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Abstract

Compared to software development for desktop systemserdusoftware design
practice for embedded systems is still archaic. C/C++ and agsembler are used on
top of a small real-time operating system. Many of the bemefilava, such as safe
object references, the notion of concurrency as a firsedisyuage construct, and
its portability, have the potential to make embedded systemch safer and simpler
to program. However, Java technology is seldom used in eddokslystems, due to
the lack of acceptable real-time performance.

This thesis presents a Java processor designed for tindésfadele execution of
real-time tasks. JOP (Java Optimized Processor) is theemmattation of the Java
virtual machine in hardware. JOP is intended for applicatim embedded real-time
systems and the primary implementation technology is inld fibgrammable gate
array. This research demonstrates that a hardware imptatizenof the Java virtual
machine results in a small design for resource-constraieeites.

Architectural advancements in modern processor designease average perfor-
mance with features such as pipelines, caches and brardibtfme. However, these
features complicate worst-case execution time (WCET)yaimland lead to very
conservative WCET estimates. This thesis tackles thisl@nolirom the architec-
tural perspective — by introducing a processor architedtuwhich simpler and more
accurate WCET analysis is more important than average eas@mance.

This thesis evaluates the issues surrounding the use afesthdava for real-time
applications. In order to overcome some of the issues withdstrd Java, a profile
for real-time Java is defined. Tight integration of the ri@le scheduler with the
supporting processor result in an efficient platform foralavembedded real-time
systems.

The proposed processor and the Java real-time profile haveused with success
to implement several commercial real-time applications.






Kurzfassung

Eingebettete Systeme werden zur Zeit vorwiegend in C/C+er @dich noch in
Assembler programmiert. Viele Vorteile der Programmisaspe Java, wie z.B.
sichere Objektreferenzen, die Notation von Nebenlauiigheler Sprache und auch
die Portabilitat der Sprache, konnten die Entwicklungsdr Systeme vereinfachen
und auch die Sicherheit dieser Systeme erhdohen. Jedociment die mangelnde
Echtzeitfahigkeit von Standard Java den Einsatz in eietjeten Systemen.

Diese Arbeit beschreibt den Entwurf eines echtzeitfahigava Prozessors. JOP
(Java Optimized Processor) ist die Realisierung der Jawaalimachine in Hard-
ware. JOP ist fur den Einsatz in eingebetteten, ech&egén Systemen entworfen
und istin einem ‘Field Programmable Gate Array’ implemeritiDiese Arbeit zeigt,
dass eine Hardwarerealisierung der Java virtual machirernam kleinen System
fuhrt, das auch fur Applikationen mit rigiden Ressousthrankungen geeignet ist.

Moderne Prozessoren weisen Architekturmerkmale auf (wBe Rarallelverar-
beitung, Cachespeicher und Sprungvorhersage), die \@nalle durchschnittliche
Rechenleistung erhohen. Diese Architekturmerkmaleherscen jedoch die ‘Worst-
Case Execution Time’ (WCET) Analyse und fuhren zu pesgistsen WCET Ab-
schatzungen. Diese Arbeit geht einen anderen Weg — Es imedPeozessorarchitek-
tur vorgestellt, fur die eine einfache und genauere WCE&lyse wichtiger ist als
die durchschnittliche Rechenleistung.

Diese Arbeit untersucht die Probleme, die sich bei der Vadueg von Java in
Echtzeitsystemen ergeben. Standard Java wird um einefi8pgan fur Echtzeit-
systeme erweitert. Die Integration des echtzeitfahigeme8ulers mit dem Prozessor
fuhrt zu einer effizienten Plattform fur Java in eingebteth Echtzeitsystemen.

Der vorgestellte Prozessor und die Spezifikation fur egtitthiges Java wurden
erfolgreich in mehreren kommerziellen Echtzeitsystemnmingesetzt.
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1 Introduction

This thesis introduces the concept of a Java processor foedded real-time sys-
tems, in particular the design of a small processor for nessaonstrained devices
with time-predictable execution of Java programs. ThisJaecessor is called JOP
— which stands for Java Optimized Processor —, based on shenation that a full
native implementation of all Java bytecode instructionsotsa useful approach.

1.1 Justification for Development

To justify Java’s use in embedded real-time systems we drtmtea document pub-
lished by the National Institute of Standards and Techno[dg@]:

e Java’s higher level of abstraction allows for increasedjmmmer productivity
(although recognizing that the tradeoff is runtime efficign

e Java is relatively easier to master than C++

e Java is relatively secure, keeping software componentdu@ing the JVM
itself) protected from one another

e Java supports dynamic loading of new classes
e Java is highly dynamic, supporting object and thread weadt runtime
e Java is designed to support component integration and reuse

e The Java technologies have been developed with carefuidawaton, erring
on the conservative side using concepts and techniquebdliatbeen scruti-
nized by the community

e The Java programming language and Java platforms suppmitatpn porta-
bility

e The Java technologies support distributed applications

e Java provides well-defined execution semantics
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Based on the NIST document, the Real-Time for Java Expedspdras published
the Real Time Specification for Java (RTSJ) [8] to add reaktextensions to Java.

Despite the above, to date Java is rarely used in embeddeithmeasystems. High
resource requirements for the Java virtual machine andedigiable real-time be-
havior are the main issues surrounding the use of Java foeddelol systems. This
thesis addresses both issues, and the proposed Java pronakes a strong case for
the use of Java in embedded systems.

