet®bject or an array.
The reference is pushed on the stack before an instructiomperate on it. A null
reference is represented by the value O.

Stack Frame

On invocation of a method, the invoker's context is saved iealy allocated frame
on the stack. It is restored when the method returns. Thelsawatext consists of
following registers:

SP: Immediately before invocation the stack pointer pointshie last argument for
the called function. This value is reduced by the argumenntdi.e. the
arguments are consumed) and saved in the new stack frame.

PC: The pointer to the next bytecode instruction after the isvislstruction.
VP: The pointer to the memory area on the stack that contain®tiadsl
CP: The pointer to the constant pool of the class from the invgpkirethod.

MP: The pointer to the method structure of the invoking method.

SP, PC and VP are registers in JOP while CP and MP are localblesi of the
JVM. Figure 6.2 provides an example of the stack before aied @ivoking a method.
In this example, the called method has two arguments andicentwo local vari-
ables. If the method is a virtual one, the rst argument isrisference to the object
(thethis-pointer). The arguments implicit become locals in theezhthethod and are
accessed in the same way as local variables. The start ofdtle fsame Framein
the gure) needs not to be saved. It is not needed during ¢iecof the method or

142

6 JOP RINTIME SYSTEM

VP —| var_0 8 var_0
var_1 var_1
var_2 var_2
Previous SP Previous SP
Previous PC Previous PC
- Old frame < -
Previous VP Previous VP
Previous CP Previous CP
Previous MP Previous MP
Operand stack Operand stack
L
arg_0 VP —>»| var 0
SP—»| arg_1 var_1
var_2
var_3
Frame ------ »| Previous SP
Previous PC
Previous VP
Previous CP
SP —»| Previous MP

on return. To access the starting address of the frame (@.gnfexception) it can be

Figure 6.2: Stack change on method invocation

calculated with information from the method structure:

Object Layout

Frame= V P+ arg_cnt+ locals.cnt

Figure 6.3 shows the representation of an object in memohge dbject reference
points to the rstinstance variable of the object. At theseff 1, a pointer is located
to access class information. To speed-up method invogatipoints directly to the
method table of the objects class instead of the beginnirigeotlass data.

6.3 JVM ARCHITECTURE 143

Object reference

Method vector base

Instance variable 1

Instance variable 2

Instance variable n

Figure 6.3: Object format

Array reference

Array length

First element

Second element

Element n

Figure 6.4: Array format

Array Layout

Figure 6.4 shows the representation of an array in memore difject reference
points to the rst element of the array. At the offsetl, the length of the array can
be found.

Class Structure

Runtime class information, as shown in Figure 6.5, consifstise class variables, the
dispatch table for the methods, the constant pool and aar@itinterface table.

The class reference is obtained from the constant pool whaweaobject is cre-
ated. The method vector base pointer is a reference from jactdb its class (see
Figure 6.3). It is used omvokevirtual with an index retrieved from the constant
pool. A pointer to the method structure of the current metisoshved in the JVM
variable MP. The method structure, as shown in Figure 6atas the starting ad-
dress and length of the method (in 32-bit words), argumedtl@eal variable count

144

6 JOP RINTIME SYSTEM

Class reference
Method vector base
Current Method (MP)

Constant Pool (CP)

Class variable 1

Class variable 2

Instance size

Interface table

Method
structure 0O

Method
structure 1

Method
structure 2

.

Class reference

Constant pool length

Constant 1

Constant 2

Interface reference 0

Interface reference 1

Static variables

. Virtual method
table

> Constant pool

> Interface table

Figure 6.5: Runtime class structure

6.3 JVM ARCHITECTURE 145

Start address Method length

Constant pool Local count | Arg. count

Figure 6.6: Method structure

and a pointer to the constant pool of the class. Since thetarngool is an often
accessed memory area, a pointer to it is kept in the JVM Jari@ap.

The interface table contains references to the methodstascof the implementa-
tion. Only classes that implement an interface containtttbte. To avoid searching
the class hierarchy dnvokeinterface , each interface method is assigned a unique
index. This provides constant execution time, but can leddrge interface tables.

The constant pool contains various constants of a classefitng at index 0 is the
length of the pool. All constants, which are symbolic in thess les, are resolved
on class loading or during pre-linking. The different camttypes and their values
after resolving are listed in Table 6.1. The names for thesyare the same as in the
JVM speci cation [60].

Constant type Description

Class A pointer to a class (class reference)

Fieldref For static elds: a direct pointer to the eld
For object elds: the position relative to the object
reference

Methodref For static methods: a direct pointer to the mestaacture

For virtual methods: the offset in the method table
(= index*2) and the number of arguments
InterfaceMethodref A system wide unique index into theriigige table

String A pointer to the string object that represents theagtr
constant

Integer The constant value

Float The constant value

Long This constant value spans two entries in the constasit po

Double Same as for long constants

NameAndType Not used

utf8 Not used

Table 6.1: Constant pool entries

7 Results

In this chapter, we will present the evaluation results foPJwith respect to size,
performance and WCET. Table 7.1 compares JOP with othehzadsvare solutions
(see also Chapter 3). The column year indicates the rst @atehich the processor
became available or the rst publication about the proces3de research project
Komodo has now ceased, while FemtoJava is still being usedbasis for active
research.

We can see that JOP is the smallest realization in an FPGAlsmtas the highest
clock frequency. JOP also has a minimum CPI of 1 while, for kdmand Femto-
Java, the minimum CPIs are four and three respectively.

Target Size Speed| Java Min. | Year
technology [MHz] | standard CPI
Altera,
JOP Xilinx éi%olilz_il\?l 100 | J2ME CLDC 1| 2001
FPGA
picoJava No o 128K gates + Full 1| 1999
realization memory
adile ASIC 0.25 ZR%KMgates * 100 | J2ME CLDC 2000
Altera 3660 LCs,
Moon FPGA 4KB RAM 2000
. Xilinx
Lightfoot FPGA 3400 LCs 40 2001
Xilinx
Komodo FPGA 2600 LCs 33 4 | 2000
Altera Flex Subset: 69
FemtoJava 10K 2000 LCs 4 | bytecodes, 3 | 2001
16-bit ALU

Table 7.1: Comparison of Java hardware with JOP

In the following section, the hardware platform that is usedbenchmarking is
described. This is followed by a comparison of JOP's resmwsage with other
soft-core processors. In the "General Performance' seaioumber of different so-
lutions for embedded Java are compared at the bytecodedetedt the application
level. The basic properties of the real-time scheduler eatuated using the Refer-

148 7 RESULTS

ence Implementation (RI) of the RTSJ on a Linux system anddhg&time pro le

from Section 6.1 on top of JOP. It is also shown that our oljeatf providing an
easy target for WCET analysis has been achieved. This achepteludes with a
short description of real-world applications that use JOP.

7.1 Hardware Platforms

During the development of JOP and its predecessors, salifesent FPGA boards
were developed. The rst experiments involved using Alt€&RGAs EPF8282,
EPF8452, EPF10K10 and ACEX 1K30 on boards that were corthéatine printer
port of a PC for con guration, download and communicationheTnext step was
the development of a stand-alone board with FLASH memory static RAM.
This board was developed in two variants, one with an ACEXAIAd the other
with a Cyclone EP1C6 or EP1C12. Both boards are pin-comipadibd are used in
commercial applications of JOP. The Cyclone board is thdware that is used for
the following evaluations.

This board is an ideal development system for JOP. Static RAMFLASH are
connected via independent buses to the FPGA. All unused Fbt2and the serial
line are available via four connectors. The FLASH can be tisetbre con guration
data for the FPGA and application program/data. The FPGAearton gured with
a ByteBlasterMV download cable or loaded from the ash (watlsmall CPLD on
board). As the FLASH is also connected to the FPGA, it can bgrammed from
the FPGA. This allows for upgrades of the Java program and #we processor
core itself in the eld. The board is slightly different fromther FPGA prototyping
boards, in that its connectors are on the bottom side. Ttvereit can be used as a
module (60mm x 48mm), i.e. as part of a larger board that awstde periphery.
The Cyclone board contains:

Altera Cyclone EP1C6Q240 or EP1C12Q240

Step Down voltage regulator (1V5)

Crystal clock (20MHz) at the PLL input (up to 640MHz interpal
512KB FLASH (for FPGA con guration and program code)
1MB fast asynchronous RAM (15 ns)

Up to 128MB NAND FLASH

ByteBlasterMV port

7.2 RESOURCEUSAGE 149

Watchdog with LED

EPM7064 PLD to con gure the FPGA from the FLASH on watchdogete
Serial interface driver (MAX3232)

56 general-purpose 10 pins

The RAM consists of two independent 16-bit banks (with theim address and
control lines). Both RAM chips are on the bottom side of theBP@irectly under
the FPGA pins. As the traces are very short (under 10mm) pib$sible to use the
RAMs at full speed without re ection problems. The two barmden be combined to
form 32-bit RAM or support two independent CPU cores. P&swuand the schematic
of the board can be found in Appendix F.

An expansion board hosts the CPU module and provides a ctemjdga proces-
sor system with Internet connection. A step down switchegufator with a large
AC/DC input range supplies the core board. All input and atiggins are EMC/ESD-
protected and routed to large connectors (5.08mm Phoehmglog comparators can
be used to build sigma-delta ADCs. For FPGA projects withtavagk connection,
a CS8900 Ethernet controller with an RJ45 connector is deduon the expansion
board.

7.2 Resource Usage

Cost, alongside energy consumption, is an important issuerhbedded systems.
The cost of a chip is directly related to the die size (the pestdie is roughly propor-
tional to the square of the die area [40]). Chips with fewdegalso consume less
energy. Processors for embedded systems are therefongizgatifor minimum chip
size. In this section, we will compare JOP with differentqessors in terms of size.

One major design objective in the development of JOP wastiera small system
that could be implemented in a low-cost FPGA. Table 7.2 shbwsesource usage
for different con gurations of JOP and different soft-cqpeocessors implemented
in an Altera EP1C6 FPGA [16]. Estimating equivalent gatentsdior designs in an
FPGA is problematic. It is therefore better to compare the basic structures, LC
(logic cell) and memory.

150 7 RESULTS

Processor Resources Memory fmax
[LC] [KB] [MHZz]
JOP Minimal 1,077 25 98
JOP Basic 1,452 :35 98
JOP Typical 1,831 25 101
Lightfoot! 3,400 1 40
NIOS A 1,828 62 120
NIOS B 2,923 % 119
SPEAR 1,700 8 80

Table 7.2: FPGA soft-core processors

All con gurations of JOP contain a memory interface to a 32static RAM and
an 8-bit FLASH for the Java program and con guration datae filinimum con g-
uration implements multiplication and the shift operasiam microcode. In the basic
con guration, these operations are implemented as a séigl8wooth multiplier and
a single-cycle barrel shifter. The typical con gurationntains a variable block in-
struction cache (1KB, 4 blocks — see Section 5.8.2) and saefelu/O devices such
as an UART and a timer with interrupt logic for multi-threagdi The typical con gu-
ration of JOP needs about 30% of the LCs in a Cyclone EP1CS§ J¢avring enough
resources free for application-speci c logic.

Lightfoot [62] is a commercial Java processor, targetedibtXFPGA architec-
tures. We can see from Table 7.2 that this processor needs tioe the resources
of JOP.

As a reference, NIOS [15], Altera’s popular RISC soft-casaalso included in the
list. NIOS has a 16-bit instruction set, a 5-stage pipeliné @an be con gured with
a 16 or 32-bit datapath. Version A is the minimum con guratiof NIOS. Version
B adds an external memory interface, multiplication suppad a timer. Version A
is comparable with the minimal con guration of JOP, and WensB with its typical
con guration.

SPEAR [22] (Scalable Processor for Embedded ApplicationReal-time Envi-
ronments) is a 16-bit processor with deterministic executimes. SPEAR contains

1The data for the Lightfoot processor is taken from the daées[62]. The frequency used is that in
a Vertex-1l device from Xilinx. JOP can be clocked at 100Midzhe Vertex-Il device, making this
comparison valid.

2As SPEAR uses internal memory blocks in asynchronous moieniot possible to synthesize it
without modi cation for the Cyclone FPGA. The clock frequinof SPEAR in an Altera Cyclone
is an estimate based on following facts: SPEAR can be cloakd@MHz in an APEX device and
JOP can be clocked at 50MHz in the same device.

7.2 RESOURCEUSAGE 151

Processor Core Memory Sum.
[gate] [gate] [gate]
JOP 11K 39K 50K
picoJava 128K 314K 442K
aldile 25K 912K 937K
Pentium MMX 1125K

Table 7.3: Gate count estimates for various processors

predicated instructions to support single-path programymiSPEAR is included in
the list as it is also a processor designed for real-timeegyst

To prove that the VHDL code for JOP is as portable as possilid was also
implemented in a Xilinx Spartan-3 FPGA. Only the instambiatand initialization
code for the on-chip memories is vendor-speci ¢, whilst thst of the VHDL code
can be shared for the different targets. JOP consumes dfsosdine LC count (1844
LCs) in the Spartan device, but has a slower clock frequed8iytz).

From this comparison we can see that we have achieved owtiobjef designing
a small processor. The Java processor, Lightfoot, is 2.84ilarger (and 2.5 times
slower) than JOP in the basic con guration. A typical 32BiSC processor con-
sumes about 1.6 to 1.8 times the resources of JOP. HowegdR|8C processor can
be clocked 20% faster than JOP in the same technology. Tlepomtessor that is
similar in size is SPEAR. However, while SPEAR is a 16-bitqassor, JOP contains
a 32-bit datapath.

Table 7.3 provides gate count estimates for JOP, picoJaeaJile processor, and
the Intel Pentium MMX processor that is used in the benchmarkhe next section.
Equivalent gate count for an I3aries between 5.5 and 7.4 — we chose a factor of
6 gates per LC and 1.5 gates per memory bit for the estimatedcgant for JOP
in the table. JOP is listed in the typical con guration thahsumes 1831 LCs. The
Pentium MMX contains 4.5M transistors [26] that are equmalto 1125K gates.

We can see from the table that the on-chip memory dominate®\whrall gate
count of JOP, and to an even greater extent, of the aJile gsoceThe alile processor
is roughly the same size as the Pentium MMX, and both are &fitirnes larger than
JOP.

3The factors are derived from the data provided for various@ssors in Chapter 3 and from the
resource estimates in Section 5.5.

152 7 RESULTS

7.3 Performance

In this section, we will evaluate the performance of JOP iati@n to other Java sys-
tems. Although JOP is intended as a processor with a low WOE®@IF operations,
its general performance is still important. In the rst sent we will evaluate JOP's
average performance.

In the section that follows it, the implementation of the glenreal-time pro le, as
described in Section 6.1, on JOP is compared to the RI of ti&JRN top of Linux.

7.3.1 General Performance

Running benchmarks is problematic, both generally andashein the case of
embedded systems. The best benchmark would be the appii¢htt is intended to
run on the system being tested. To get comparable result€ RIzides benchmarks
for various systems. However, the one for Java, the SPEG\H, is usually too
large for embedded systems.

Due to the absence ofsgandardJava benchmark for embedded systems, a small
benchmark suit that should run on even the smallest devigmisded here. It con-
tains several micro-benchmarks for evaluating CPI forlsitytecodes or short se-
guences of bytecodes, a synthetic benchmark (the SieveabbdEinenes) and two
application benchmarks.

To provide a realistic workload for embedded systems, atne application was
adapted to create the rst application benchmark (K'). Tiplcation is taken from
one of the nodes of a distributed motor control system [83 Gection 7.5.1). A sim-
ulation of both the environment (sensors and actors) anddhenmunication system
(commands from the master station) forms part of the bendhns® as to simu-
late the real-world workload. The second application beratk is an adaptation of
a tiny TCP/IP stack (Ejip) for embedded Java. This benchroarkains two UDP
server/clients, exchanging messages via a loopback device

As we will see, there is a great variation in processing paeeoss different em-
bedded systems. To cater for this variation, all benchmar&sself adjusting’. Each
benchmark consists of an aspect that is benchmarked in adlod@n “overhead'
loop that contains any overheads from the benchmark thaldihe subtracted from
the result (this feature is designed for the micro-bencks)aiThe loop count adapts
itself until the benchmark runs for more than a second. Thabar of iterations
per second is then calculated, which means that higher vahaécate better perfor-
mance.