1.2 Embedded Real-Time Systems

An embedded system is a special-purpose computer systers thart of a larger
system or machine. An embedded system is designed to pegfaranrow range of
functions with no, or minimal user intervention.

Since many embedded systems are produced in large quantite need to re-
duce costs is a major concern. Embedded systems often lggifécsint energy con-
straints, and many are battery-powered. As a result of tbesstraints, embedded
systems use a slow processor and small memory size to maicoizts and energy
consumption.

Embedded systems interact with the environment and oftes tiogproduce output
within a given timeframe. Therefore, most embedded systmmseal-time systems.
Here is a general definition of a real-time system (John Ani&tac [88]):

In real-time computing the correctness of the system depantonly
on the logical result of the computation but also on the titngtach the
result is produced.

However, it should be noted that ‘real-time’ does not meaally fast’. In pure
real-time systems (i.e. without non real-time tasks), ghisrno additional value in
producing results earlier than required.

Embedded real-time systems often have to handle concuasgkd, such as com-
munication, calculating values for a control loop, useeiféce and supervision. A
natural way to handle these concurrent jobs is to model thenmdividual tasks.
These tasks are executed on a preemptive multi-taskingray&ach task is assigned
a priority and the multi-tasking system is responsible firegluling individual tasks
according to their priority.

To fulfil the time constraints for a real-time system, an appiate schedule needs
to be found. This problem was solved in the classic paper byabd Layland [61]
on independent periodic tasks. The optimal priority agsignt for a set of tasks
is called the rate monotonic priority order, in which a taskhva shorter period is
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assigned a higher priority. If the Worst-Case Executiond{WCET) of each task
is known, the schedule is feasible and all tasks will meet theadling, if:

C Cn 1
— — << = n —
T, +- T < U(n)=n(2» —1)

where

C, = worst-case execution time tdsk
T; = period oftask
U (n) = utilization bound fom tasks.

In theory, this test is both elegant and simple. For con@gséems, two issues have
to be solved:

e There are very few systems in existence that do not requimamamication
between tasks. As a result, tasks cannot be seen as indepamdeblocking
needs to be incorporated into the schedulability analysis.

e The WCET of each task has to be known. This is not a trivial.te8knple
measurements of execution times never fully guarantee raatoralue. The
tasks therefore have to be analyzed using the correct mbtted target system.
It is almost impossible to provide an accurate and correaighof modern
processors and memory systems.

Several standard textbooks on real-time systems [51, Hdjdth the firstissue. JOP
is intended to resolve the second issue. It should be no&tdtére are a number of
scheduling approaches and schedulability tests. Howasex rule, these approaches
all assume that the WCET of each task is known.

1.3 Research Objectives and Contributions

This thesis presents a hardware implementation of the JaitgaMMachine (JVM),
targeting small embedded systems with real-time conssraifhe processor is de-
signed from the ground up for low WCET of bytecodes, in oradegite tasks low
WCET values. The following list summarizes the researcledbjes for the pro-
posed Java processor:

1The period of a periodic task is the time between consecatitigations of the task. The deadline of
the task is assumed to be at the end of the tasks period.
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Primary Objectives:
e Time-predictable Java platform for embedded real-timeéesgs
e Small design that fits into a low-cost FPGA

e A working processor, not merely a proposed architecture

Secondary Objectives:

e Acceptable performance compared with mainstream nontireal-Java sys-
tems

¢ A flexible architecture that allows different configuratsofor different appli-
cation domains

¢ Definition of a real-time profile for Java

Contributions:

JOP is a stack computer with its own instruction set, calléctaoode in this thesis.
Java bytecodes are translated into microcode instructioesquences of microcode.
The difference between the JVM and JOP is best describect dsltbwing:

The JVM is a CISC stack architecture, whereas JOP is a RIS sta
architecture.

JOP will help to increase the acceptance of Java for embeddddime systems.
JOP is implemented as a soft-core in a Field Programmable Gahy (FPGA).
Using an FPGA as the processor for embedded systems is urammrbecause of the
high costs, compared with a microcontroller. However, & tiore is small enough,
unused FPGA resources can be used to implement periphdmg FRGA, resulting
in a lower chip count and hence lower overall costs.

The thesis’ main contributions are as follows:

e The execution time for Java bytecodes can be exactly peztlintterms of the
number of clock cycles. There is no mutual dependency betwersecutive
bytecodes. Therefore, no pipeline analysis — with posaibleound timing
effects — is necessary. These properties greatly simlfylevel WCET anal-
ysis.

In order to fill the gap between processor speed and the meacogss time,
caches are mandatory. In Section 5.8, a novel way to orgamzastruction
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cache, asnethod cachgs provided. This method cache is simple to analyze
with respect to worst-case behavior and still provides atsuthial performance
gain when compared against a solution without an instrnataxche.

The proposed processor architecture results in a pretictabd high-
performance execution of real-time tasks in Java, withdw tesource
implications and unpredictability of a JIT-compiler.

e JOP is microprogrammed using a novel way of mapping bytecddemi-
crocode addresses. This mapping has zero overheads, ewamniplex byte-
codes.

A two-level stack cache, described in Section 5.5, whichtdithhe embedded
memory technologies of current FPGAs and ASICs, ensuressihexecution
of basic instructions with minimum resource requiremeht#.and spill of the
stack cache is subjected to microcode control and theréfoeepredictable.

JOP is the smallest hardware implementation of the JVM abklto date.
This fact enables low-cost FPGASs to be used in embeddednsyst€he re-
source usage of JOP can be configured to trade size agaifstnpence for
different application domains.

e The definition of standard Java does not fit hard real-timdicgifons. There-
fore, a real-time profile for Java (with restrictions) is defil in Section 6.1
and implemented on JOP. Tight integration of the scheduldrte hardware
that generates schedule events results in low latency aniitler of the task
dispatch.

In this profile, hardware interrupts are represented ascasgnous events with
associated threads. These events are subject to the cointinel scheduler and
can be incorporated into the priority assignment and sdbbiity analysis in
the same way as normal application tasks.

e One contribution made as part of this thesis is the concrapdeimentation of
the proposed architecture. The author is aware that it isisudlly considered
necessary to provide a complete implementation as parttedsast However,
it is the opinion of the author that a simulation-only apmtoavould lead to
mistakes or small glitches. By providing a concrete impletagon, we are
not only confronted with the full complexity of real-life presses, but also
with one or more major issues that would often be generougtylaoked in
a simulation. In Section 7.5, the usage of JOP in a real-wapldlication is
described.
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1.4 Outline of the Thesis

Chapter 2 provides background information on the Java progring language and
the execution environment, the Java virtual machine, fea dgplications.

The related work is presented in Chapter 3. Different hardwalutions from both
academia and industry for accelerating Java in embeddéehsysre analyzed. This
chapter concludes with the research question.

Standard Java is not suitable for the resource-constrained of embedded sys-
tems. Chapter 4 gives an overview of the different restmtiof Java for embedded
and real-time systems.

Chapter 5 is the main chapter of this thesis in which the #&chire of JOP is
described. The motivation behind different design densiis given.

A Java processor alone is not a complete JVM. Chapter 6 thescthe runtime
environment on top of JOP, including the definition of a rerale profile for Java and
a framework for a user-defined scheduler in Java.

In Chapter 7, JOP is evaluated with respect to size, perfocsnand WCET. This
is followed by a description of the first commercial real-ldaspplication of JOP.

Finally, in Chapter 8, the work undertaken is reviewed amdtiajor contributions
of this thesis are presented. This chapter concludes witlketithns for future research
using JOP and real-time Java.



2 Java and the Java Virtual Machine

Java technology consists of the Java language definitioefimitibn of the standard
library, and the definition of an intermediate instructiat with an accompanying
execution environment. This combination helps to makitge once, run anywhere
possible.

The following chapter gives a short overview of the Java @ogning language. A
more detailed description of the Java Virtual Machine (J\@jl the explanation of
the JVM instruction set, the so-called bytecodes followse &xploration of dynamic
instruction counts of typical Java programs can be founceirtiSn 5.1.

2.1 Java

Java is a relatively new and popular programming languadpe. main features that
have helped Java achieve success are listed below:

Simple and object oriented:  Java is a simple programming language that appears
very similar to C. This ‘look and feel’ of C means that prograsrs that know
C, can switch to Java without difficulty. Java provides a difiel object model
with single inheritanck

Portability: To accommodate the diversity of operating environments,J#va com-
piler generates bytecodes — an architecture neutral istiate format. To
guarantee platform independence, Java specifies the $itebasic data types
and the behavior of its arithmetic operators. A Java ingdgoy the Java vir-
tual machine, is available on various platforms to help ntakée once, run
anywhere’ possible.

Availability: Java is not only available for different operating systeitris,available
at no cost. The runtime system and the compiler can be dodetbfrom
Sun’s website for Windows, Linux and Solaris. Sophistidatievelopment
environments, such as Netbeans or Eclipse, are availatks tire GNU Public
License.

1Java hasingle inheritanceof implementation- only one class can be extended. However, a class
can implement several interfaces, which means that Javanbitiple interface inheritance
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Java Application

Java Programming Language

Java Java Class Library
Native
Interface

Java Virtual Machine

Classloader Verifier Execution

Operating System

Figure 2.1: Java system overview

Library: The complete Java system includes arich class library te@se program-
ming productivity. Besides the functionality from a C stardilibrary, it also
contains other tools, such as collection classes and a @lkitto

Built-in multithreading: ~ Java supports multithreading at the language level: the
library provides theThread class, the language provides the keyword
synchronized for critical sections and the runtime system provides noonit
and condition lock primitives. The system libraries haverbeavritten to be
thread-safe: the functionality provided by the librarigsavailable without
conflicts due to multiple concurrent threads of execution.

Safety: Java provides extensive compile-time checking, followgditsecond level
of runtime checking. The memory management model is simplejects are
created with thenew operator. There are no explicit pointer data types and
no pointer arithmetic, but there is automatic garbage ctiie. This simple
memory management model eliminates a large number of thgrgsroming
errors found in C and C++ programs. A restricted runtime remvnent, the
so-calledsandboxis available when executing small Java applications in Web
browsers.

As can be seen in Figure 2.1, Java consists of three main cenfs

1. The Java programming language as defined in [33]
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2. The class library, defined as part of the Java specificafidimplementations
of Java have to contain the library defined by Sun

3. The Java virtual machine (defined in [60]) that loads,fiesriand executes the
binary representation (theass fil§ of a Java program

The Java native interface supports functions written in €e#. This combination
is sometimes calledava technologyo emphasize the fact that Java is more than just
another object-oriented language.