The benchmark framework only needs two system functions:tomeasure time
in millisecond resolution and one to print the results. Eh&sctions are encap-

7.3 PERFORMANCE 153

sulated inLowLeveljava and can be adapted to environments, in which the full

Java library is not available. For example, the leJOS systasvery limited out-
put capabilities and there is therefore a speloialLevel.java for this device. The
following list gives a brief description of the Java systeiimst were benchmarked:

JOP is implemented in a Cyclone FPGA, running at 100MHz. The magmory is
a 32-bit static RAM (15ns) with an access time of 3 clock cycle

leJOS As an example for a low-end embedded device we use the RCX coioe
troller from the LEGO MindStorms series. It contains a 16Hitachi H8300
microcontroller [41], running at 16MHz. 1eJOS [85] is a timgerpreting JVM
for the RCX.

TINI is an enhanced 8051 clone running a software JVM. The resalistaken from
a custom board with a 20MHz crystal, and the chip's PLL is se&t factor of
2. The TINIOS rmware revision running on the board is 1.12p9

Komodo Komodo [55] is a Java processor as a basis for research ottimeal
scheduling on a multithreaded microcontroller (see Sec8a2.8). The
benchmark results were obtained by Matthias Pfeffer [754 agcle-accurate
simulation of Komodo. The values are obtained without gaebaollec-
tion. According to Pfeffer, Komodo can be clocked with 33Midza Xlinix
XCV800.

JStamp adile's JEMCore is a direct-execution Java processor shatdilable in two
different versions: the aJ-80 and the aJ-100 [2]. The aJpi®ddes a generic
8-bit, 16-bit or 32-bit external bus interface, while the82Jonly provides an
8-bit interface. A development system, the JStamp [91], wsed for this
benchmark. It contains the aJ-80, clocked at 74MHz.

SalJe is a board that contains the aJ-100 clocked with 100MHz amd BRAM.

EJC The EJC (Embedded Java Controller) platform [27] is a typgs@mple of a
JIT system on a RISC processor. The system is based on a BRBI720T
processor running at 74MHz. It contains up to 64 MB SDRAM apdai16
MB of NOR ash.

SUN jvm is the Sun JVM 1.4.1, running on a 266MHz Pentium MMX undenixin

gcj is the GNU compiler for Java. This con guration represeihis batch compiler
solution, running on a 266MHz Pentium.

154 7 RESULTS

Xint As areference the benchmark is also run with the Sun JVM érpnéting mode
(with option -Xint).

MB is the realization of Java on a RISC processor for an FPGAnXMicroBlaze
[18]). Java is compiled to C with a Java compiler for realdisystems [72]
and the C program is compiled with the standard GNU toolchain

In Figure 7.1, the geometric mean of the two application berarks is shown. The
unit used for the result is iterations per second. Note ti@tvertical axis is logarith-
mic, in order to obtain useful gures to show the great vaoiain performance. The
top diagram shows absolute performance, while the bottagrdm shows the same
results scaled to a 1MHz clock frequency. The results of fidication benchmarks
and the geometric mean are shown in Table 7.4. The raw da#dl t,enchmarks can
be found in Appendix E.

It should be noted that scaling to a single clock frequenayctprove problematic.
The relation between processor clock frequency and mentagsa time cannot al-
ways be maintained. To give an example, if we were to incrédaseesults of the
100MHz JOP to 1GHz, this would also involve reducing the memazcess time
from 15ns to 1.5ns. Processors with 1GHz clock frequencylagady available, but
the fastest asynchronous SRAM to date has an access timasf 10

To compare the performance relatively to the size of theedsffit systems, Fig-
ure 7.2 shows the performance of JOP, the aJ100 and the tweRDns relative
to the gate count (from Table 7.3) and clock frequency. Reldb size and clock
frequency, JOP outperforms the aJile processor by a fa€tb® and even the JIT-
compiler on the Pentium MMX by a factor of 4.

All the benchmarks measure how often a function is executedg@cond. There-
fore, execution time is only measured indirectly — a highelug means shorter exe-
cution time. In the K benchmark, this function contains timain loop of the appli-
cation (see Listing 7.2) that is executed in a periodic cyct&e original application.
In the benchmark the wait for the next period is omitted, sd the time measured
solely represents execution time. The UDP benchmark amthe generation of a
request, transmitting it through the UDP/IP stack, geivegahe answer and trans-
mitting it back as a benchmark function. The iteration casittte number of received
answers per second.

In the application benchmarks, the main function is exetirea loop until one
second (or a longer period of time) has elapsed. For theagpigh benchmark, there
is no “overhead' loop. This feature is only used in the misemchmarks. As the
benchmark is self-adjusting, the measured time can alsorgget than one second.
The result is the iteration count, scaled to one second.

7.3 PERFORMANCE 155

Frequency K UDP/IP Geom. Mean Per MHz

[MHZz] [lterations/s]

JOP 100 14,222 6,050 ;376 93
leJOS 16 25 13 18 1
TINI 40 64 29 43 1
Komodo 33 924 520 693 21
JStamp 74 2,221 1,004 ;493 20
Sale 103 14,148 6,415 ;327 92
EJC 74 9,893 2,822 ;384 71
Sun jvm 266 212,952 91,851 13b7 526
acj 266 139,884 38,460 7348 276
Xint 266 17,310 8,747 1305 46
MB 2KB/OKB 100 3,792

Table 7.4: Application benchmarks on different Java systems. Thestabbws the
benchmark results in iterations per second — a higher vaksnmhigher
performance.

The accuracy of the measurement depends on the resolutithe afystem time.
For the measurements under Linux, the system time has aitiesobf 10ms, result-
ing in an inaccuracy of 1%. The accuracy of the system timed@8§, TINI and the
alJile is not known, but is considered to be in the same ramyel®P, aus counter is
used for time measurement.

Discussion

When comparing JOP and the aJile processor against leJOSIEhdve can see
that a Java processor is up to 500 times faster than an iet@ngJVM on a standard
processor for an embedded system. The average performad@Pas a little bit
better than a JIT-compiler solution on an embedded systeme@esented by the
EJC system.

Even when scaled to the same clock frequency, each comgNivgon a PC (Sun
jvm and gcj) is much faster than either embedded solutionwéver, as we saw
in Section 5.8, the kernel of the application is smaller tA&B. It therefore ts in
the level one cache of the Pentium MMX (16KB + 16KB level onehsy. For a
comparison with a Pentium class processor we would neegerlapplication.

JOP is about 6 times faster than the aJ80 Java processor gogh&ar JStamp
board. However, the aJ80 processor only contains an 8-bitaneinterface, and

156 7 RESULTS

Figure 7.1: Performance comparison of different Java systems withicgifmn
benchmarks. The diagrams show the geometric mean of thednchb
marks in iterations per second — a higher value means higidorp
mance. The top diagram shows absolute performance, whilbdtiom
diagram shows the result scaled to 1MHz clock frequency.

7.3 PERFORMANCE 157

1

Figure 7.2: Performance comparison of different Java systems with icgimn
benchmarks. The diagram shows the result scaled to the cep s
(Kgates) and clock frequency (MHz).

suffers from this bottleneck. The SaJe system containsih@Oawith 32-bit, 10ns
SRAMs and is as fast as JOP with its 15ns SRAMs.

The MicroBlaze system is a representation of a Java bateipitation system
for a RISC processor. MicroBlaze is con gured with the saraeh& as JOP and
clocked at the same frequency. JOP is about three times thatethis solution, thus
showing that native execution of Java bytecodes is fasterbatch-compiled Java on
a similar system. However, the results of the MicroBlazetsoh are at a preliminary
stagé, as the Java2C compiler [72] is still under development.

The micro-benchmarks are intended to give insight into iimgleémentation of the
JVM. In Table 7.5, we can see the execution time in clock cyoevarious byte-
codes. As almost all bytecodes manipulate the stack, ittipogsible to measure the
execution time for a single bytecode. As a minimum requingima second instruc-
tion is necessary to reverse the stack operation.

For JOP we can deduce that the WCET for simple bytecodes yas gi Ap-
pendix D) is also the average execution time. We can seelibatdmbination of
iload andiadd executes in two cycles, which means that each of these twa-ope

4The MicroBlaze with a 8KB data and 8KB instruction cache iswh2.5 times faster than JOP.
However, a 16KB memory is not available in low-cost FPGAs &ndn unbalanced system with
respect to the LC/memory relation. Furthermore, the bemcknts into a 4KB cache and the
resulting measurement does not include main memory access.

5As not all language constructs can be compiled, only the Kndiemark was measured.

158 7 RESULTS

JOP 1eJOS TINI Komodo JStamp Salde Xint

iload iadd 2 836 789 8 38 8 17
iinc 11 422 388 4 41 11 2
Idc 10 1,340 1,128 40 67 9 31
if _icmplt taken 6 1,609 1,265 24 42 18 36
if _icmplt not taken 6 1,520 1,211 24 40 14 37
geteld 25 1,879 2,398 48 142 23 39
getstatic 17 1,676 4,463 80 102 15 40
iaload 30 1,082 1,543 28 74 13 30
invoke 128 4,759 6,495 384 349 112 182
invoke static 101 3,875 5,869 680 271 92 164

invoke interface 146 5,094 6,797 1617 531 148 193

Table 7.5: Execution time in clock cycles for various JVM bytecodes

tions is executed in a single cycle. Tive bytecode is one of the few instructions
that do not manipulate the stack and can be measured aloniacAds not imple-
mented in hardware, we have a total of 11 cycles that are &edu microcode. It
is fair to assume that this comprises too great an overheaahfinstruction that is
found in every iterative loop with an integer index. Howewbe decision to imple-
ment this instruction in microcode was derived from the obet#on that the dynamic
instruction count foiinc is only 2% (see Section 5.1).

The sequence for the branch benchmafk.i€mplt) contains the two load in-
structions that push the arguments onto the stack. The ampgrare then consumed
by the branch instruction. This benchmark veri es that anbrarequires a constant
four cycles on JOP, whether it is taken or not.

For compiling versions of the JVM, these micro-benchmaxkaat produce useful
results. The compiler performs optimizations that makenipassible to measure
execution times at this ne a granularity.

During the evaluation of the aJile system, unexpected bhehawas observed. The
aJ80 on the JStamp board is clocked at 7.3728MHz and theahtEequency can
be set with a PLL. The aJ80 is rated for 80MHz and the maximurh fictor
that can be used is therefore ten. Running the benchmarksdifierent PLL set-
tings gave some strange results. For example, with a PLLiphaltsetting of ten,
the aJ80 was about 12.8 times faster! Other PLL factors &lsolted in a greater
than linear speedup. The only explanation we could nd wad the internal time,
System.currentTimeMillis() , used for the benchmarks depends on the PLL set-
ting. A comparison with the wall clock time showed that theeinal time of the aJ80

7.3 PERFORMANCE 159

is 23% faster with a PLL factor of 1 and 2.4% faster with a factioten — a property
we would not expect on a processor that is marketed for ie&l-ystems.

The SaJe board is also clocked with 7.3728MHz and the PLIofastset to 14.
This gives a 103.2192MHz internal clock frequency. Howegités not known how
accurate the internal time is in this setting. The resultglie SaJe board can also
suffer from the problem described above.

Execution Time Jitter

For real-time systems, the worst-case of the executionisrakprimary importance.
We have measured the execution times of several iteratidhe onain function from
the K benchmark. Figure 7.3 shows the measurements, sdaléde minimum
execution time.

A period of four iterations can be seen. This period resutisnfsimulating the
commands from the base station that are executed everpfiberation. At iteration
10, a command to start the motor is issued. We see the rapuli@ in execution
time at iteration 12 to process this command. At iterationtbd simulation triggers
the end sensor and the motor is stopped.

The different execution times in the different modes of tppl&ation are inher-
ent in the design of the simulation. However, the ratio betwthe longest and the
shortest period is ve for the JStamp, four for the gcj systamd only three for JOP.
Therefore, a system with an aJile processor needs to beneg faster than JOP in
order to provide the same WCET for this measurement. Attimre883, we can see
a higher execution time for the JStamp system that is not@eg®P. This variation
at iteration 33 is not caused by the benchmark.

The execution time under gcj on the Linux system showed sanehigh peaks
(up to ten times the minimum, not shown in the gures). Thisetvation was to be
expected, as the gcj/Linux system is not a real-time saiutibhe Sun JIT-solution
is omitted from the gure. As a result of the invocation of thempiler at some
point during the simulation, the worst-case ratio betwéemtaximum and minimum
execution time was 1313 — showing that a JIT-compiler is anfical for real-time
applications.

It should be noted that execution time measurement is noteansethod for ob-
taining WCET estimates. However, in situations where no W@BRalysis tool is
available, it can give some insight into the WCET behaviodiierent systems.

7.3.2 Real-Time Performance

In this section, the implementation of the simple real-tipne le (from Section 6.1)
with JOP is compared with the Reference Implementation ¢Riie RTSJ (see Sec-

160 7 RESULTS

Figure 7.3: Execution time of the main function for the K benchmark. Thalues
are scaled to the minimum execution time. The bottom gurevsha
detail of the top gure.

7.3 PERFORMANCE 161

Period Avg. Std. Dev. Min. Max.
[us] [us] [Ls] [bs] [us]

50 50 13 35 63
70 70 0 70 70
100 100 0 100 100
500 500 0 500 500
1,000 1,000 0 1,000 1,000

Table 7.6: Jitter of periodic threads with JOP

tion 4.4.3) on top of Linux. We use the Linux platform for theneparison, as it is the
only platform for which the RTSJ is available. The RI is arenptreting implemen-
tation of the JVM that is, however, not optimized for perfamse. A commercial
version of the RTSJ, JTime by TimeSys, should perform betkgowever, it was
not possible to get a license of JTime for research purpak@B. is implemented in
Altera's low-cost Cyclone EP1C6 FPGA, and clocked with 100 The test re-
sults for the Rl were obtained on an Intel Pentium MMX 266Midmning Linux
with two different kernels: a generic kernel version 2.4a2 the real-time kernel
from TimeSys [92], as recommended for the RI. For each t€¥, rbeasurements
were taken. Time was measured using a hardware counter iad®te time stamp
counter of the Pentium processor under Linux.

Periodic Threads

Many activities in real-time systems must be performedqukcally. Low release
jitter is of major importance for tasks such as control loopEhe test setting is
similar to the periodic thread test in [20]. A single reah#i thread only calls
waitForNextPeriod() in a loop and records the time between subsequent calls.
A second idle thread, with a lower priority, merely consumpescessing time. This
test setting results in two context switches per period.l€T@6 shows the average,
standard deviation and extreme values for different petioés on JOP. The same
values are shown in Table 7.7 for the RI. Please note thatatues are inus for JOP
and in ms for the RI.

Using microsecond accurate timer interrupts, programnyabdédoscheduler, results
in excellent performance of periodic threads in JOP. Nerjiftom the scheduler can
be seen with a single thread at periods longer thass.70

The measurement for the Rl excludes the rst values measuieel rst values are
misleading as the RI behaves unpredictablgtattup The RI performs inaccurately

162 7 RESULTS

Period Avg. Std. Dev. Min. Max.

[ms] [ms] [ms] [ms] [ms]
5 4.0 792 0017 1990
10 66 934 0019 1994

20 200 0:015 1987 2014

35 350 5001 2975 4025

50 500 0:018 4995 5006
100 1000 0:002 9994 1001

Table 7.7: Jitter of periodic threads with RI/RTSJ

Avg. Std. Dev. Min. Max.

JOP 2,686 14 2,676 2,709
RI Linux 4,253 1239 3,232 19,628
RITS Linux 12,923 1145 11,529 21,090

Table 7.8: Time for a thread switch in clock cycles

at periods below 20ms. This effect has also been observel®in [Larger periods
that are multiples of 10ms have very low jitter. Howeverngsa period such as 35ms
shows a standard deviation of ve ms. A detailed look into¢hected samples only
shows values of 30 and 40ms. This implies a timer tick of 10mthé underlying
operating system. No signi cant difference is observed mvhenning this test on
the generic Linux kernel and the TimeSys kernel. The comialeversion of the
TimeSys Linux kernel should perform better as the resahutid the timer tick is
1ms and a programmable time can be used for periodic thréBmgever, it was not
possible to obtain a license to evaluate the combinatioiofid on the commercial
Linux kernel. Table 7.7 represents the measurements onetherig kernel. This
comparison shows the advantage of an adjustable timerupteover a xed timer
tick.

Context Switch

This test setting consists of two threads. A low priority el continuously
stores the current time in a shared variable. A high prioggriodic thread
measures the time difference between this value and the itimeediately af-
ter waitForNextPeriod() . Table 7.8 gives the times for the context switch in
processor clock cycles.

7.3 PERFORMANCE 163

Avg. Std. Dev. Min. Max.