However, a number of issues have hindered a broad accepifidaea. The orig-
inal presentation of Java as an Internet language led to theonteption that Java
was not a general-purpose programming language. Anothstadb was the first
implementation of the JVM as an interpreter. Execution @aJarograms wasery
slow compared to compiled C/C++ programs. Although advaités runtime tech-
nology, in particular the just-in-time compiler, have @dshe performance gap, it is
still a commaonly held view that Java is slow.

2.1.1 History

The Java programming language originated as part of a spanject to develop
software for network devices and embedded systems. In the’'8@s, Java, which
was originally known as Oak [65, 67], was created as a progriagntool for a con-
sumer device that we would today call a PDA. The device (knaa/t7) was a small
SPARC-based hardware device with a tiny embedded OS. Howteee*7 was not
issued as a product and Java was officially released in 19@5nasv language for
the Internet (to be integrated into Netscape’s browser)er@ve years, Java tech-
nology has become a programming tool for desktop applicstioveb servers and
server applications. These application domains resuttedd split of the Java plat-
form into the Java standard edition (J2SE) and the enterpdgion (J2EE) in 1999.
With every new release, the library (defined as part of thguage) continued to
grow. Java for embedded systems was clearly not an area Suimt@eested in pur-
suing. However, with the arrival of mobile phones, Sun adeEoame interested in
this embedded market. Sun defined different subsets of ddaralh have now been
combined into the Java Micro Edition (J2ME). A detailed dggon of the J2ME
follows in Section 4.3.

2.1.2 The Java Programming Language

The Java programming language is a general-purpose apjecated language. Java
is related to C and C++, but with a number of aspects omitteda & a strongly
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Type Description

boolean eithertrue or false

char 16-bit Unicode character (unsigned)
byte 8-bit integer (signed)

short 16-bit integer (signed)

int 32-bit integer (signed)

Tong 64-bit integer (signed)

float 32-bit floating-point (IEEE 754-1985)
double  64-bit floating-point (IEEE 754-1985)

Table 2.1: Java primitive data types

typed language, which means that type errors can be detatednpile time. Other
errors, such as wrong indices in an array, are checked atmeiniThe problematfc
pointerin C and explicit deallocation of memory is completely awald The pointer

is replaced by aeferencei.e. an abstract pointer to an object. Storage for an object
is allocated from the heap during creation of the object wéth. Memory is freed by
automatic storage management, typically using a garbdigetmw. The garbage col-
lector avoids memory leaks from a missifigee () and the safety problems exposed
by dangling pointers.

The types in Java are divided into two categories: primitiyges and reference
types. Table 2.1 lists the available primitive types. Melthaxal variables, class fields
and object fields contain either a primitive type value orfanence to an object.

Classes and class instances, the objects, are the funddrdatg and code orga-
nization structures in Java. There are no global variabidsirections as there are
in C/C++. Each method belongs to a class. This ‘everythirigrigs to a class or
an object’ combined with the class naming convention, agesigd by Sun, avoids
name conflicts in even the largest applications.

New classes can extend exactly one superclass. Classa®othat explicitly ex-
tend a superclass become direct subclass@bpéct, the root of the whole class
tree. This single inheritance model is extendedrgrfaces Interfaces are abstract
classes that only define method signatures and provide niennemtation. A con-
crete class can implement several interfaces. This modeides a simplified form
of multiple inheritance.

Java supports multitasking throutfireads Each thread is a separate flow of con-
trol, executing concurrently with all other threads. A twmlecontains the method

2C pointers represent memory addresses as data. Pointenetit and direct access to memory leads
to common and hard-to-find program errors.
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stack as thread local data — all objects are shared betwesadth Access conflicts
to shared data are avoided by the proper useyefchronized methods or code
blocks.

Java programs are compiled to a machine-independent ligaepresentation as
defined in [60]. Although this intermediate representai®defined for Java, other
programming languages (e.g. ADA [13]) can also be compitéal Java bytecodes.

2.2 The Java Virtual Machine

The Java virtual machine (JVM) is a definition of an abstrachputing machine that
executes bytecode programs. The JVM specification [60] eefimree elements:

e An instruction set and the meaning of those instructionse-bjttecodes

e A binary format — theclass fileformat. A class file contains the bytecodes, a
symbol table and other ancillary information

e An algorithm toverify that a class file contains valid programs

In the solution presented in this thesis, the class files ardied, linked and trans-
formed into an internal representation before being execan JOP. This transfor-
mation is performed witllavaCodeCompact and is not executed on JOP. We will
therefore omit the description of the class file and the atifon process.

The instruction set of the JVM is stack-based. All operaitake their arguments
from the stack and put the result onto the stack. Values arsfierred between the
stack and various memory areas. We will discuss these meaneag first, followed
by an explanation of the instruction set.

2.2.1 Memory Areas

The JVM contains various runtime data areas. Some of these are shared be-
tween threads, whereas other data areas exist separatecfothread.

Method area: The method area is shared among all threads. It contains ckats
information such as field and method data, the code for th&dadstand the
constant pool. The constant pool is a per-class table, idmgavarious kinds
of constants such as numeric values or method and field nefese The con-
stant pool is similar to a symbol table.

Part of this area, the code for the methods, is very frequeitttessed (during
instruction fetch) and therefore is a good candidate fohicac



12 2 JAVA AND THE JAVA VIRTUAL MACHINE

Heap: The heap is the data area where all objects and arrays acatallo The heap
is shared among all threads. A garbage collector reclaionage for objects.

JVM stack: Each thread has a private stack area that is created at tleetsaenas
the thread. The JVM stack is a logical stack that contairleviahg elements:

1. A frame that contains return information for a method
2. Alocal variable area to hold local values inside a method
3. The operand stack, where all operations are performed

Although it is not strictly necessary to allocate all thréeneents to the same
type of memory we will see in Section 5.5 that the argumestsipg mecha-
nism regulates the layout of the JVM stack.

Local variables and the operand stack are accessed asritlyoaeregisters in
a standard processor. A Java processor shall provide sarthemganechanism
of this data area.

The memory areas are similar to the various segments in ntowal processes (e.qg.
the method code is analogous to the ‘text’ segment). Howeékeroperand stack
replaces the registers in a conventional processor.

2.2.2 JVM Instruction Set

The instruction set of the JVM contains 201 different instians [60], thebytecodes
that can be grouped into the following categories:

Load and store: Load instructions push values from the local variables dht
operand stack. Store instructions transfer values fromstaek back to lo-
cal variables. 70 different instructions belong to thisegatry. Short versions
(single byte) exist to access the first four local variabl@here are unique
instructions for each basic typén(t, Tong, float, double andreference).
This differentiation is necessary for the bytecode verifiat is not needed dur-
ing execution. For exampléload, fload andaload all transfer one 32-bit
word from a local variable to the operand stack.

Arithmetic:  The arithmetic instructions operate on the values foundherstack and
push the result back onto the operand stack. There are atithinstructions
for int, float anddouble. There is no direct support fdryte, short or
char types. These values are handledilt operations and have to be con-
verted back before being stored in a local variable or anoblfigld.
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Type conversion: The type conversion instructions perform numerical cosioais
between all Java types: as implicit widening conversiong. (ent to long,
float or double) or explicit (by casting to a type) narrowing conversions.

Object creation and manipulation: ~ Class instances and arrays (that are also ob-
jects) are created and manipulated with different insimast Objects and class
fields are accessed with type-less instructions.

Operand stack manipulation:  All direct stack manipulation instructions are type-
less and operate on 32-bit or 64-bit entities on the staclanigptes of these
instructions arelup, to duplicate the top operand stack value, ang, to re-
move the top operand stack value.

Control transfer:  Conditional and unconditional branches cause the JVM te con
tinue execution with an instruction other than the one imiatety following.
Branch target addresses are specified relative to the tuadehiess with a
signed 16-bit offset. The JVM provides a complete set of thaconditions
for int values and references. Floating-point values and iyp® are sup-
ported through compare instructions. These compare gigins result in an
int value on the operand stack.

Method invocation and return: ~ The different types of methods are supported by
four instructions: invoke a class method, invoke an ingtamethod, invoke
a method that implements an interface and ewokespecial for an instance
method that requires special handling, suclpesvate methods or a super-
class method.

A bytecode consists of one instruction byte followed by omil operand bytes.
The length of the operand is one or two bytes, with the follgyviexceptions:
multianewarray contains 3 operand bytes;invokeinterface contains 4
operand bytes, where one is redundant and one is always Zeoiupswitch
and tabTleswitch (used to implement the Javawitch statement) are variable-
length instructions; andotow and jsr.w are followed by a 4 byte branch offset,
but neither is used in practice as other factors limit thehmetsize to 65535 bytes.

2.2.3 Methods

A Javamethodis equivalent to dunctionor procedurein other languages. In object
oriented terminology thisnethodis invokedinstead ofcalled We will usemethod
andinvokein the remainder of this text. In Java and the JVM, there aretfipes of
methods:
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Static or class methods

e Virtual methods

Interface methods

Class initialization

e Constructor of the parent classuper())
For these five types there are only four different bytecodes:

invokestatic: A class method (declaresitatic) is invoked. As the target does
not depend on an object, the method reference can be resaivedd/link
time.

invokevirtual: An object reference is resolved and the corresponding rdetho
invoked. The resolution is usually done with a dispatchetgi#@r class con-
taining all implemented and inherited methods. With thispdich table, the
resolution can be performed in constant time.

invokeinterface: An interface allows Java to emulate multiple inheritance. A
class can implement several interfaces, and differensetaghat have no in-
heritance relation) can implement the same interface. flénibility results
in a more complex resolution process. One method of resolus a search
through the class hierarchy that results in a variable, asdiply lengthy, exe-
cution time. A constant time resolution is possible by asisig every interface
method a unique number. Each class that implements andogerfeeds its
own table with unique positions for each interface methothefvholeappli-
cation.

invokespecial: Invokes an instance method with special handling for suassc
private, and instance initialization. This bytecode catches méiffgrdnt
cases. This results in expensive checks for compivate instance meth-
ods.

2.2.4 Implementation of the JVM

There are several different ways to implement a virtual nrachThe following list
presents these possibilities and analyses how approphieyeare for embedded de-
vices.
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for (5) {
instr = bcode[pc++];
switch (instr) {

case IADD:

tos = stack[sp]l+stack[sp—1];
—Sp;

stack[sp] = tos;

break;

Listing 2.1: Typical JVM interpreter loop

Interpreter:  The simplest realization of the JVM is a program that intetprthe
bytecode instructions. The interpreter itself is usualtitten in C and is there-
fore easy to port to a new computer system. The interpretesris compact,
making this solution a primary choice for resource-comsé@d systems. The
main disadvantage is the high execution overhead. Fromafcagiment of the
typical interpreter loop, as shown in Listing 2.1, we canmexee the overhead:
The emulation of the stack in a high-level language resultthiee memory
accesses for a simpleadd bytecode. The instruction is decoded through an
indirect jump. Indirect jumps are still a burden for startlaranch prediction
logic.