JOP 2,935 7 2,773 2,935
RI Linux 53,685 7014 47,400 87,196
RITS Linux 69,273 7832 63,060 101,292

Table 7.9: Dispatch latency of event handlers in clock cycles

This test did not produce the expected behavior from the Rhergeneric Linux
kernel. When the low priority thread ran in this tight lodpe thigh priority thread was
not scheduled. After insertingTread.yield() and an operating system call, such
asSystem.out.print() ,in this loop, the test performed as expected. This indicate
a major problem in either the RI or the operating system sdieedThis problem did
not occur when the Rl was run on the TimeSys Linux kernel. Hanehe context
switch time on the TimeSys kernel is three times longer thathe standard kernel.

Asynchronous Event Handler

In this test setting, a high priority event handler is triggge by a low priority pe-
riodic thread. AsAsynchEventHandler performs poorly in the RI (see [19]), a
BoundAsynchEventHandler is used for the RI test program. The time elapsed
between the invocation dire() and the rst statement of the event handler was
measured. Table 7.9 shows the elapsed times in clock cymlelOP and the RTSJ
RI.

The time taken to dispatch an asynchronous event is sinoildret context switch
time in JOP. This is to be expected as events are schedulatispadched as threads.
The minimum value only occurred in the rst event, all followg events having been
dispatched in the maximum time.

In the RI, the dispatch time is about 12 times larger than aestrswitch with a
signi cant variation in time. This indicates that the implentation ofiire() and
the communication of the event to the underlying operatysjesn are not optimal.
The time factor between context switch and event handlinthermimeSys kernel is
lower than on the standard kernel, but is neverthelesssigiti cant.

Summary

In this section, we have compared the RTSJ on top of Linux thithmplementation
of a simple real-time pro le on top of JOP. The RTSJ addressesral issues relating
to the use of Java for real-time systems. However, the RT&Jkjeci cation too

large and complex to be implemented in small embedded sgstaife therefore

164 7 RESULTS

use the simpler real-time pro le for JOP. Tight integratiointhe real-time scheduler
with the supporting processor results in an ef cient platicfor Java in embedded
real-time systems. A performance comparison betweenripgementation and the
RTSJ showed that a dedicated Java processor without anlyingesperating system
is more predictable than trying to adopt a general purposéoDi@al-time systems.
Time will show if an implementation of the RTSJ orreal RTOS will outperform
the presented solution.

7.4 WCET

Worst-case execution time (WCET) estimates of tasks aen#&akfor designing and
verifying real-time systems. WCET estimates can be obthaiher by measurement
or static analysis. The problem with using measurementsaisthe execution times
of tasks tend to be sensitive to their inputs. As a rule, measent does not guarantee
safe WCET estimates. Instead, static analysis is necefssdrgird real-time systems.
Static analysis is usually divided into a number of diffénehases:

Path analysis generates the control ow graph (a directed graph of basicks) of
the program and annotates (manual or automatic) loops withdis.

Low-level analysis determines the execution time of basic blocks obtained by th
path analysis. A model of the processor and the pipelineigees\the execution
time for the instruction sequence.

Global low-level analysis determines the in uence of hardware features such as
caches on program execution time. This analysis can usematon from
the path analysis to provide less pessimistic values.

WCET Calculation collapses the control ow graph to provide the nal WCET esti
mate. Alternative paths in the graph are collapsed to asiwvajle (the largest
of the alternatives) and loops are collapsed once the loapd known.

For the low-level analysis, a good timing model of the preoess needed. The main
problem for the low-level analysis is the execution timeeatgency of instructions in
modern processors that are not designed for real-timeragst#OP is designed to be
an easy target for WCET analysis. The WCET of each bytecoddegredicted in
terms of number of cycles it requires. There are no depeieebetween bytecodes.
Each bytecode is implemented by microcode. We can obtaMWBET of a single

bytecode by performing WCET analysis at the microcode leVelprove that there
are no time dependencies between bytecodes, we have to bhbwa processor
states arsharedbetween different bytecodes.

7.4 WCET 165

7.4.1 Microcode Path Analysis

To obtain the WCET values for the individual bytecodes wéquer the path analysis
at the microcode level. First, we have to ensure that a numibestrictions (from
[78]) of the code are ful lled:

Programs must not contain unbounded recursion. This psofsesatis ed by
the fact that there exists no call instruction in microcode.

Function pointers and computegbtos complicate the path analysis and
should therefore be avoided. Only simple conditional bin@scare available at
the microcode level.

The upper bound of each loop has to be known. This is the orify fftat has
to be veri ed by inspection of the microcode.

To detect loops in the microcode we have to nd all backwardniches (e.qg.
with a negative branch offset). The branch offsets can beddn a VHDL le
(offtol.vhd) that is generated during microcode assembly. In the cumeple-
mentation of the JVM there are ten different negative offsdtiowever, not each
offset represents a loop. Most of these branches are usédr® sommon code. All
backward branches found jym.asm are summarized below:

Three branches are found in the initialization code of thJVhey are not
part of a bytecode implementation and can be ignored.

Five branches are used by exceptions, the interrupt byéeadl for the call

of Java implemented bytecodes. The target of these bramli@snd in the
implementation ofinvoke to share part of the microcode sequence. These
branches are therefore not part of a loop.

One branch is found in the implementationiofil to perform a xed delay.
The iteration count for this loop is constant.

Two backward branches share the same offset and are useabm tio move
data between the stack memory and main memory. This looptiparbof a

regular bytecode. It is contained in a system function usettiéo scheduler for
the task switch. The bound for this loop has to be determinegdd scheduler
code.

A few bytecodes are implemented in Java. The implementa@onbe found in the
classcom.jopdesign.sys.JVM and can be analyzed in the same way as application
code. The bytecodediv andirem contain a constant loop. The bytecodesv

166 7 RESULTS

andanewarray contain loops to initialize (with zero values) new objectsaaoays.
The loop is bound by the size of the object or array. The byte@mkupswitch ©
performs a linear search through a table of branch offseti® WWCET depends on
the table size that can be found as part of the instruction.

As the microcode sequences are very short, the calculafidheocontrol ow
graph for each bytecode is done manually.

7.4.2 Microcode Low-level Analysis

To calculate the execution time of basic blocks in the miods; we need to establish
the timing of microcode instructions on JOP. All microcodstiuctions exceptait
execute in a single cycle, reducing the low-level analyse tase of merely counting
the instructions.

Thewait instruction is used to stall the processor and wait for thenorg subsys-
tem to nish a memory transaction. The execution time ofwhé instruction de-
pends on the memory system and, if the memory system is pabtlic has a known
WCET. A main memory consisting of SRAM chips can provide tmisdictability
and this solution is therefore advised. The predictabledliag of DMA, which is
used for the instruction cache I, is explained in SectiaB.8. Thewait instruc-
tion is the only way to stall the processor. Hardware evenish as interrupts (see
Section 5.4.5), do not stall the processor.

Microcode is stored in on-chip memory with single cycle asceeach microcode
instruction is a single word long and there is no need foreegitaching or prefetching
at this stage. We can therefore omit performing a low-levellygsis. No pipeline
analysis [28], with its possible unbound timing effectsnésessary.

7.4.3 Bytecode Independency

We have seen that all microcode instructions exeejitt take one cycle to execute
and are therefore independent of other instructions. Titmpgsty directly translates
to independency of bytecode instructions.

Thewait microcode instruction provides a convenient way to hide mm@raccess
time. A memory read or write can be triggered in microcodef{(atimra andstmwd)
and the processor can continue with microcode instructidvien the data from a
memory read is needed, the processor explicitly waits itridiécomes available.

For a memory store, this wait can be deferred until the mersgsgem is used
next. It is possible to initiate the store in a bytecode siugpudield and continue

6l0okupswitch is one way of implementing the Jawaitch statement. The other bytecodableswitch,
uses an index in the table of branch offsets and has therafooastant execution time.

7.4 WCET 167

with the execution of the next bytecode, even when the stasabt been completed.
In this case, we introduce a dependency over bytecode boasgdas the state of the
memory system ishared To avoid these dependencies that are dif cult to analyze,
each bytecode that accesses memory waits (preferably anthef the microcode
sequence) for the memory system.

Furthermore, the deferring ofait in a store operation results in an additional
wait in every read operation. Since read operations are moredrgghan write
operations (15% vs. 2.5%, see Section 5.1), the performgaicefrom the hidden
memory store is lost.

7.4.4 WCET of Bytecodes

The control ow of the individual bytecodes together wittethasic block length (that
directly corresponds with the execution time) and the tioreniemory access result
in the WCET (and BCET) values of the bytecodes. These valaershe found in
Appendix D.

7.4.5 Evaluation

We conclude this section with a worst and best case analfaislassic example, the
Bubble Sort algorithm. The values calculated are compatiduthe measurements
of the execution time on JOP on all permutations of the inp dFigure 7.1 shows
the test program in Java. The algorithm contains two nesiggsland one condition.
We use an array of ve elements to perform the measurementalifpermutations
(i.e. 5!'= 120) of the input data. The number of iterations of the outeplis one
less than the array size; = N 1, in this case four. The inner loop is executed
C2= &% i= ci(ci+ 1)=2 times, i.e. ten times in our example.

The compiled version, i.e. the bytecodes of the test progsalit into basic blocks,
is given in Table 7.10. The fourth column contains the exeoutime of the byte-
codes and the basic blocks in clock cycles.

The annotated control ow graph (CFG) of the example is shawfRigure 7.4.
The edges contain labels showing how often the path betweemades is taken.
We can identify the outer loop, containing the blocks B2, B3,and B8. The inner
loop consists of blocks B4, B5, B6 and B7. Block B6 is executbeén the condition
of theif statement is true. The path from B5 to B7 is the only path teaedds on
the input data.

168

7 RESULTS

final static int N = 5;
static void sort(int[] a) f

int i, j, vl, v2;
/I loop count = N 1
for (i=N 1i >0 iy f
/I loop count = (N 1) N/2
for (=1,] <4, ++) f
vl = a[j 1]
v2 = afj];
if vi > v2) f
afi] = v,
alj 1] = vz

Listing 7.1: Bubble Sort in Java

7.4 WCET 169

WCET BCET
Block Addr. Bytecode Cycles Count Total Count Total
B1 2 1 2 1 2
0: iconst4 1
1 istore. 1 1
B2 5 5 25 5 25
2: iload.1 1
3: ieb53 4
B3 2 4 8 4 8
6: iconst1 1
7 istore 2 1
B4 6 14 84 14 84
8: iload 2 1
9: iload.1 1
10: if_icmpgt 47 4
B5 74 10 740 10 740
13: aload0 1
14. iload 2 1
15: iconst1 1
16: isub 1
17: iaload 29
18: istore3 1
19: aload0 1
20: iload 2 1
21: iaload 29
22: istore 4 2
24: iload.3 1
25: iload 4 2
27. if_icmple 41 4
B6 73 10 730 0 0
30: aloadO 1
31: iload 2 1
32: iload.3 1
33: iastore 32
34: aloadO 1
35: iload 2 1
36: iconstl 1

Table 7.10: WCET and BCET in clock cycles of the Bubble Sort test program

170 7 RESULTS

WCET BCET
Block Addr. Bytecode Cycles Count Total Count Total
37: isub 1
38: iload 4 2
40: iastore 32
B7 15 10 150 10 150
41: inc2,1 11
44: goto 8 4
B8 15 4 60 4 60
47: iincl,-1 11
50: goto 2 4
B9 1 1
53: return
Execution time calculated 1,799 1,069
Execution time measured 1,799 1,069

Table 7.10: WCET and BCET in clock cycles of the Bubble Sort test program

The values in the fth and seventh columns (Count) of Tabl®7are derived from
the CFG and show how often the basic blocks are executed iwohgt and best
cases. The WCET and BCET value for each block is calculateahiiplying the
clock cycles by the execution frequency. The overall WCEd@ BRET values are
calculated by summing the values of the individual blockst®B8. The last block
(B9) is omitted, as the measurement does not contain thenrstatement.

The execution time of the program is measured using the calater in JOP.
The current time is taken at both the entry of the method arileaend, resulting
in a measurement spanning from block B1 to the beginning @ékoB9. The last
statement, theeturn , is not part of the measurement. The difference betweer thes
two values (less the additional 8 cycles introduced by thesueement itself) is given
as the execution time in clock cycles (the last row in TablY. The measured
WCET and BCET values are exactly the same as the calculaleelsva

In Figure 7.5, the measured execution times for all 120 p&tions of the input
data are shown. The vertical axis shows the execution tinodock cycles and the
horizontal axis the number of the test run. The rst input géams an already sorted
array and results in the lowest execution time. The last garsphe worst-case value
resulting from the reversely ordered input data. We cansdgathe 11 different exe-
cution times that result from executing basic block B6 (vhperforms the element
exchange and takes 73 clock cycles) between 0 and 10 times.

7.4 WCET 171

Figure 7.4: The control ow graph of the Bubble Sort example

172 7 RESULTS

*

* o0
L 2 L 2 4 * *0 000
® & o0 0 0 6 W6 o0

® 60 60 000 0 ®»e 06 60 00 o
GO 006000 o0 L X J OO 6 o o
T W% % & 5 0 % o *

LI XX L) *0 *
*” o L 4

Figure 7.5: Execution time in clock cycles of the Bubble Sort program

This example has demonstrated that JOP is a simple targiefOW CET analysis.
Most bytecodes have a single execution time (WCET = BCETJ,thke WCET of a
task depends only on the control ow. No pipeline or data dejesmcies complicate
the low-level part of the WCET analysis.

7.5 Applications

During the research for this thesis, the rst working versad JOP was used in a real-
world application. Using an architecture under developniea commercial project
entails risks. Nevertheless, this was deemed to be the lagsvprove the feasibility
of the processor. In this section, the experiences of thigpmgject involving JOP are
summarized.

7.5.1 Motor Control

In rail cargo, a large amount of time is spent on loading andading of goods
wagons. The contact wire above the wagons is the main obst&alfour Beatty
Austria developed and patented a technical solution, theaBed Kippfahrleitung
to tilt up the contact wire. This is done on a line up to onerkikter. An asynchrony
motor on each mast is used for this tilting. However, it hasgaone synchronously
on the whole line.

Each motor is controlled by an embedded system. This sydtsmeaeasures the

7.5 APPLICATIONS 173

Figure 7.6: Picture of aKippfahrleitungmast in down and up position

position and communicates with a base station. Figure & slhe mast with the

motor and the control system in the "down' and "up' positiohke base station has
to control the deviation of individual positions during ttile It also includes the user
interface for the operator. In technical terms, this is &ithisted, embedded real-time
control system, communicating over an RS485 network.

Real Hardware

Although this system is not mass-produced, there were ti@less cost constraints.
Even a small FPGA is more expensive than a general purpose GPtdmpensate
for this, additional chips for the memory and the FPGA conrajion were optimized
for cost. One standard 128KB Flash was used to hold FPGA coatgpn data, the
Java program and a logbook. External main memory was redocE2BKB with an
8-bit data bus.

To reduce external components, the boot process is a ldttglticated. A watch-
dog circuit delivers a reset signal to a 32 macro-cell PLOsRHLD loads the con-
guration data into the FPGA. When the FPGA starts, it digatthe PLD and loads
the Java program from the Flash into the external RAM. AtterdVM is initialized,
the program starts atain() .

The motor is controlled by silicon switches connected toRR&A with opto cou-

174 7 RESULTS

plers. The position is measured with two end sensors andadviiey sensor. The
processor supervises the voltage and current of the mabphstA display and key-
board are attached to the base station for user interfac cdimmunication bus (up
to one kilometer) is attached via an isolated RS485 datafaue.

Synthesized Hardware

The following 1/0O modules were added to the JOP core in the&APG
Timer
UART for debugging
UART with FIFO for the RS485 line
Four sigma delta ADCs
I/O ports

Five switches in the power line needed to be controlled byptiogram. A wrong
setting of the switches due to a software error could reaudt $hort circuit. Ensur-
ing that this could not happen was a straightforward tasketMHDL level. The
sigma-delta ADCs are used to measure the temperature oilitus switches and
the current through the motor.

Software Architecture

The main task of the program was to measure the position tisengevolving sensor
and communicate with the base station. This has to be doner uadl-time con-
straints. This is not a very complicated task. However, attilme of development,
many features from a full-blown JVM implementation, suchtfagads or objects,
were missing in JOP. The resulting Java was more likayaJava It had to be kept
in mind which Java constructs were supported by JOP. Bet¢hase was no multi-
threading capability, and in the interests of simplicitysimple in nite loop with

constant time intervals was used. Listing 7.2 shows thels&dprogram structure.
After initialization and memory allocation, this loop wastered and did never exit.