Just-In-Time Compilation:  Interpreting JVMs can be enhanced with just-in-time
(JIT) compilers. A JIT compiler translates Java bytecodesdtive instruc-
tions during runtime. The time spent on compilation is péthe application
execution time. JIT compilers are therefore restrictedh@irtoptimization ca-
pacity. To reduce the compilation overhead, current JVMsrage in mixed
mode: Java methods are executed in interpreter mode ancltHeequency
is monitored. Often-called methods, the hot spots, are ¢bempiled to native
code.

JIT compilation has several disadvantages for embeddéensgsnotably that
a compiler (with the intrinsic memory overhead) is necessarthe target sys-
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tem. Due to compilation during runtime, execution timesraoepredictabl@.

Batch Compilation: Java can be compiled, in advance, to the native instrucgbn s
of the target. Precompiled libraries are linked with theligagpion during run-
time. This is quite similar to C/C++ applications with sidiléraries. This
solution undermines the flexibility of Java: dynamic clasading during run-
time. However, this is not a major concern for embedded Byste

Hardware Implementation: A Java processor is the implementation of the JVM in
hardware. The JVM bytecode is the native instruction setiohs processor.
This solution can result in quite a small processor, as & ftezhitecture can
be implemented very efficiently. A Java processor is menedffigient as an
interpreting JVM, but avoids the execution overhead. Thenrdsadvantage
of a Java processor is the lack of capability to execute C/@ograms.

2.3 Summary

Java is a unique combination of the language definition fedl&ss library and a run-
time environment. A Java program is compiled to bytecodasdhe executed by a
Java virtual machine. Strong typing, runtime checks anidavee of pointers make
Java asafelanguage. The intermediate bytecode representation ifiesgborting of
Java to different computer systems. An interpreting JVMaisyeto implement and
needs few system resources. However, the execution spies$tom interpreting.
JVMs with a just-in-time compiler are state-of-the-art ftesktop and server sys-
tems. These compilers require large amounts of memory avel tbabe ported for
each processor architecture, which means they are not shetace for embedded
systems. A Java processor is the implementation of the JVMcaascrete machine.
A Java processor avoids the slow execution model of an irdeng JVM and the
memory requirements of a compiler, thus making it an intergseexecution system
for Java in embedded systems.

3Even if the time for the compilation is known, the WCET for athm® has to include the compile
time!
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Two different approaches can be found to improve Java bgieeesecution by hard-
ware. The first type operates as a Java coprocessor in ctiojungth a general-

purpose microprocessor. This coprocessor is placed im#teuction fetch path of
the main processor and translates Java bytecodes to sequehmstructions for

the host CPU or directly executes basic Java bytecodes. dielex instructions

are emulated by the main processor. Java chips in the seeabagocy replace the
general-purpose CPU. All applications therefore have tavbtten in Java. While

the first type enables systems with mixed code capabilithes,additional compo-

nent significantly raises costs. Table 3.1 provides an de@ref the described Java
hardware.

Blank fields in the table indicate that the information is awgilable or not ap-
plicable (e.g. for simulation-only projects). Minimum CBIthe number of clock
cycles for a simple instruction such asp. One entry, the TINI system, is not a real
Java hardware, but is included in the table since it is oﬁtmmrirectI)} cited as an
embedded Java processor.

3.1 Hardware Translation and Coprocessors

The simplest enhancement for Java is a translation unitiwdubstitutes the switch
statement of an interpreter JVM (bytecode decoding) thncwaydware and/or trans-
lates simple bytecodes to a sequence of RISC instructiomiseoity.

A standard JVM interpreter contains a loop with a large dwitatement that
decodes the bytecode (see Listing 2.1). This switch statemsecompiled to an
indirect branch. The destinations of these indirect braaathange frequently and
do not benefit from branch-prediction logic. This is the mewerhead for simple
bytecodes on modern processors. The following approadftegnee the execution
of Java programs on a standard processor through the stibstiof the memory read
and switch statement with bytecode fetch and decode thrbagiware.

ITINI is a standard interpreting JVM running on an enhancesilgrocessor.
2J2ME CLDC stands for Java2 Micro Edition, Connected LimiBelice Configuration, which is
described in Section 4.3.1.