Communication

Communication is based on a client server structure. Omlyp#se station is allowed
to send a request to a single mast station. This station isrégiired to reply. The
maximum reply time is bounded by two time intervals. The bstsg¢ion handles

7.5 APPLICATIONS 175

public static void main(String[] args) f

init();

Timer.start();

forever();

/I this point is NEVER reached

g

private static void forever() f

for () f

Msg.loop();

Triac.loop();

if (Msg.available) f
handleMsg();

g else f
chkMsgTimeout();

g

handleWatchDog();

Timer.waitForNextInterval();

Listing 7.2: Simpli ed program structure

176 7 RESULTS

timeout and retry. If an irrecoverable error occurs, theelstation switches off the
power to the mast stations, including the power supply taribéor. This is the safe
state of the whole system.

From the mast station perspective, every mast station @spsrthe base station.
The base station is required to send requests on a reguiar liahis requirement
is violated, the mast station switches off its motor. Theadatexchanged in small
packets of four bytes, including a one-byte CRC. To simglify development, com-
mands to program the Flash in the mast stations and forceebwese included. It
is therefore possible to update the program, or even ch&meg€eRGA con guration,
over the network.

7.5.2 Further Projects

TAL, short for TeleAlarm, is a remote tele-control and daigding system. TAL
communicates via a modem or an Ethernet bus with a SCADA systevia SMS
with a mobile phone. For this application, a minimal TCP/tRck needed to be
implemented. This stack was the reason for implementirgptts and a simple real-
time system in JOP.

Another application of JOP is in a communication device witft real-time prop-
erties — Austrian Railways'@BB) new security system for single-track lines. Each
locomotive is equipped with a GPS receiver and a communpicatevice. The posi-
tion of the train, differential correction data for GPS amhenands are exchanged
with a server at the central station over a GPRS virtual priveetwork. JOP is the
heart of the communication device in the locomotive. Theibdity of the FPGA
and an Internet connection to the embedded system makesibfe$o upgrade the
software and even the processor in the eld.

7.6 Summary

In this chapter, we presented an evaluation of JOP. We haue tbat JOP is the
smallest hardware realization of the JVM available to d&tae to the ef cient im-
plementation of the stack architecture, JOP is also smihléer acomparableRISC
processor in an FPGA. Implemented in an FPGA, JOP has thedtigtock fre-
guency of all known Java processors.

We compared JOP against several embedded Java systems ameffeaence, with
Java on a standard PC. A Java processor is up to 500 timestfastean interpreting
JVM on a standard processor for an embedded system. JOPussabtimes faster

7.6 SUMMARY 177

than the aJ80 Java processor and as fast as the ‘aJPo6liminary results using
compiled Java for a RISC processor in an FPGA, with a simédaource usage and
maximum clock frequency to JOP, showed that native exetwtidava bytecodes is
faster than compiled Java.

We compared the basic properties of the real-time schednelOP against the
RTSJ implementation on Linux. The integration of the schedin the JVM, and
the timer interrupt under scheduler control, results in facient platform for Java
in embedded real-time systems. JOP performs better and pnedectably than the
reference implementation of the RTSJ under Linux.

We also performed WCET analysis of the implemented JVM atntii@ocode
level. This analysis provides the WCET and BCET values feritfdividual byte-
codes. We have also shown that there are no dependencieselpeitvdividual byte-
codes. This feature, in combination with the method cacke ection 5.8), makes
JOP an easy target for low-level WCET analysis of Java agjiios.

Usage of JOP in three real-world applications showed tl@pthcessor is mature
enough to be used in commercial projects.

’The measured aJ100 system contained faster SRAMs than @& B&ard for JOP.

8 Conclusions

In this chapter we will undertake a short review of the thesid summarize the
contributions. Java for real-time systems is a very new atidearesearch area. This
chapter is completed by suggestions for future researc®dban the proposed Java
processor.

8.1 Conclusions

In the following list, we draw conclusions about the Javacpssor presented in this
thesis, in relation to the problem stated in Section 3.4:

1. A time-predictable Java platform has been demonstratedshown in Sec-
tion 5.7 and 5.8, the architectural design decisions amiexfiredictable cache
provide the basis for a time-predictable Java processogebition 7.4, it was
shown that all bytecodes have a known WCET and there are mdin@pde-
pendencies. JOP's architecture can therefore be modettel-aycurately for
the low-level WCET analysis.

2. The implementation of a RISC-style stack architecturig) @ novel mapping
of Java bytecodes to microcode addresses (see SectiorabB)he analysis
of the JVM stack usage pattern (see Section 5.5) with theureseef cient
two-level stack cache resulted in a small design. In fack &the smallest
implementation of the JVM in hardware available to date.

3. The usage of JOP in real-world applications, as desciib8dction 7.5, shows
that JOP is a working processor and not only a theoreticaitature.

4. Comparing JOP with various embedded Java solutions iticBet.3 showed
that the time-predictable processor architecture doeseei to be slow. JOP's
average performance is similar to that of non real-time 3sgtems.

5. The exibility of an FPGA allows for a HW/SW-co-design amach, with the
aim of generating application-speci ¢ con gurations of BO

180 8 CONCLUSIONS

6. In Section 6.1, a simple real-time pro le for Java was dedn This pro le
solves a number of issues that arise from using standarddaneal-time sys-
tems. This pro le was elaborated upon in Section 6.2 to eredtamework for
a user-de ned scheduler in Java, thus enabling the impléatien of advanced
scheduling concepts at the application level.

8.2 Summary of Contributions

The research contributions made by this thesis are relat®ebtareas: real-time Java
and resource-constrained embedded systems.

A Real-Time Java Processor

The goal of time-predictable execution of Java programs avast-class guiding
principle throughout the development of JOP:

The execution time for Java bytecodes can be exactly pestlict terms of
the number of clock cycles. JOP is therefore a straightfoivtarget for low-
level WCET analysis. There is no mutual dependency betweeasecutive
bytecodes that could result in unbounded timing effects.

In order to provide time-predictable execution of Java bgties, the proces-
sor pipeline is designed without any prefetching or queuifiis fact avoids

hard-to-analyze and possibly unbounded pipeline depeneienThere are no
pipeline stalls, caused by interrupts or the memory subgysto complicate

the WCET analysis.

A pipelined processor architecture calls for higher memimapdwidth. A
standard technique to avoid processing bottlenecks duketdigher mem-
ory bandwidth is caching. However, standard cache orgaoiaimprove the
average execution time but are dif cult to predict for WCEmadysis. Two
time-predictable caches are proposed for JOstaek caches a substitution
for the data cache andmaethod cachéo cache the instructions.

As the stack is a heavily accessed memory region, the staclaroof it — is
placed in local memory. This part of the stack is referredstthastack cache
and described in Section 5.5. Fill and spill of the stack eaishsubjected to
microcode control and therefore time-predictable.

In Section 5.8, a novel way to organize an instruction caabmethod cache
is given. The cache stores complete methods, and cachesnoislyeoccur on

8.2 SUMMARY OF CONTRIBUTIONS 181

method invocation and return. Cache block replacementrakpen the call
tree, instead of instruction addresses. Thisthod cachés easy to analyze
with respect to worst-case behavior and still provides tauttigl performance
gain when compared against a solution without an instronataxche.

The above described time-predictable processor providdsasis for real-time
Java. The issues with standard Java and the Real-Time $p#on for Java
were analyzed in Chapter 4. To enable real-time Java to tgeraresource-
constrained devices, a simple real-time pro le was de nedection 6.1 and
implemented in Java on JOP. The beauty of this approach mpiementing

functions usually associated with an RTOS in Java. This sézat real-time
Java is not based on an RTOS, and therefore not restrictée fomctionality

provided by the RTOS. With JOP, a self-contained real-tiystesn in pure
Java becomes possible.

The tight integration of the scheduler and the hardwaregbaerates schedule
events results in low latency and low jitter of the task dispa

The de ned real-time pro le suggests a new way to handle hairé interrupts
to avoid interference between blocking device drivers goplieation tasks.
Hardware interrupts other than the timer interrupt are es@nted as asyn-
chronous events with an associated thread. These evemsranal schedu-
lable objects and subject to the control of the schedulerth \&iminimum
interarrival time, these events, and the associated devieers, can be incor-
porated into the priority assignment and schedulabilitglysis in the same
way as normal application tasks.

The above-described contributions result in a time-ptatlle execution environ-
ment for real-time applications written in Java, withow tiesource implications and
unpredictability of a JIT-compiler. The proposed processchitecture is a straight-
forward target for low-level WCET analysis.

Implementing a real-time scheduler in Java opens up nevitpiitess. The sched-
uler is extended to provide a framewaork for user-de ned sicitiag in Java. In Sec-
tion 6.2, we analyzed which events are exposed to the savegiudl which functions
from the JVM need to be available in the user space. A simplese framework to
evaluate new scheduling concepts is given.

A Resource-Constrained Processor

Embedded systems are usually very resource-constrairsdg & low-cost FPGA as
the main target technology forced the design to be small.f@lleving architectural

182 8 CONCLUSIONS

features address this issue:

The architecture of JOP is best described as:

The JVM is a CISC stack architecture, whereas JOP is a RISK sta
architecture.

JOP contains its own instruction set, called microcode is tihesis, with a

novel way of mapping bytecodes to microcode addresses. rii&jping has
zero overheads as described in Section 5.3. Basic bytensttadgtions have a
one-to-one mapping to microcode instructions and theeedgecute in a single
cycle. The stack architecture allows compact encoding ofgmstructions in

8 bit to save internal memory.

This approach allows exible implementation of Java bye®s in hardware,
as a microcode sequence or even in Java itself.

The analysis of the JVM stack usage pattern in Section 5.50¢de design
of a resource-ef cient two-level stack cache. This twodkstack cache ts to
the embedded memory technologies of current FPGAs and ASiG€ensures
fast execution of basic instructions.

Part of the stack cache, which is implemented in an on-chipmang is also
used for microcode variables and constants. This resotnaeng does not
only reduce the number of memory blocks needed for the psocebut also
the number of data paths to and from the execution unit.

Interrupts are considered hard to handle in a pipelinedgssar, resulting in
a complex (and therefore resource consuming) implementatin JOP, the

above mentioned bytecode-microcode mapping is used ivarchay to avoid

interrupt handling in the core pipeline. Interrupts geteispecial bytecodes
that are inserted in a transparent way in the bytecode stréat@rrupt han-

dlers can be implemented in the same way as bytecodes arenmapted: in

microcode or in Java.

The above design decisions where chosen to keep the size pfabhessor small
without sacri cing performance. JOP is the smallest Jawessor available to date
that provides the basis for an implementation of the CLDQispation (see Sec-
tion 4.3.1). JOP is a fast execution environment for Javéhomt the resource im-
plications and unpredictability of a JIT-compiler. The eage performance of JOP is
similar to that of mainstream, non real-time Java systems.

JOP is a exible architecture that allows different con @tions for different appli-
cation domains. Therefore, size can be traded againstrpafwe. As an example,

8.3 FUTURE RESEARCHDIRECTIONS 183

resource intensive instructions, such as oating pointrapens, can be implemented
in Java. The exibility of an FPGA implementation also allsvadding application-
speci ¢ hardware accelerators to JOP.

The small size of the processor allows usage of low-cost FPiGaAmbedded sys-
tems that can compete against standard microcontrolld?. K3 been implemented
in several different FPGA families and is used in differezdl¥world applications.

Programs for embedded and real-time systems are usually-thmeladed and a
small design provides a path to a multi-processor systemiidasized FPGA or in
an ASIC.

A tiny architecture also opens new application elds wherpiemented in an
ASIC. Smart sensors and actuators, for example, are vesitisento cost, which
is proportional to the die area.

8.3 Future Research Directions

JOP provides a basis for various directions for future neseé&some suggestions are
given below:

Real-time garbage collector: In Section 6.1, a real-time pro le was de ned that
avoids the unpredictability of a garbage collector. Howgtlgere have been
advances in the research eld of real-time GCs. Hardwargaeumf a real-
time GC would be an interesting topic for further research.

Another question that remains with a real-time GC is the ymmslof the
worst-case memory consumptions of tasks (similar to the W#iues), and
scheduling the GC so that it can keep up with the allocatita ra

Hardware accelerator: The exibility of an FPGA implementation of a processor
opens up new possibilities for hardware accelerators. We shown in Sec-
tion 5.6 how the implementation of a bytecode can be movedd®st hard-
ware and software. A further step would be to generate ancapipin speci c-
system in which part of the application code is moved to hardwldeally, the
hardware description should be extracted automaticadignfthe Java source.
Preliminary work in this area, using JOP as its basis, camied in [35].

Hardware scheduler: In JOP, scheduling and dispatch is done in Java (with some
microcode support). For tasks with very short periods, titeeduling over-
heads can prove to be too high. A scheduler implemented itwzaie can
shorten this time, due to the parallel nature of the algorith

184 8 CONCLUSIONS

Multiprocessor JVM: In order to generate a small and predictable processor, sev-

eral advanced and resource-consuming features (such tasctien folding

or branch prediction) were omitted from the design. The Itiegulow re-
source usage of JOP makes it possible to integrate more tieaprocessor in

an FPGA. Since embedded applications are naturally mukiaided systems,
the performance can easily be enhanced using a multi-mocsslution. A
multi-processor JVM with shared memory offers followingearch possibil-
ities: scheduling of Java threads and synchronization detwthe processors;
WCET analysis for the shared memory access.

Instruction cache: The cache solution proposed in Section 5.8 provides piedulit
instruction cache behavior while, in the average casépstiforming in a sim-
ilar way to a direct-mapped cache. However, an analysidtothe worst-case
behavior is still needed. With this tool, and a more complealysis tool for
traditional instruction caches, we also need to verify thatworst-case miss
penalty is lower than with a traditional instruction cache.

A second interesting aspect of the proposed method cache fadt that the
replacement decision on a cache miss only occurs on methokkimand return.
The infrequency of this decision means that more time islavia for more
advanced replacement algorithms.

Real-time Java: Although there is already a de nition for real-time Java. ithe
RTSJ [8], this de nition is not necessarily adequate. Thsmngoing research
on how memory should be managed for real-time Java apmitatiscoped
memory, as suggested by the RTSJ, usage of a real-time G@plcadion
managed memory through memory pools. However, almost rearels has
been done into how the Java library which has proven a majbropadava's
success, can be used in real-time systems or how it can béesddapdo so.
The question of what the best memory management is for the standard
library remains unanswered.

Java computer: How would a processor architecture and operating systehitace
ture look in a "Java only' system? Here, we need to rethinkagroach to
processes, protection, kernel- and user-space, and lvinemory. The stan-
dard approach of using memory protection between diffguentesses is nec-
essary for applications that are programmed in languagésifie memory ad-
dresses as data, i.e. pointer usage and pointer manipulétidava, no mem-
ory addresses are visible and pointer manipulation is nssipte. This very
important feature of Java makes Javaade language. Therefore, an error-
free JVM means we do not need memory protection between ggeseand

8.3 FUTURE RESEARCHDIRECTIONS 185

we do not need to make a distinction between kernel and useegwith all
the overhead) in a Java system. Another reason for usingaliaddresses is
link addresses. However, in Java this issue does not egsd|l @lasses are
linked dynamically and the code itself (i.e. the bytecodmdy uses relative
addressing.

Another issue here is the paging mechanism in virtual meragsyem, which
has to be redesigned for a Java computer. For this, we needrggerthe vir-

tual memory management with the GC. It does not make sensaveodvir-

tual memory manager that works with plain (e.g. 4KB) memayges without
knowledge about object lifetime. We therefore need to ipomate the virtual
memory paging with a generational GC. The GC knows whichatbjeave not
been accessed for a long time and can be swapped out to theHiisdling

paging as part of the GC process also avoids page fault eans@nd thereby
simpli es the processor architecture.

Another question is whether we can substitute the processtiom with
threads, or whether we need several JVMs on a Java only sy#telepends.
If we can live with the concept of shared static class membeescan substi-
tute heavyweight processes with lightweight threads. dtde possible that we
would have to de ne some further thread local data strustimehe operation
system.

It is the opinion of the author that Java is a promising lagguir future real-time
systems. However, a number of issues remain to be solved, wWi@Pits time-
predictable execution of Java bytecodes, is an importaméxertheless only a small
part of a real-time Java system.

Bibliography

[1] Georg Acher. JIFFY — Ein FPGA-basierter Java Just-in-Time Compilér f
eingebettete Anwendungd?hD thesis, Technische Universitat Miinchen, 2003.

[2] adile Systems Inc. aJ-100 Real-time Low Power Java Beoce preliminary
data sheet, 2000.

[3] ARM. Jazelle — ARM Architecture Extensions for Java Apptions. white
paper.

[4] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. BoundirwWorst-Case
Instruction Cache Performance. IEEE Real-Time Systems Symposipages
172-181, 1994.

[5] lain Bate, Guillem Bernat, Greg Murphy, and Peter Pusthhow-Level Anal-
ysis of a Portable Java Byte Code WCET Analysis FrameworkPrbt. 7th
International Conference on Real-Time Computing SystemdsAgplications
pages 39-48, Dec. 2000.

[6] Elliot Berk. JLex: A Lexical Analyzer Generator for JavaAvailable at
http://www.cs.princeton.edu/ appel/modern/java/JLex/

[7] G. Bernat, A. Burns, and A. Wellings. Portable Worst-E&ecution Time
Analysis Using Java Byte Code. Froc. 12th EUROMICRO Conference on
Real-time Systemdun 2000.

[8] Greg Bollella, James Gosling, Benjamin Brosgol, Petdatiz, Steve Furr, and
Mark Turnbull. The Real-Time Speci cation for Javalava Series. Addison-
Wesley, June 2000.

[9] Ben Brosgol and Brian Dobbing. Real-time Convergencéda#é and Java. In
Proceedings of the 2001 annual ACM SIGAda internationafe@mce on Ada
pages 11-26. ACM Press, 2001.

188 BIBLIOGRAPHY

[10] Alan Burns and Andrew J. WellingsReal-Time Systems and Programming
Languages: ADA 95, Real-Time Java, and Real-Time POS&tison-Wesley
Longman Publishing Co., Inc., 2001.

[11] J. V. Busquets-Mataix, A. Wellings, J. J. Serrano, Rs,@nd P. Gil. Adding
Instruction Cache Effect to Schedulability Analysis of &rgtive Real-Time
Systems. INEEE Real-Time Technology and Applications Symposium $RTA
'96), pages 204-213, Washington - Brussels - Tokyo, June 19%& Eom-
puter Society Press.

[12] Clemens Cap, Dirk Timmermann, Frank Golatowski, Hagdmog, Stephan
Preuss, and Thomas Geithner. Integration of Java processerJSM into
SmartDev(ices). IfProceedings of the 8th IEEE International Conference on
Emerging Technologies and Factory Automati@ktober 2001.

[13] Cyrille Comar, Gary Dismukes, and Franco Gasperonigdiang GNAT to the
Java Virtual Machine. IfProceedings of the conference on TRI-Ada 'Pd@ges
149-161. ACM Press, 1997.

[14] Nazomi Communications. JA 108 Product Brief. Availablat
http://www.nazomi.com.

[15] Altera Corporation. Nios Soft Core Embedded Processer 1. data sheet,
June 2000.

[16] Altera Corporation. Cyclone FPGA Family Data Sheet, ¥€2, April 2003.

[17] Standard Performance Evaluation Corporation. TheGP¥EV98 Benchmark
Suite. Available at http://www.spec.org/, August 1998.

[18] Xilinx Corporation. MicroBlaze Processor Referencaidg, EDK v6.2 edition.
data sheet, December 2003.

[19] Angelo Corsaro and Douglas C. Schmidt. The Design amtbffeance of the
jRate Real-Time Java Implementation. @m the Move to Meaningful Internet
Systems, 2002 - DOA/CooplS/ODBASE 2002 Confederatechdtitemal Con-
ferences DOA, CooplS and ODBASE 20p3ages 900-921. Springer-Verlag,
2002.

[20] Angelo Corsaro and Douglas C. Schmidt. Evaluating Réale Java Features
and Performance for Real-Time Embedded SystemsPraceedings of the
Eighth IEEE Real-Time and Embedded Technology and Apj@itatSympo-
sium (RTAS'02)page 90. IEEE Computer Society, 2002.

BIBLIOGRAPHY 189

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Angelo Corsaro and Douglas C. Schmidt. The Design ambfeance of Real-
Time Java MiddlewardEEE Transactions on Parallel and Distributed Systems
14(11):1155-1167, November 2003.

Martin Delvai, Wolfgang Huber, Peter Puschner, and vead Steininger. Pro-
cessor Support for Temporal Predictability — The SPEAR @edtxample.
In Proc. 15th Euromicro International Conference on Real-gi8ystemsJul.
2003.

S. Dey, P. Sanchez, D. Panigrahi, L. Chen, C. Taylor, lan8ekar. Using a
Soft Core in a SOC Design: Experiences with picoJdaizEE Design and Test
of Computers17(3):60-71, July 2000.

Brian Dobbing and Alan Burns. The Ravenscar Taskingl®ror High In-
tegrity Real-Time Programs. IRroceedings of the 1998 annual ACM SIGAda
international conference on Adpages 1-6. ACM Press, 1998.

Tom Dowling, James Power, and John Waldron. RelatirgiSand Dynamic
Measurements for the Java Virtual Machine Instruction Betl.E. Mastorakis,
editor, Recent Advances in Simulation, Computational Methods aftdC®m-
puting WSEAS Press, 2002.

M. Eden and M. Kagan. The Pentium Processor with MMX Textbgy. In
Proceedings of Compcon '9pages 260-262. IEEE Computer Society, 1997.

EJC. The EJC (Embedded Java Controller) platform. labde at
http://ww.embedded-web.com/index.html.

Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis PhD thesis, Uppsala University, 2002.

S. Feizabadi, W. Beebee, B. Ravindran, P. Li, and M. RinaUtility Ac-
crual Scheduling with Real-Time Javd.ecture Notes in Computer Science
2889:550-563, 2003.

FLEX. FLEX, a compiler infrastructure written in Javarflava. Available at
http://www. ex-compiler.csail.mit.edu/.

Vincent Gay-Para. KJC Kopi Java Compiler. Availabldntip://www.dms.at/.

C. J. GlossnerThe DEFLT-JAVA EnginePhD thesis, Delft University of Tech-
nology, 2001.

190

BIBLIOGRAPHY

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]

James Gosling, Bill Joy, Guy Steele, and Gilad Brachhe Java Language
Speci cation Second EditionThe Java Series. Addison-Wesley, Boston, Mass.,
2000.

David Gregg, James Power, and John Waldron. Benchngtkie Java Virtual
Architecture - The SPECJVM98 Benchmark Suite. In N. Vijaghnan and
M. Wolczko, editors Java Microarchitecturespages 1-18. Kluwer Academic,
2002.

Flavius Guian, Per Andersson, Krzysztof Kuchcinskidavartin Schoeberl.
Automatic Generation of Application-Speci ¢ Systems Basan a Micro-
programmed Java Core. Rroceedings of the 20th ACM Symposium on Applied
Computing, Embedded Systems tr&&anta Fee, New Mexico, March 2005.

Tom R. Halfhill. Imsys Hedges Bets on Javslicroprocessor ReportAugust
2000.

D.S. Hardin. Real-Time Objects on the Bare Metal: An &ént Hardware
Realization of the JavaTM Virtual Machine. Rroceedings of the Fourth In-
ternational Symposium on Object-Oriented Real-Time ihisted Computing

page 53. IEEE Computer Society, 2001.

C.A. Healy, D.B. Whalley, and M.G. Harmon. Integratitige Timing Analysis
of Pipelining and Instruction Caching. IEEE Real-Time Systems Symposium
pages 288-297, 1995.

Reinhold Heckmann, Marc Langenbach, Stephan Thesing,Reinhard Wil-
helm. The In uence of Processor Architecture on the Desigd Results of
WCET Tools.Proceedings of the IEER1(7):1038-1054, Jul. 2003.

John Hennessy and David Pattersd@omputer Architecture: A Quantitative
Approach, 3rd ed.Morgan Kaufmann Publishers Inc., Palo Alto, CA 94303,
2002.

Hitachi. Hitachi Single-Chip Microcomputer H8/329¢1%s. Hardware Man-
ual.

Imsys AB. ISAJ Reference 2.0, January 2001.
Imsys AB. the Cjip Technical Reference Manual / V0.2@032.

Derivation Systems Inc. LavaCORE Con gurable Javadessor Core. data
sheet, April 2001.

BIBLIOGRAPHY 191

[45] S.A. Ito, L. Carro, and R.P. Jacobi. Making Java Work dicrocontroller

Applications. IEEE Design & Test of Computer8(5):100-110, 2001.

[46] E. Douglas Jensen. A Proposed Initial Approach to sted Real-Time

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Java. InThird IEEE International Symposium on Object-Oriented IReae
Distributed Computing (ISORC 20Q(ages 2—6, March 2000.

Nilsen K., Carnahan L., and Ruark M. Requirements foalRléme Exten-
sions for the Java Platform. Available at http://www.rgst/rt-java/, Septem-
ber 1999.

Kaffe. Kaffe, a complete virtual machine and classdifyrset which allows the
execution of Java code. Available at http://www.kaffe.org

K. B. Kent. The Co-Disgn of Virtual Machines Using Recon gurable Haades
PhD thesis, University of Victoria, 2003.

A. Kim and J. M. Chang. Designing a Java MicroprocessoreGising FPGA
Technology. IEE Computing & Control Engineering Journal1(3):135-141,
June 2000.

M. H. Klein, T. Ralya, B. Pollak, and R. Obenza Practitioner's Handbook for
Real-Time Analysis : Guide to Rate Monotonic Analysis falRéne Systems
Kluwer Academic Publ., Boston, MA, USA, 1993.

Phillip Koopman.Stack Computers: The New Wa¥glis Horwood, 1989. Out
of print, now available over the internet.

Andreas Krall. Ef cient JavaVM Just-in-Time Compilah. In Proceedings

of the 1998 International Conference on Parallel Architees and Compila-
tion Techniques (PACT '98pages 205-212, Paris, October 12-18, 1998. IEEE
Computer Society Press.

Andreas Krall and Reinhard Gra. CACAO — A 64 bit JavaVMsl-in-Time
Compiler. In Geoffrey C. Fox and Wei Li, edito®BPoPP'97 Workshop on Java
for Science and Engineering Computatidmas Vegas, June 1997. ACM.

J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. UhrigagcaTh. Ungerer. Real-
time Event-handling and Scheduling on a Multithreaded Jamaocontroller.
Microprocessors and Microsystenr(1):19-31, 2003.

Jagun Kwon, Andy Wellings, and Steve King. Ravenseaad A High Integrity
Pro le for Real-Time Java. IrProceedings of the 2002 joint ACM-ISCOPE
conference on Java Grangdpages 131-140. ACM Press, 2002.

192 BIBLIOGRAPHY

[57] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul, NRhan Ha,
Seongsoo Hong, Chang Yun Park, Minsuk Lee, and Chong SangAtatlysis
of Cache-Related Preemption Delay in Fixed-Priority Pratéma Scheduling.
IEEE Trans. Comput47(6):700-713, 1998.

[58] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. fBenance Estima-
tion of Embedded Software with Instruction Cache ModelihgProceedings
of the 1995 IEEE/ACM international conference on Compaided design
pages 380-387. IEEE Computer Society, 1995.

[59] Kwei-Jay Lin and Yu-Chung Wang. The Design and Impletagon of Teal-
Time Schedulers in RED-linuxProceedings of the IEEE1(7):1114-1130,
July 2003.

[60] Tim Lindholm and Frank Yellin.The Java Virtual Machine Speci cationAd-
dison-Wesley, Reading, MA, USA, second edition, 1999.

[61] C.L.LiuandJames W. Layland. Scheduling AlgorithmsNtultiprogramming
in a Hard-Real-Time Environmend. ACM, 20(1):46-61, 1973.

[62] Digital Communication Technologies Ltd. Lightfoot -8 Java Processor
Core. data sheet, September 2001.

[63] Vulcan ASIC Ltd. Moon v1.0. data sheet, January 2000.

[64] Vulcan ASIC Ltd. Moon2 - 32 Bit Native Java Technologgd®d Processor.
product folder, 2003.

[65] Sun Microsystems. A Brief History of the Green Projeciivailable at:
http://today.java.net/jag/old/green/.

[66] Sun Microsystems. Java 2 Platform, Micro Edition (J2MEAvailable at:
http://java.sun.com/j2me/docs/.

[67] Sun Microsystems. Java Technology: The Early Years. ailAble at:
http://java.sun.com/features/1998/05/birthday.html.

[68] Chuck Moore. ShBoom on ShBoom: A Microcosm of Softwane &ardware
Tools. InProceedings 1990 Rochester Forth Confereruages 21-27, New
York, June 1990.

[69] M. Mrva, K. Buchenrieder, and R. Kress. A scalable amstture for multi-
threaded JAVA applications. IRroceedings of the conference on Design, au-
tomation and test in Europ@ages 868-874. IEEE Computer Society, 1998.

BIBLIOGRAPHY 193

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Albert F. Niessner and Edward G. Benowitz. RTSJ Memomgas and Their Af-
fects on the Performance of a Flight-Like Attitude Contrgst&m. InWorkshop
on Java Technologies for Real-Time and Embedded SysteRES)TLNCS
2003.

K. Nilsen and S. Lee. PERC Real-Time API (Draft 1.3). Ndanics, July
1998.

Anders Nilsson. Compiling Java for Real-Time Systeniscentiate thesis,
Dept. of Computer Science, Lund University, May 2004.

J. Michael O'Connor and Marc Tremblay. picoJava-I: Dlaga Virtual Machine
in Hardware.IEEE Micro, 17(2):45-53, 1997.

Krzysztof Palacz, Jason Baker, Chapman Flack, ChrisGrothoff, Hiroshi
Yamauchi, and Jan Vitek. Engineering a Customizable Ineeliate Represen-
tation. InACM SIGPLAN 2003 Workshop on Interpreters, Virtual Machkine
and Emulators (IVME 2003 ACM SIGPLAN, 2003.

Matthias Pfeffer.Ein echtzeithhiges Java-Systerirfeinen mehiédigen Java-
Mikrocontroller. PhD thesis, University of Augsburg, 2000.

James Power and John Waldron. A Method-Level AnalysBlgect-Oriented
Techniques in Java. Technical Report NUIM-CS-TR-2002D&partment of
Computer Science, NUI Maynooth, Ireland, 2002.

PTSC. IGNITE Processor Brochure, Rev 1.0. Available at
http://www.ptsc.com.

P. Puschner and Ch. Koza. Calculating the Maximum Etk@cime of Real-
Time ProgramsReal-Time Syst1(2):159-176, 1989.

P. Puschner and A. J. Wellings. A Pro le for High IntegriReal-Time Java
Programs. Irith IEEE International Symposium on Object-oriented Rizaé
distributed Computing (ISORC2001.

R. RadhakrishnanMicroarchitectural Techniques to Enable Ef cient Java Ex-
ecution PhD thesis, University of Texas at Austin, 2000.

Ramesh Radhakrishnan, N. Vijaykrishnan, Lizy Kuriahd, Anand Sivasubra-
maniam, Juan Rubio, and Jyotsna Sabarinathan. Java Rusyistems: Char-
acterization and Architectural Implications£EEE Trans. Comput50(2):131—

146, 2001.

194 BIBLIOGRAPHY

[82] Mario Aldea Rivas and Michael Gonzalez Harbour. POSI¥mpatible
Application-De ned Scheduling in MaRTE OS. Proceedings of the 14th Eu-
romicro Conference on Real-Time Systepege 67. IEEE Computer Society,
2002.

[83] Martin Schoeberl. Using a Java Optimized ProcessorReal World Applica-
tion. In Proceedings of the First Workshop on Intelligent Solutionembedded
Systems (WISES 2008rnges 165-176, Austria, Vienna, June 2003.

[84] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Intate Protocols: An
Approach to Real-Time SynchronizatiohEEE Trans. Comput.39(9):1175—
1185, 1990.

[85] Jose Solorzano. 1eJOS: Java based OS for Lego RCX. ahlailat:
http://lejos.sourceforge.net/.

[86] International J Consortium Speci cation. Real-Tim@r€ Extensions, Draft
1.0.14. Available at http://www.j-consortium.org/, Semier 2000.

[87] International J Consortium Speci cation. Real-TimatA Access, Release 1.0.
Available at http://www.j-consortium.org/, November 200

[88] John A. Stankovic. Misconceptions About Real-Time @oning: A Serious
Problem for Next-Generation SystentSomputey21(10):10-19, 1988.

[89] Sun.picoJava-Il Microarchitecture GuideSun Microsystems, March 1999.

[90] Sun.picoJava-ll Programmer's Reference Manu&un Microsystems, March
1999.

[91] Systronix. JStamp Real-Time Native Java Module. datets
[92] TimeSys. Linux RTOS Standard Edition. Available aphftvww.timesys.com/.

[93] TimeSys. Real-Time Speci cation for Java, Referentglementation. Avail-
able at http://www.timesys.com/.