3 RELATED WORK

Type Target Size Speed| Java Min.
technology [MHz] | standard CPI
Hard-Int Translation Simulation
only
DELFT Translation Simulation
only
. Xilinx 3800 LCs,
JIFFY Translation FPGA 1KB RAM
Jazelle Co- ASIC0.181 | 12K gates 200
processor
Co- ASIC0.181 | 30K gates + J2ME
JSTAR processor | Softcore 7KB 104 CLDC?
TINI Software Enhanced Java 1.1
JVM 8051 clone subset
picoJava Processor No . 128K gates Full 1
realization + memory
. 25K gates + J2ME
aldile Processor | ASIC 0.25u ROM 100 CLDC2
" 70K gates + J2ME
Cjip Processor | ASIC 0.3%u ROM. RAM 67 CLDC2 6
. Stack pro-| Xilinx
Ignite cessor FPGA 9700 LCs
Moon Processor Altera 3660 LCs,
FPGA 4KB RAM
Lightfoot Processor Xilinx 3400 LCs 40
9 FPGA
Xilinx 3800 LCs
LavaCORE | Processor FPGA 30K gates 20
Xilinx Subset: 50
Komodo Processor FPGA 2600 LCs 20 bytecodes 4
Altera Flex Subset: 69
FemtoJava | Processor 10K 2000 LCs 4 | bytecodes, 3
16-bit ALU
Xilinx
JSM [12] Processor FPGA 3.5 | Java Card

Table 3.1: Java hardware
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3.1.1 Hard-Int

Radhakrichnan [80] proposes an additional architectura iandard RISC proces-
sor to speed up a JVM interpreter. The architecture, calladifht, is placed be-
tween the cache and instruction fetch of the RISC proceS&somple Java bytecodes
are translated to a sequence of RISC instructions. Foren&$C code, the unit
is bypassed. This architecture implements the expensiitelsstatement of a typi-
cal interpreter in hardware. A simulation of a SPARC prooesgth four execution
units shows a speedup by the factor of 2.6 over JDK 1.2 JIT 8RECjvm98. Since
the architecture is only evaluated in a software simulatibe impact of the inserted
hardware on the clock frequency of the RISC processor isamin No estimation
of the additional hardware cost for the translation unitiveg.

3.1.2 DELFT-JAVA Engine

In his thesis [32], Glossner describes a processor for mettia applications in Java.
A RISC processor is extended with DSP capabilities and Jaweifsc instructions.
This combination results in a very complex processor. SindplM instructions are
dynamically translated to the DELFT instruction set. Hoarewno explanation is
given as to how this is done. A new register-addressing miod@gect register ad-
dressing with auto increment or decrement, provides suppostack caching in the
register file. The translation of JVM bytecode to the DELF$tinction set maps
stack-based dependencies into pipeline dependenciesaulther expects that these
dependencies can be resolved with standard techniquessuegister renaming and
out-of-order execution. To accelerate dynamic linkingh& translation buffer cache
resolved entries from the constant pool.

The processor is validated through a C++ model. An experiméh a synthetic
benchmark (vector multiplication) compared a stack mazhith an ideal register
machine. The ideal register machine performs registermermpand out-of-order
execution on multiple execution units. The achieved spe&ulthis experiment was
2.7. The high-level simulation model is more a proof of cqricnd no estimation
is given for the resources needed to implement this complesessor. Since only
a restricted subset of the JVM was simulated, no Java afiplisacould be used to
estimate the expected speedup.

3.1.3 JIFFY

An interesting approach to enhance Java execution in ereldesjdtems is presented
in Acher’s thesis [1]. He states that JIT-compilation intg@fre is not possible on
most embedded devices because of resource constrainiy, ABIT in an FPGA,
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is proposed as a solution to this problem. The compilatiaioise in the following
steps:

The Java bytecode is translated into an intermediate lgggudth three regis-
ters and a stack. The reduction to three registers is dueetéatit that bytecodes
are using a maximum of three stack operands, and it simplii@slation to CISC-
architectures with a low register count. In the next stejs itistruction sequence,
which is still stack-based, is optimized. The main effectto$ optimization is to
transform stack-based operations into register-basecimes. These optimized in-
structions in the intermediate language are translatedatoeninstructions of the
target architecture in the last step.

The quality of the generated code was tested with softwanrgores of JIFFY for
a CISC (80586) and a RISC (Alpha 21164) architecture. Thdtmeg code is about
1.1 to 7.5 times faster than interpreting Java bytecode enx®6 architecture. The
speedup is similar to Suns first JIT compiler (sunwijit in JDK)1 The compilation
time is estimated to be 50 to 70 clock cycles for one bytecdtiés is 10 times faster
than the efficient CACAO JIT [53]. A first prototype implematibn in an FPGA
used 3800 LCs and 8KBits RAM (80 % of a Xilinx XC2S200).

3.1.4 Jazelle

Jazelle [3] is an extension of the ARM 32-bit RISC processmnilar to the Thumb
state (a 16-bit mode for reduced memory consumption). Thell@acoprocessor is
integrated into the same chip as the ARM processor. The lzaedlytecode decoder
logic is implemented in less than 12K gates. It acceleratasyrding to ARM, some
95% of the executed bytecodes. 140 bytecodes are execustlydin hardware,
while the remaining 94 are emulated by sequences of ARMuastms. This solu-
tion also uses code modification witluick instructions to substitute certain object-
related instructions after link resolution. All Java byddes, including the emulated
sequences, are re-startable to enable a fast interruginsspime.

A new ARM instruction puts the processor into Java state e@ydes are fetched
and decoded in two stages, compared to a single stage in ARM d$tour registers
of the ARM core are used to cache the top stack elements. Stakland fill is
handled automatically by the hardware. Additional regsste reused for the Java
stack pointer, the variable pointer, the constant pool teoiand locale variable 0
(thethis pointer in methods). Keeping the complete state of the Jaxdernrm ARM
registers simplifies its integration into existing opeargtsystems.
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3.1.5 JSTAR, JA108

Nozomi’s JA108 [14], previously known as JSTAR, Java copssor sits between
the native processor and the memory subsystem. JA108 $efielva bytecodes from
memory and translates them into native microprocessamictgins. JA108 acts as a
pass-through when the core processor’s native instrigoa being executed. The
JA108 is targeted for use in mobile phones to increase pedoce of Java multime-
dia applications. The coprocessor is available as standgdackage or with included
memory and can be operated up to 104MHz. The resource usafefdSTAR is
known to be about 30K gates plus 45Kbits for the microcode.