[94] A. Wellings, R. Clark, D. Jensen, and D. Wells. A Framekior Integrating
the Real-Time Speci cation for Java and Java's Remote Methwocation. In
5th IEEE International Symposium on Object-Oriented Reaie Distributed
Computing (ISORC 2002pages 13—-22, April 2002.

[95] R. Zulauf. Entwurf eines Java-Mikrocontrollers unaatypische Implemen-
tierung auf einem FPGA. Master's thesis, University of keuhe, 2000.

A Publications

1. Martin Schoeberl. Using a Java Optimized Processor insh\Rerld Applica-
tion. In Proceedings of the First Workshop on Intelligent SolutionEmbed-
ded Systems (WISES 2003ages 165-176, Austria, Vienna, June 2003.

2. Martin Schoeberl. Design Decisions for a Java Proceslspoitagungsband
Austrochip 2003pages 115-118, Linz, Austria, October 2003.

3. Martin Schoeberl. JOP: A Java Optimized Processor. In&ersman, Z. Tari,
and D. Schmidt, editorgQn the Move to Meaningful Internet Systems 2003:
Workshop on Java Technologies for Real-Time and Embeddteinsy (JTRES
2003) volume 2889 ofLecture Notes in Computer Sciengages 346—-359,
Catania, Italy, November 2003. Springer.

4. Martin Schoeberl. Restrictions of Java for Embedded René Systems.
In Proceedings of the 7th IEEE International Symposium on @{fjEiented
Real-Time Distributed Computing (ISORC 200#dges 93-100, Vienna, Aus-
tria, May 2004.

5. Martin Schoeberl. Design Rationale of a Processor Aechitre for Predictable
Real-Time Execution of Java Programs. Rroceedings of the 10th Interna-
tional Conference on Real-Time and Embedded Computingr8gsand Ap-
plications (RTCSA 2004¥§50thenburg, Sweden, August 2004.

6. Martin Schoeberl. Real-Time Scheduling on a Java ProcebsProceedings
of the 10th International Conference on Real-Time and Eméédomputing
Systems and Applications (RTCSA 20@thenburg, Sweden, August 2004.

7. Martin Schoeberl. Java Technology in an FPGAPmceedings of the Inter-
national Conference on Field-Programmable Logic and itplagations (FPL
2004) Antwerp, Belgium, August 2004.

8. Martin Schoeberl. A Time Predictable Instruction Cached Java Proces-
sor. In Robert Meersman, Zahir Tari, and Angelo Corsaridgtoes] On the
Move to Meaningful Internet Systems 2004: Workshop on Jaehriblogies
for Real-Time and Embedded Systems (JTRES 2004)me 3292 ot ecture

196

A PUBLICATIONS

10.

Notes in Computer Sciengeages 371-382, Agia Napa, Cyprus, October 2004.
Springer.

Flavius Guian, Per Andersson, Krzysztof Kuchcinski, dMuattin Schoeberl.
Automatic Generation of Application-Speci c Systems Basen a Micro-
programmed Java Core. To appeaiPiroceedings of the 20th ACM Sympo-
sium on Applied Computing, Embedded Systems , t@akta Fee, New Mex-
ico, March 2005.

Martin Schoeberl. Design and Implementation of an Efrti Stack Machine.
To appear irProceedings of the 12th IEEE Recon gurable ArchitecturekA/o
shop (RAW2005Denver, Colorado, USA, April 2005. IEEE.

B Acronyms

ADC
ALU
ASIC
BCET
CFG
CISC
CLDC
CPI
CRC
DMA
DRAM
EDF
EMC
ESD
FIFO
FPGA
GC
IC
ILP
JOP
J2ME
J2SE
JDK
JIT
JVM
LC
LRU
MBIB
MCIB
MP
MTIB
MUX

Analog to Digital Converter
Arithmetic and Logic Unit
Application-Speci c Integrated Circuit
Best Case Execution Time

Control Flow Graph

Complex Instruction Set Computer
Connected Limited Device Con guration
average Clock cycles Per Instruction
Cyclic Redundancy Check

Direct Memory Access

Dynamic Random Access Memory
Earliest Deadline First
Electromagnetic Compatibility
Electrostatic Discharge

Fist In, First Out

Field Programmable Gate Array
Garbage Collect(ion/or)

Instruction Count

Instruction Level Parallelism

Java Optimized Processor

Java2 Micro Edition

Java2 Standard Edition

Java Development Kit

Just-In-Time

Java Virtual Machine

Logic Cell

Least-Recently Used

Memory Bytes read per Instruction Byte
Memory Cycles per Instruction Byte
Miss Penalty

Memory Transactions per Instruction Byte
Multiplexer

198

B ACRONYMS

0]0)
0S
RISC
RT
RTOS
RTSJ
SCADA
SDRAM
SRAM
TOS
UART
VHDL

WCET

Object Oriented

Operating System

Reduced Instruction Set Computer
Real-Time

Real-Time Operating System

Real-Time Speci cation for Java
Supervisory Control And Data Acquisition
Synchronous DRAM

Static Random Access Memory

Top Of Stack

Universal Asynchronous Receiver/Transmitter
Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language
Worst-Case Execution Time

C JOP Instruction Set

The instruction set of JOP, the so-called microcode, isride=tt in this appendix.
Each instruction consists of a single instruction word (8)bwithout extra operands
and executes in a single cytleTable C.1 lists the registers and internal memory
areas that are used in the data ow description.

Name Description

A Top of the stack

B The element one below the top of stack

stack(] The stack buffer for the rest of the stack

sp The stack pointer for the stack buffer

vp The variable pointer. Points to the rstlocal in the stdcifer
pc Microcode program counter

offtbl Table for branch offsets

jpc Program counter for the Java bytecode

opd 8 bit operand from the bytecode fetch unit

Opdie 16 bit operand from the bytecode fetch unit

ioar Address register of the 10 subsystem

memrda Read address register of the memory subsystem
memwra Write address register of the memory subsystem
memrdd Read data register of the memory subsystem

memwrd Write data register of the memory subsystem

mula, mulb Operands of the hardware multiplier

mulr Result register of the hardware multiplier

membcr Bytecode address and length register of the membsysiem
bcstart Method start address register in the method cache

Table C.1: JOP hardware registers and memory areas

1The only multicycle instruction isait and depends on the access time of the external memory

200 C JOP NSTRUCTION SET
pop
Operation Pop the top operand stack value
Opcode 00000000
Data ow B! A
stacfsp! B
sp 1! sp
JVM equivalent pop

Description

and

Operation
Opcode

Data ow

JVM equivalent

Description

Pop the top value from the operand stack.

Boolean ANDint
00000001
ANB! A
stacf{sp! B
sp 1! sp

iand

Build the bitwise AND (conjunction) of the two top elements
of the stack and push back the result onto the operand stack.

C JOP NSTRUCTIONSET 201

or

Operation Boolean ORnt

Opcode 00000010

Data ow A_B! A
stacf{sp! B
sp 1! sp

JVM equivalent ior

Description Build the bitwise inclusive OR (disjunction) of the two top
elements of the stack and push back the result onto the aperan
stack.

xor

Operation Boolean XORint

Opcode 00000011

Data ow A6 B! A
stacfsp! B
sp 1! sp

JVM equivalent ixor

Description Build the bitwise exclusive OR (negation of equivalence) of
the two top elements of the stack and push back the result
onto the operand stack.

202

C JOP NSTRUCTIONSET

add

Operation
Opcode

Data ow

JVM equivalent

Description

sub

Operation
Opcode

Data ow

JVM equivalent

Description

Add int
00000100
A+ B! A
stacf{sp! B
sp 1! sp

iadd

Add the two top elements from the stack and push back the
result onto the operand stack.

Subtractint
00000101
A B! A
stac{sp! B
sp 1! sp

isub

Subtract the two top elements from the stack and push back
the result onto the operand stack.

C JOP NSTRUCTIONSET 203

stioa
Operation Store 10 address
Opcode 00001000
Data ow Al ioar
B! A
stacf{sp! B
sp 1! sp
JVM equivalent
Description The top value from the stack is stored in the IO address regis-

ter. This address is used on following re&tiod) and write
(stiod) operations.

stiod
Operation Store 10 data
Opcode 00001001
Data ow A! o device
B! A
stac{sp! B
sp 1! sp
JVM equivalent
Description The top value from the stack is stored in the IO device. The

IO device is selected by the previost®a .

204

C JOP NSTRUCTIONSET

stmra

Operation
Opcode

Data ow

JVM equivalent

Description

stmwa

Operation
Opcode

Data ow

JVM equivalent

Description

Store memory read address
00001010

Al memrda
B! A

stacf{sp! B
sp 1! sp

The top value from the stack is stored as read address in the
memory subsystem. This operation starts the concurrentmem
ory read. The processor can continue with other operations.
When the datum is neededwait instruction stalls the pro-
cessor till the read access is nished. The value is read with
Idmrd .

Store memory write address
00001011

Al memwra
B! A

stacfsp! B
sp 1! sp

The top value from the stack is stored as write address in the
memory subsystem for a followirgimwd .

C JOP NSTRUCTIONSET

205

stmwd

Operation
Opcode

Data ow

JVM equivalent

Description

stmul

Operation
Opcode

Data ow

JVM equivalent

Description

Store memory write data
00001100

A! memwrd
B! A

stacf{sp! B
sp 1! sp

The top value from the stack is stored as write data in the mem-
ory subsystem. This operation starts the concurrent memory
write The processor can continue with other operations. The
wait instruction stalls the processor till the write access is n
ished.

Multiply int
00001101

Al mula
B! mulb
B! A
stacf{sp! B
sp 1! sp

The top value from the stack is stored as rst operand for the
multiplier. The value one below the top of stack is stored as
second operand for the multiplier. This operation starés th
multiplier. The result is read with tHémul instruction.

206

C JOP NSTRUCTIONSET

stbcrd

Operation
Opcode

Data ow

JVM equivalent

Description

st<n>

Operation
Opcode

Data ow

JVM equivalent

Description

Start bytecode read
00001111

A! membcr
B! A

stacfsp! B
sp 1! sp

The top value from the stack is stored as address and length
of a method in the memory subsystem. This operation starts
the memory transfer from the main memory to the bytecode
cache (DMA). The processor can continue with other opera-
tions. Thewait instruction stalls the processor till the transfer
has nished. No other memory accesses are allowed during
the bytecode read.

Store 32-bit word into local variable
000100nn

Al stackvp+ n|
B! A

stacf{sp! B

sp 1! sp

astore <n>, istore <n>, fstore _<n>

The value on the top of the operand stack is popped and stored
in the local variable at position.

C JOP NSTRUCTIONSET

207

st

Operation
Opcode

Data ow

JVM equivalent

Description

stvp

Operation
Opcode

Data ow

JVM equivalent

Description

Store 32-bit word into local variable
00010101

Al stackvp+ opd|
B! A

stacf{sp! B

sp 1! sp

astore, istore, fstore

The value on the top of the operand stack is popped and stored
in the local variable at positionpd. opd is taken from the
bytecode instruction stream.

Store variable pointer
00011000

Al wvp
B! A
stac{sp! B
sp 1! sp

The value on the top of the operand stack is popped and stored
in the variable pointenp).

208

C JOP NSTRUCTIONSET

stjpc

Operation
Opcode

Data ow

JVM equivalent

Description

stsp

Operation
Opcode

Data ow

JVM equivalent

Description

Store Java program counter
00011001

Al jpc
B! A
stacf{sp! B
sp 1! sp

The value on the top of the operand stack is popped and stored
in the Java program countgp€).

Store stack pointer
00011011
Al sp

B! A
stac{sp! B

The value on the top of the operand stack is popped and stored
in the stack pointersp).

C JOP NSTRUCTIONSET

209

ushr

Operation
Opcode

Data ow

JVM equivalent

Description

shl

Operation
Opcode

Data ow

JVM equivalent

Description

Logical shift rigthint

00011100
B>>> Al A
stacfsp! B
sp 1! sp
iushr

The values are popped from the operand stackinAnresult
is calculated by shifting the TOS-1 value rigth byosition,
with zero extension, whergis the value of the low 5 bits of
the TOS. The result is pushed onto the operand stack.

Shift left int
00011101
B<< Al A
stacf{sp! B
sp 1! sp
ishl

The values are popped from the operand stackinAnresult
is calculated by shifting the TOS-1 value left Byposition,
wheres s the value of the low 5 bits of the TOS. The result is
pushed onto the operand stack.

210

C JOP NSTRUCTIONSET

shr

Operation
Opcode

Data ow

JVM equivalent

Description

stm

Operation
Opcode

Data ow

JVM equivalent

Description

Arithmetic shift rigthint

00011110
B>> Al A
stacfsp! B
sp 1! sp
ishr

The values are popped from the operand stackinAnresult
is calculated by shifting the TOS-1 value rigth byosition,
with sign extension, whergis the value of the low 5 bits of
the TOS. The result is pushed onto the operand stack.

Store in local memory
001nnnnn

Al stackn]
B! A

stacfsp! B
sp 1! sp

The top value from the operand stack is stored in the local
memory (stack) at position n. These 32 memory destinations
represent microcode local variables.

C JOP NSTRUCTIONSET 211

bz

Operation
Opcode

Data ow

JVM equivalent

Description

Branch if value is zero
010nnnnn

if A= 0thenpc+ of ftbl[n]+ 2! pc
B! A

stacfsp! B

sp 1! sp

If the top value from the operand stack is zero a microcode
branch is taken. The value is popped from the operand stack.
Due to a pipeline delay, the zero ag is delayed one cycle, i.e
the value from the last but one instruction is taken. The dhran

is followed by two branch delay slots. The branch offset is
taken from the tablef ftbl indexed byn.

212 C JOP NSTRUCTION SET
bnz
Operation Branch if value is not zero
Opcode 011lnnnnn
Data ow if A6 0thenpc+ of ftbl[n]+ 2! pc

JVM equivalent

Description

B! A
stacfsp! B
sp 1! sp

If the top value from the operand stack is not zero a microcode
branch is taken. The value is popped from the operand stack.
Due to a pipeline delay, the zero ag is delayed one cycle, i.e
the value from the last but one instruction is taken. The dhran

is followed by two branch delay slots. The branch offset is
taken from the tablef ftbl indexed byn.

C JOP NSTRUCTIONSET 213

nop

Operation
Opcode

Data ow

JVM equivalent

Description

wait

Operation
Opcode

Data ow

JVM equivalent

Description

Do nothing

10000000

nop

The famous no operation instruction.

Wait for memory completion

10000001

This instruction stalls the processor until a pending mgmor
instruction étmra , stmwd or stbcrd) has completed. Two
consecutivavait instructions are necessary for a correct stall
of the decode and execute stage.

214

C JOP NSTRUCTIONSET

jor

Operation
Opcode
Data ow

JVM equivalent

Description

[dm

Operation
Opcode

Data ow

JVM equivalent

Description

Conditional bytecode branch and goto

10000010

ifnull, ifnonnull, ifeq, ifne, iflt, ifge,

ifgt, ifle, if _acmpeq, if _acmpne, if
if _{icmpne, if _icmplt, if {icmpge, if
if _icmple, goto

_icmpeq,
_icmpgt,

Execute a bytecode branch or goto. The branch condition and
offset are calculated in the bytecode fetch unit. Arguments

must be removed withop instructions in the following mi-
crocode instructions.

Load from local memory
101nnnnn

stacfn]! A

Al B

B! stacKsp+ 1]
sp+ 1! sp

The value from the local memory (stack) at positions

pushed onto the operand stack. These 32 memory destinations

represent microcode local variables.

C JOP NSTRUCTIONSET 215

Idi

Operation
Opcode

Data ow

JVM equivalent

Description

Idiod

Operation
Opcode

Data ow

JVM equivalent

Description

Load from local memory
110nnnnn

stacfn+ 32]! A

Al B
B! stacksp+ 1]
sp+ 1! sp

The value from the local memory (stack) at positioA 32 is
pushed onto the operand stack. These 32 memory destinations
represent microcode constants.

Load IO data
11100001

io devicel A
A! B

B! stacKsp+ 1]
sp+ 1! sp

The value from the IO device is pushed onto the operand stack.
The 10 device is selected by the previatisa .

216

C JOP NSTRUCTIONSET

[dmrd

Operation
Opcode

Data ow

JVM equivalent

Description

|dmul

Operation
Opcode

Data ow

JVM equivalent

Description

Load memory read data
11100010

memrdd A
A! B

B! stacKsp+ 1]
sp+ 1! sp

The value from the memory system after a memory read is
pushed onto the operand stack. This operation is usually pre
ceded by twavait instructions.

Load multiplier result
11100101

mulr! A

A! B

B! stacKsp+ 1]
sp+ 1! sp

(imul)

The result of the multiplier is pushed onto the operand stack

C JOP NSTRUCTIONSET

217

I[dbcstart

Operation
Opcode

Data ow

JVM equivalent

Description

[d< n>

Operation
Opcode

Data ow

JVM equivalent

Description

Load method start
11100111

bcstart! A

A! B

B! stacKsp+ 1]
sp+ 1! sp

The method start address in the method cache is pushed onto

the operand stack.

Load 32-bit word from local variable
111010nn

stackvp+ n]! A

A! B
B! stacKsp+ 1]
sp+ 1! sp

aload <n>, iload <n>, fload <n>

The local variable at position is pushed onto the operand

stack.

218 C JOP NSTRUCTIONSET

Id
Operation Load 32-bit word from local variable
Opcode 11101101
Data ow stackvp+ opdl! A
A! B
B! stacKsp+ 1]
sp+ 1! sp

JVM equivalent aload, iload, fload

Description The local variable at positioapd is pushed onto the operand
stack.opdis taken from the bytecode instruction stream.

ldsp
Operation Load stack pointer
Opcode 11110000
Data ow sp! A
A! B
B! stacKsp+ 1]
sp+ 1! sp

JVM equivalent

Description The stack pointer is pushed onto the operand stack.

C JOP NSTRUCTIONSET 219

ldvp

Operation
Opcode

Data ow

JVM equivalent

Description

Idjpc

Operation
Opcode

Data ow

JVM equivalent

Description

Load variable pointer
11110001

vp! A

Al B

B! stacksp+ 1]
sp+ 1! sp

The variable pointer is pushed onto the operand stack.

Load Java program counter
11110010

jpc! A

Al B

B! stacksp+ 1]
sp+ 1! sp

The Java program counter is pushed onto the operand stack.

220 C JOP NSTRUCTION SET
|d_opd.8u
Operation Load 8-bit bytecode operand unsigned
Opcode 11110100
Data ow opd! A
A! B
B! stacKsp+ 1]
sp+ 1! sp

JVM equivalent

Description

|d_opd.8s

Operation
Opcode

Data ow

JVM equivalent

Description

A single byte from the bytecode stream is pushethtasonto
the operand stack.

Load 8-bit bytecode operand signed
11110101

opd! A

A! B

B! stacKsp+ 1]
sp+ 1! sp

(bipush)

A single byte from the bytecode stream is sign-extended to an
int and pushed onto the operand stack.

C JOP NSTRUCTIONSET

221

ld_opd.16u

Operation
Opcode

Data ow

JVM equivalent

Description

|d_opd.16s

Operation
Opcode

Data ow

JVM equivalent

Description

Load 16-bit bytecode operand unsigned
11110110

opd.16! A

Al B

B! stacKsp+ 1]
sp+ 1! sp

A 16-bit word from the bytecode stream is pusheéhasonto
the operand stack.

Load 16-bit bytecode operand signed

11110111
opd.16! A
Al B

B! stacKsp+ 1]
sp+ 1! sp
(sipush)

A 16-bit word from the bytecode stream is sign-extended to
anint and pushed onto the operand stack.

222 C JOP NSTRUCTIONSET

dup
Operation Duplicate the top operand stack value
Opcode 11111000
Data ow Al B
B! stacksp+ 1]
sp+ 1! sp

JVM equivalent dup

Description Duplicate the top value on the operand stack and push it onto
the operand stack.

D Bytecode Execution Time

Table D.1 lists the bytecodes of the JVM with their opcodegmanics, the imple-
mentation type and the execution time on JOP. In the impléatien columnhw
means that this bytecode has a microcode equivaienimeans that a microcode se-
guence implements the bytecodayvameans the bytecode is implemented in Java,
and a "-' indicates that this bytecode is not yet implementear bytecodes with a
variable execution time the minimum and maximum values a@ng

Opcode Instruction Implementation Cycles
0 nop hw 1
1 aconstull hw 1
2 iconstml hw 1
3 iconst0 hw 1
4 iconstl hw 1
5 iconst2 hw 1
6 iconst3 hw 1
7 iconst4 hw 1
8 iconst5 hw 1
9 Iconst0 mc 2

10 Iconstl mc 2
11 fconstO -

12 fconstl -

13 fconst2 -

14 dconstO -

15 dconstl -

16 bipush mc 2
17 sipush mc 3
18 Idc mc 3+r
19 Idcw mc A+r
20 ldc2w?° mc 8+2*r
21 iload mc 2
22 lload mc 11

Table D.1: Implemented bytecodes and execution time in cycles

224 D BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles
23 oad mc 2
24 dload mc 11
25 aload mc 2
26 iloadO hw 1
27 iload1l hw 1
28 iload2 hw 1
29 iload3 hw 1
30 lloadO mc 2
31 lload1l mc 2
32 lload2 mc 2
33 lload3 mc 11
34 oad.O hw 1
35 oad.l hw 1
36 oad.2 hw 1
37 oad.3 hw 1
38 dload0 mc 2
39 dloadl mc 2
40 dload2 mc 2
41 dload3 mc 11
42 aloadO hw 1
43 aloadl hw 1
44 aload2 hw 1
45 aload3 hw 1
46 iaload® mc 19+2%
47 laload -

48 faload® mc 19+2%
49 daload -

50 aaloatf mc 19+2*r
51 baload® mc 19+2%
52 caload® mc 19+2*r
53 saloaff mc 19+2%
54 istore mc 2
55 Istore mc 11
56 fstore mc 2
57 dstore mc 11
58 astore mc 2

Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 225

Opcode Instruction Implementation Cycles
59 istore0 hw 1
60 istorel hw 1
61 istore2 hw 1
62 istore3 hw 1
63 Istore0 mc 2
64 Istorel mc 2
65 Istore2 mc 2
66 |Istore3 mc 11
67 fstoreO hw 1
68 fstorel hw 1
69 fstore2 hw 1
70 fstore3 hw 1
71 dstore0 mc 2
72 dstorel mc 2
73 dstore2 mc 2
74 dstore3 mc 11
75 astore0 hw 1
76 astorel hw 1
77 astore2 hw 1
78 astore3 hw 1
79 iastoré® mc 22+r+w
80 lastore -

81 fastoré® mc 22+r+w

82 dastore -

83 aastor® mc 22+r+Ww

84 bastor® mc 22+r+w

85 castor® mc 22+r+w

86 sastor® mc 22+r+w

87 pop hw 1
88 pop2 mc 2
89 dup hw 1
90 dupxl mc 5

91 dupx2 -

92 dup2 mc 6
93 dup2xl -

94 dup2x2 -

Table D.1: Implemented bytecodes and execution time in cycles

226

D BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles
95 swap -
96 iadd hw 1
97 ladd Java
98 fadd Java
99 dadd -
100 isub hw 1
101 Isub Java
102 fsub Java
103 dsub -
104 imul mc 35
105 Imul -
106 fmul -
107 dmul -
108 idiv Java
109 Idiv -
110 fdiv -
111 ddiv -
112 irem Java
113 Irem -
114 frem -
115 drem -
116 ineg mc 4
117 Ineg Java
118 fneg -
119 dneg -
120 ishl hw 1
121 Ishl -
122 ishr hw 1
123 Ishr -
124 iushr hw 1
125 lushr Java
126 iand hw 1
127 land -
128 ior hw 1
129 lor -
130 ixor hw 1
Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 227

Opcode Instruction Implementation Cycles
131 Ixor Java
132 iinc mc 11
133 2l Java
134 i2f -
135 i2d -
136 12i mc 3
137 12f -
138 I2d -
139 f2i -
140 f2l -
141 f2d -
142 da2i -
143 d2l -
144 d2f -
145 i2b -
146 i2c mc 2
147 i2s -
148 Icmp Java
149 fcmpl -
150 fcmpg -
151 dcmpl -
152 dcmpg -
153 ifeq mc 4
154 ifne mc 4
155 it mc 4
156 ifge mc 4
157 ifgt mc 4
158 ie mc 4
159 ifiicmpeq mc 4
160 if.iicmpne mc 4
161 ifiicmplt mc 4
162 if.iicmpge mc 4
163 ifiicmpgt mc 4
164 ifiicmple mc 4
165 if.acmpeq mc 4
166 if.acmpne mc 4

Table D.1: Implemented bytecodes and execution time in cycles

228 D BYTECODEEXECUTION TIME

Opcode Instruction Implementation Cycles
167 goto mc 4
168 jsr -
169 ret -
170 tableswitch© Java
171 lookupswitch’* Java
172 ireturd’? mc 15+r+b
173 Ireturd’® mc 17+r+b
174 freturit’? mc 15+r+b
175 dreturA’3 mc 17+r+b
176 areturh’® mc 15+r+b
177 returd’’ mc 13+r+b
178 getstatic mc 4+2*r
179 putstatic mc 5+r+w
180 geteld mc 10+2%r
181 puteld mc 13+r+w
182 invokevirtuat®? mc 78+4*r+b
183 invokespeciaf® mc 58+3*r+b
184 invokestatit33 mc 58+3*r+b
185 invokeinterfack® mc 84+6*r+b
186 unusetha -
187 new?’ Java
188 newarralf® mc 124w
189 anewarray Java
190 arraylength mc 2+r
191 athrow -
192 checkcast -
193 instanceof -
194 monitorenter hw 9
195 monitorexit hw 10/11
196 wide -
197 multianewarray -
198 ifnull hw 4
199 ifnonnull hw 4
200 gotaw -
201 jstw -
202 breakpoint -

Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 229

Opcode Instruction Implementation Cycles

203 reserved -
204 reserved -
205 reserved -
206 reserved -
207 reserved -
208 reserved -

209 jopsysrd mc 3
210 jopsyswr mc 3
211 jopsysrdmem mc r
212 jopsyswrmem mc w+1
213 jopsysrdint mc 8
214 jopsyswrint mc 8
215 jopsysgetsp mc 3
216 jopsyssetsp mc 4
217 jopsysgetvp hw 1
218 jopsyssetvp mc 2
219 jopsysint2exf® mc 12+n*(19+w)
220 jopsysext2inf?® mc 12+n*(19+w)
221 jopsysnop mc 1

222 reserved -
223 reserved -
224 reserved -
225 reserved -
226 reserved -
227 reserved -
228 reserved -
229 reserved -
230 reserved -
231 reserved -
232 reserved -
233 reserved -
234 reserved -
235 reserved -
236 reserved -
237 reserved -
238 reserved -

Table D.1: Implemented bytecodes and execution time in cycles

230 D BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles

239 reserved -
240 sysint Java
241 reserved -
242 reserved -
243 reserved -
244 reserved -
245 reserved -
246 reserved -
247 reserved -
248 reserved -
249 reserved -
250 reserved -
251 reserved -
252 reserved -
253 reserved -
254 reserved -
255 reserved -

Table D.1: Implemented bytecodes and execution time in cycles

D BYTECODE EXECUTION TIME 231

The bytecodes that access memory are indicated by@ra memory read and an
w for a memory write at the cycles column. The cycles for the mgnaccess have
to be added to the execution time. These two values are ingpirtion dependent
(clock frequency versus RAM access time, data bus widtim)the Cyclone EP1C6
board with 15ns SRAMs and 100MHz clock frequency these gadue both 6 cycles
(3 cycles for the memory access and 3 cycles due to pipelilzggle The memory
access time for the bytecode loads 3 clock cycles for this board.

For some bytecodes, part of the memory latency can be hidgexdzuting mi-
crocode during the memory access. However, these cyclesrdgrbe subtracted
when the memory access timedr w) is longer than 4 cycles. The exact execution
time with the subtraction of the saved cycles is given in triote.

On a method invoke or return the bytecode has to be loadedtlietocache on a

20 . r 2 :r 6
The exact value is8r + 4 - r<6
6 . r 2 :r 6
The exact value is 191+ .
4 . r<6
9The exactvalue is 22 | 2 ! © w
4 . r<6

170 apleswitch execution time depends to a great extent on the caching cbtinesponding Java method
or the memory transfer time for the method.

Iookupswitch execution time depends to a great extent on the caching ofdtresponding Java
method or the memory transfer time for the methiodkupswitch also depends on the argument as
it performs a linear search in the jump table.

172The exact value is: 15 i :< ; s P g : E< g
173The exact value is: 15 j :< ; s P 3 : E< g
177The exact value is: 18 ' j : ;< ; s P S E< ;
182The exact value is: 782r + Z :<; ! i :<2 s P 33 ng
183The exact value is: 581+ i :<; ! i :<g £ P 33 E< gg
185The exact value is: 84 4r+ j :<; ! i ;<g ° 38 E<§g

187hew execution time depends to a great extent on the caching afditesponding Java method or
the memory transfer time for the methadkw also depends on the size of the created object as the
memory for the object is lled with zeros.

188The time to clear the array is not included.

w8 1w 12). nis the number of words transferred.
4 w< 12

w 10 : w 14

4 : w<14

219The exact value is 12 n(19+

220The exact value is 12 n(19+). nis the number of words transferred.

232 D BYTECODE EXECUTION TIME

cache miss. The load tinteis:

2+(n+1)a : cache miss

b= 0 : cachhit

with n as the length of the method in number of 32-bit words. Fortshmathods
the load time of the method on a cache miss, or part of it, iddridby microcode
execution. The exact value is given in the footnote.

E Benchmark Results

JOP [eJOS TINI Komodo JStamp
Frequency [MHZz] 100 16 40 33 73.728
iload iadd 49,344,000 19,140 50,724 4,111,569 1,934,642
iinc 9,078,000 37,925 103,044 8,318,030 1,789,378
Idc 10,010,000 11,941 35,463 825,446 1,101,445
if icmplt taken 16,644,000 9,941 31,629 1,372,264 1,747,626
if icmplt not taken 16,710,000 10,529 33,032 1,375,754 1338,
geteld 4,002,000 8,515 16,684 687,877 518,071
getstatic 5,874,000 9,547 8,962 412,723 723,155
iaload 3,328,000 14,787 25,924 1,180,501 992,969
invoke 781,935 3,362 6,159 85,874 211,406
invoke static 989,222 4,129 6,815 48,510 271,933
invoke interface 684,896 3,141 5,885 20402 138,847
Sieve 4,286 7 15 627 564
K 14,222 25 64 924 2,221
UDP/IP 6,050 13 29 520 1,004
geom. Mean App 9,276 18 43 693 1,493
geom. Mean App/MHz 79 1 1 21 20

Table E.1: Raw data of all benchmarks in [iterations/s] I.

234 E BENCHMARK RESULTS

Sale EJC Sun jvm acj Xint
Frequency [MHZz] 103 74 266 266 266
iload iadd 12,710,000 72,315,000 84,307,000 248,551,0005,368,000
iinc 9,320,000 36,002,000 296,941,000 88,069,000 1220928
Idc 11,275,000 23,967,000 132,626,000 8,719,000
if _icmplt taken 5,652,000 35,925,000 128,561,000 86,480,0007,449,000
if _icmplt not taken 7,281,000 71,697,000 246,723,000 89, 7,206,000
geteld 4,433,000 7,212,000 90,687,000 122,016,000 6(BEB
getstatic 6,786,000 17,962,000 86,703,000 241,398,000 70000
iaload 7,854,000 5,966,000 65,536,000 23,967,000 8,062,0
invoke 894,689 1,703,000 10,022,000 20,092,000 1,458,381
invoke static 1,084,359 309,132 270,600,000 7,898,000 201663
invoke interface 674,759 1,598,000 10,010,000 5,588,000 ,3811523
Sieve 3,972 9,475 52,681 39,432 6,601
K 14,148 9,893 212,952 139,884 17,310
UDP/IP 6,415 2,822 91,851 38,460 8,747
geom. Mean App 9,527 5,284 139,857 73,348 12,305
App/MHz 92 71 526 276 46

Table E.2: Raw data of all benchmarks in [iterations/s] Il.

E BENCHMARK RESULTS

235

Memory access time

Type Size MBIB MTIB SRAM SDRAM DDR
Prefetch buffer 8B 1.37 0.342 1.02 2.05 1.71
Single method cache 1KB 232 0.021 1.18 0.69 0.39
Two block cache 2KB 1.21 0.013 0.62 0.37 0.21
Four block cache 4KB 0.90 0.010 0.46 0.27 0.16
Direct-mapped 8 bytes 1KB 0.28 0.035 0.18 0.25 0.19
Direct-mapped 16 bytes 1KB 0.38 0.024 0.22 0.22 0.16
Direct-mapped 32 bytes 1KB 058 0.018 0.31 0.24 0.15
Direct-mapped 8 bytes 2KB 0.17 0.022 0.11 0.15 0.12
Direct-mapped 16 bytes 2KB 0.25 0.015 0.14 0.14 0.10
Direct-mapped 32 bytes 2KB 041 0.013 0.22 0.17 0.11
Direct-mapped 8 bytes 4KB 0.00 0.001 0.00 0.00 0.00
Direct-mapped 16 bytes 4KB 0.01 0.000 0.00 0.00 0.00
Direct-mapped 32 bytes 4KB 0.01 0.000 0.00 0.00 0.00
Variable block cache 8 blocks 1KB 0.80 0.009 0.41 0.24 0.14
Variable block cache 16 blocks 1KB 0.71 0.008 0.36 0.22 0.12
Variable block cache 32 blocks 1KB 0.70 0.008 0.36 0.21 0.12
Variable block cache 64 blocks 1KB 0.70 0.008 0.36 0.21 0.12
Variable block cache 8 blocks 2KB 0.73 0.008 0.37 0.22 0.13
Variable block cache 16 blocks 2 KB 0.37 0.004 0.19 0.11 0.06
Variable block cache 32 blocks 2KB 0.24 0.003 0.12 0.08 0.04
Variable block cache 64 blocks 2KB 0.12 0.001 0.06 0.04 0.02
Variable block cache 8 blocks 4KB 0.73 0.008 0.37 0.22 0.13
Variable block cache 16 blocks 4KB 0.25 0.003 0.13 0.08 0.05
Variable block cache 32 blocks 4KB 0.01 0.000 0.00 0.00 0.00
Variable block cache 64 blocks 4 KB 0.00 0.000 0.00 0.00 0.00

Table E.3: Cache performance in MBIB and MTIB of all variations of the threl
cache and a conventional direct-mapped cache. Average merooess
time per instruction byte for three different main memorghieologies.
Memory access times are in clock cycles.

F Cyclone FPGA Board

Figure F.1: Top and bottom side of the Cyclone FPGA board

238

F CvcLoNE FPGA BoARD

UCCINT

ucc

CiRA cs5 IC1RB Ics
RarA_ne (64 L1 e RAMB_AD | -232 L1 ne
RarieAl 158 2 a RAMB_AL |23 2~
e 2 w2 S 2 w2
Rara A3 (22 2 a3 RAMB_A3 222 e IE
RAMA_A4 A4 RAMB_A4 A4
RAMA_A5 (187 18 1 a5 RAMB_A5 134 18 | a5
RArA_As [LL2 19 1 og RAMB_As |18 19 { ag
rarA_A7 (LS 2 RAMB_A7 |18 2 1 ¢7
RAMA_Ag [LLZ 21 1 ng RaMB_As |84 2L 1 as
Rara_As (H12 21 ns RArB_Ag (182 221 s
G 221 nie Rare_dle (22 2| aie
RAMA_A1L (e 21 A RAre A1l |HE2 2 it
RAMA_AL2 A2 RAMB_A12 12
RAMA_AL3 |28 26 | w3 RAMB_ALS |23 28 1 a13
RarA_Al4 128 27 | piq RAMB_A14 LS 22 1 i
RAnA_AIS L 22 | mis RAMB_A1s |24 12 1 ris
RANA_AlE |2 1 fies RAMB_Als |-236 SE
RaMA_Al7 |83 At iz RAMB_A17 |-238 SR Ve
U 2 oae RArB_D8 (212 2 oae
RAMA_DI nat RAMB_DI nat
RaMA_D2 |85 S 1 paz RAMB_D2 |25 S 1 paz
ReMA_D3 |28 18 1 pas RAMB_D3 |23 18 | pa3
rarA D4 34 13 1 pas RAMB_D4 |-282 13 { pas
RAnA_DS (38 14 1 pas RAMB_D5 |-283 14 { pas
RAMA_Ds (128 15 1 pas RAMB_Ds |22 15 {1 pae
Rate D7 (123 181 ooy Rare 07 32 16 ooz
Rarie Dg (L2 221 o8 RAMB_Dg |22 22| oas
RAMA_DS nas RAMB_DS nas
RAMA_DID |22 SIS RAMB_Die | 225 3L 1 pate
RAMA_DI1 |22 32 | patt RAMB_DI1 228 32 1 patt
RanA_D12 |22 35 | parz rare DIz |24 35 1 paiz
RAnA_DI3 |22 3¢ | pais RAMB_DI3 |28 3¢ 1 pai3
RANA_DI4 |23 32 | pare RAMB_DI4 |-2L8 32 1 pai4
RAMA_DIS |2 38 | pais RAMB_DIS |-222 38 1 pais
Rare_Ncs |22 o vee RarB_Ncs |22 = nes vee |
RAMA_NOE NOE uce |22 RAMB_NOE NOE uce |22
RAMA_NUE |-L85 17 1 \uE RAMB_NWE |-L3S 12 | e
RAMA_NLE [-ZZ 39 | s oNp L2 RAMB_NLE [-224 S 1 s onp [L2
RAMA_NUE [-22 4 { wus ono |2 RAMB_NUB [-226 18 1 \us onp [3
CYCLONE RAM256KX16T CYCLONE RAM256KX16T
=
z
5]
()
= >
=z
%)
icz 54
L1
s 4 VIN Su 3 4u7 1000 |In
5 4u7
=7 RUN UoUT c1s
<1 2 GND GND
MODE ©ND =
LT3405A-1.5 C1PON
‘ 121 oo vee |5
_L 21 oo vee |22
22 { oo uee 2L
GND 8 S | gup vce |-18%
> ZL 1 enp vce 288
3 82 1 Gnp vee |28t
Q2 83 | onp vce |39
[S BC887-165MD st | &wo A g
= 2¢ L onp vee |22
[a4
122 { onp vee |22
aQ 188 1 Gnp uee |22
B = UL 1 6np vce L2
= 125 | gp
3 142 L onp vceint |22
Df \ 11% GND UCCINT %ﬂl&ﬁ:w
22 { onp UcCINT |42
1221 oo vecinT (8L
122 e UCCINT (22
25 | onp UCCINT
~ 218 1 gyp UCCINT |1@3
22 1 onp UCCINT |18
22L 1 onp uccinT [
238 1 oo UCCINT [228
232 1 oo uccINT 224
22 oo veeint (24
2 oo vecinT (222
3Lt enp UCCINT
158 1 enp
CYCLONE
Date: 20,08, 2003 13:48: 46 Uer.: ccd304
TITLE: cycore Sheet: 1/3

Figure F.2:

Schematic of the Cyclone FPGA board, page 1

F CvycLoNE FPGA BoARD

239

ICIFL c4 1c3
—Do 46 {r ppori_pe |2 fa 28 { g 1/00 |2 Da 25 | pae
DL S L T P 28 fl 1B 1a o |22 DL 38 | pat
D2 Ty ple 2 & 18 1 102 |2 D 31 pa2
D315 L r T3 Filag |22 a 12163 1/03 -2 D 22 { pa3
—D416% { £\ Tpg plips |25 a4 16 1 a4 1/04 |25 D4 1 pas
—D5 17 { F\Tps FLips |27 a5 15 1 a5 1/08 |22 05 42 1 oas
4[15% FL_D6 FL_f 1213 £5 1"3 As 1/06 gg D& 343 Das
D2 18 { F7p7 FLiA7 & w7 1/07 o D@7
Fl_ns |18 & 3| rs
Fl_ps |8 a9 2 | a9 S | nee
- 20 Al 31 is
FL_A10 aLe NIE
FLoAll |2 SN L1 ann 8 { NRE
- 135 AL 2 a1 12
FLirz 3 a2 cLe uee 2
FL_AL3 Al 21 aa Al 17 1A uce |32
FL a1e |44 fid 51 pia 3
- 137 a15 11 SA 19 13
FL_P15 A5 NP oNo [L3
FL_pre 132 £l 18 1 a6 oND [-26
- 143 Al 3 7 6
FL_p17 a7 RDY oND f-6-
FL_pis [HH al S | s)
15 z
FL_NWE LEN
FL_NOE g;’ gé 0E\ 3
FL_NCS CSIN =
FL_NCS2 gg FLASH512K
FL_RDY ”
v
CYCLONE o=
™ N
™ AV v
o TR TY
(@]
>
1c2
B 23 1 qg pe |-25-Da
GND AL 18 |y pp 3t nL
ol fviol A2 22 | f 0> |22 D2
ar=aT= X1 A 20 | (3 05 2203
a4 1o | | 36 D4
TCK/DCLK o 01 |32
TDO/CONF_D 58— a5 o5 (2508 —
TMS/NCONF e84 rs 06 [SiRe—
NSTAT 21 w7 o7 (2B-Dz
TDI/DATAG 831 s .
uig Aﬁﬁ;ﬁ As oI %
uce ASLBT IST) TD0 %&Hﬂlﬂ
GND Am—‘;B ALl ™S %ﬁs—
GND _Al2 S5 | 45 Tok |26ICK
A1 43 | fi5
GND BYTEBLST _Al4 2 | ajg vce
2153 1 a5 vee 4
e €1 nis uee (22
_Alz 44 | a5 uce 4L
gf NCONFIG GND %
- 5| covroone o S
4 Juce NEASLL 19 { pata oD |36
3 CLK 37
= LK
R NRESET 28" NRESET
2 oo ¥ our
CONFIG
0SCI
ICIMISC
152 178 SFR_TXD
LK SER_TXD -
o Hnieée | o SER_NRTS |LZZ SER_NRTS
153 SER_RXD
3] ” SER_RXD (2 |
o > FREEIO SER_NCTS [-28 SER_NCTS
o
> 245, MSEL1
T nseLe
25 nstatUs
NCONFTG
CONF_DONE 145 | conr DoNe
10k 35 { beik o1 (435 ICHAIN
NCE Too 49100
32 | \ceEn ™S |L48 TMS
25 147 TCK
DATAB TeK
IC9 GND CYCLONE
uce
JMR/RESET L NRESET GND
DT
GND
MAX823
Date: 20,08, 2003 13:48: 46 Uer.: ccd304
TITLE: cycore Sheet: 2/3

Figure F.3: Schematic of the Cyclone FPGA board, page 2

240 F CvcLoNE FPGA BoARD

o olaolg
fam2rpoRE 262
ERREIRRETERE
ool 5 o]l | 0| 0]] | o
el AL RIS AISININ
KR
. DN =N -
o |2 10_p1 |26 e
= SNm v _
[y = 21 o1 ReE EEE 10_R2 |25 39 1 o
L2 3 1012 222 2989 10R3 (=21 P s
L3 2 100 10Rt (03— Re
L =5 2 104 10Rs [Z8—22 s
Ls % £ 10115 10_Ré B re
s |2 o 10Ls 110 P o
L7 10_L7 10_R7 R?
Ls |8 e TR 10_R8 [L€Z 46 1 pg
Le L 121 10ls 1o_pg (€3 31 rs
Lie 10_L10 10_R10 R1D
oD 2 10_r11 6L =
B 38 | 1o i ro_Riz (468 50 | p;
15 39 - - 159 51
L12 10_L12 [10_RI3 R13
16 41 CYCLONE 52
L13 10_L13 GND
17 42 149 53
L14 10_L14 [0_R14 R14
18 43 138 54
L5 10_L15 [10_RIS RIS
l1s |3 53 1 10 L1 1o_pte |36 55 1 nig
L7 |22 54 1 10_L17 ro_r17 (3% 26 1 riz
_ o 10|
O |2t 55 | 1070ig «Nm voen o0 gThg 182 57 | Ajg
15 (22 56 f os oot A0SR B0% gy (128 SR
23 7 LIS o0 dgoo ogg 0 156 59
Lo |52 10120 === =S=5 SRS 10R20 25| R20
enD 224 S8 1 Gno
P S I N P I e
10)] N[\g| || o N o
MODULECON 171 1

ciea

c27 [o.
U+

lgon 3 | . _

&
u-
o8 4 c2+ C30

5
Teon 2=

SER_TXD 11 | 11y mour |LAIXD

SER_NRTS 18 | 151y T1pour |—2ZNRIS

SER RXD 12 | pigyt RN |LBRXD

SER_NCTS S | pogyt p2in |-8NCTS
MAX3232

2

ucc

- >

@
=4
S

Date: 20. 08,2003 13:48: 46 Uer.: cc0304
TITLE: cycore Sheet: 3/3

Figure F.4: Schematic of the Cyclone FPGA board, page 3

November 29 1966
1973-1976

1976 — 1980

1980 - 1986

May 1986

1986 — 1994

1986 — 1987
1987 -1991
1992 - 1994

since 1994

1993 - 2000

November 1994
1996
Summer 1999

June 2000

since 2000

Curriculum Vitae

Martin Sch 6berl

Born in St. Polten, Austria
Elementary School in St. Polten
Comprehensive Secondary School in St. Polten

Engineering School for Communications Enginger
and Electronics in St. Polten
School leaving examination with distinction

Studies of Computer Science at the
Vienna University of Technology

Software engineer at
SYSGRAPH Computergraphik GmbH
Software engineer at
COIN Computerentwicklungen GmbH
Software engineer at
Wirtschafts- und Sozialwissenschaftliches Rechenzemtru
Self-employed with projects in automation
and supervision for EVN, Balfour Beatty afiBB

Studies of Jazz guitar at the
Prayner and Gustav Mahler Conservatory, Vienna

Master's Degree in Computer Science
Civil Service in Vienna
Studies of Jazz guitar at the
Berklee College of Music, Boston, USA
Conservatory Diploma in Jazz guitar at the

Gustav Mahler Conservatory, Vienna

PhD Studies of Computer Science at the
Vienna University of Technology

	Introduction
	Justification for Development
	Embedded Real-Time Systems
	Research Objectives and Contributions
	Outline of the Thesis

	Java and the Java Virtual Machine
	Java
	History
	The Java Programming Language

	The Java Virtual Machine
	Memory Areas
	JVM Instruction Set
	Methods
	Implementation of the JVM

	Summary

	Related Work
	Hardware Translation and Coprocessors
	Hard-Int
	DELFT-JAVA Engine
	JIFFY
	Jazelle
	JSTAR, JA108
	A Co-Designed Virtual Machine

	Java Processors
	picoJava
	aJile JEMCore
	Cjip
	Ignite, PSC1000
	Moon
	Lightfoot
	LavaCORE
	Komodo
	FemtoJava

	Additional Comments
	Research Objectives

	Restrictions of Java for Embedded Real-Time Systems
	Java Support for Embedded Systems
	Issues with Java in Embedded Systems
	Java Micro Edition
	Connected Limited Device Configuration (CLDC)
	Connected Device Configuration (CDC)
	Additional Specifications
	Discussion

	Real-Time Extensions
	Real-Time Core Extension
	Discussion of the RT Core
	Real-Time Specification for Java
	Discussion of the RTSJ
	Subsets of the RTSJ
	Extensions to the RTSJ

	Summary

	JOP Architecture
	Benchmarking the JVM
	Bytecode Frequency
	Methods Types and Length
	Summary

	Overview of JOP
	Microcode
	Translation of Bytecodes to Microcode
	Compact Microcode
	Instruction Set
	Bytecode Example
	Flexible Implementation of Bytecodes
	Summary

	The Processor Pipeline
	Java Bytecode Fetch
	JOP Instruction Fetch
	Decode and Address Generation
	Execute
	Interrupt Logic
	Summary

	An Efficient Stack Machine
	Java Computing Model
	Access Patterns on the Java Stack
	Common Realizations of a Stack Cache
	A Two-Level Stack Cache
	Resource Usage Compared
	Summary

	HW/SW Codesign
	Real-Time Predictability
	Interrupts
	Task Switch
	Architectural Design Decisions
	Summary

	A Time-Predictable Instruction Cache
	Cache Performance
	Proposed Cache Solution
	WCET Analysis
	Caches Compared
	Summary

	JOP Runtime System
	A Real-Time Profile for Embedded Java
	Application Structure
	Threads
	Scheduling
	Memory
	Restriction of Java
	Implementation Results

	User-Defined Scheduler
	Schedule Events
	Data Structures
	Services for the Scheduler
	Class Scheduler
	Class Task
	A Simple Example Scheduler
	Interaction of Task, Scheduler and the JVM
	Predictability
	Related Work
	Summary

	JVM Architecture
	Runtime Data Structures

	Results
	Hardware Platforms
	Resource Usage
	Performance
	General Performance
	Real-Time Performance

	WCET
	Microcode Path Analysis
	Microcode Low-level Analysis
	Bytecode Independency
	WCET of Bytecodes
	Evaluation

	Applications
	Motor Control
	Further Projects

	Summary

	Conclusions
	Conclusions
	Summary of Contributions
	Future Research Directions

	Publications
	Acronyms
	JOP Instruction Set
	Bytecode Execution Time
	Benchmark Results