3.1.6 A Co-Designed Virtual Machine

In his thesis [49], Kent proposes an interesting new formawsbJcoprocessor. He
investigates hardware/software co-design for a JVM with@acontext of a desktop
workstation. The execution of the JVM is partitioned betwesm FPGA and the
host processor. An FPGA board with local memory is connecidhe PCI bus to
the host. This solution provides an add-on acceleratorouttchanging the system.
Moreover, as the FPGA can be configured for a different tdekatld-on hardware
can be used for non-Java applications.

The critical issue in this approach is the partitioning & VM and the memory
regions between hardware and software. Not all Java byéscodn be executed in
hardware. All object-oriented bytecodes are performedftware. However, once
these bytecodes are replaced by tlagiick variants, some of them can then be ex-
ecuted in hardware. The most accessed data structurethe.method’s bytecode,
execution stack and local variables, are placed in the FPG#&domemory. The
constant pool and the heap reside in the PC’s main memory.sditeare part of
the JVM decides during runtime which instruction sequemeesbe executed by the
hardware. Due to the high cost of a context switch, this istacal decision. Kent
explored various algorithms with different block sizes tadfthe optimum partition-
ing of the instructions between the host processor and tl&@AFRests with small
benchmarks on a simulation showed performance gains byt@ faic6 to 11, when
compared with an interpreting JVM. Kent is now working on tmacurrent use of
the FPGA and the host system to execute Java applicatiorditidkahl performance
increases are expected for multi-threaded applications.

In our view, there are two potential problems with this apyata Firstly, the execu-
tion context for the hardware is too small. Asvokevirtualand the quick version
are implemented in the software partition, the maximumexiris one method body.
As shown in Section 5.1.2, Java methods are usually smalli{&89% are less than 9
bytes long), resulting in many context switches. The sedssuk is the raw speedup,
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without communication overhead, of the FPGA solution. ™¥psedup is stated to
be around of 10 times greater, with the same clock frequdtiewever, FPGA clock
rate will never reach the clock rate of a general-purposegasor. With a meaningful
design, such as a CPU, the clock rate of an FPGA is about 20ttmB6 lower. How-
ever, everyone who uses an FPGA as target technology forcagsor design faces
this problem. It is better not to try to compete against nted@en PC technology.

3.2 Java Processors

Java Processors are primarily used in an embedded systesuchna system, Java
is the native programming language and all operating sysetated code, such as
device drivers, are implemented in Java. Java processosinaple or extended stack
architectures with an instruction set that resembles motess the bytecodes from
the JVM.

3.2.1 picoJava

Sun’s picoJava is the Java processor most often cited iands@apers. It is used
as a reference for new Java processors and as the basisdaratesnto improving
various aspects of a Java processor. lronically, this gsmrevas never released as a
product by Sun. After Sun decided to not produce picoJavdiaos, Sun licensed
picoJava to Fujitsu, IBM, LG Semicon and NEC. However, tresapanies also did
not produce a chip and Sun finally provided the full Verilogleaunder an open-
source license.

Sun introduced the first version of picoJava [73] in 1997. pracessor was tar-
geted at the embedded systems market as a pure Java proeissestricted support
of C. picoJava-| contains four pipeline stages. A redesijowed in 1999, known as
picoJava-Il. This is the version described below. picodaisnow freely available
with a rich set of documentation [89, 90].

Simple Java bytecodes are directly implemented in hardwaost of them execute
in one to three cycles. Other performance critical instom, for instance invoking
a method, are implemented in microcode. picoJava trapseorethaining complex
instructions, such as creation of an object, and emulatesrtstruction. To access
memory, internal registers and for cache management piaddgplements 115 ex-
tended instructions with 2-byte opcodes. These instrustiére necessary to write
system-level code to support the JVM.

Traps are generated on interrupts, exceptions and fouaisin emulation. A trap
is rather expensive and has a minimum overhead of 16 clodksyc
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Figure 3.1: Block diagram of picoJava-Il (from [89])
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This minimum value can only be achieved if the trap tableyeistin the data cache
and the first instruction of the trap routine is in the instimt cache. The worst-case
interrupt latency is 926 clock cycles [90].

Figure 3.1 shows the major function units of picoJava. Theger unit decodes
and executes picoJava instructions. The instruction cachké@ect-mapped, while
the data cache is two-way set-associative, both with a lire af 16 bytes. The
caches can be configured between 0 and 16 Kbytes. An insinuatiffer decouples
the instruction cache from the decode unit. The FPU is orgahas a microcode
engine with a 32-bit datapath supporting single- and doepbdeision operations.
Most single-precision operations require four cycles. Iletprecision operations
require four times the number of cycles as single-precisioerations. For low-cost
designs, the FPU can be removed and the core traps on flgaginginstructions to
a software routine to emulate these instructions. picopavedes a 64-entry stack
cache as a register file. The core manages this register ileiasular buffer, with a
pointer to the top of stack. The stack management unit autoatig performs spill
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A Java instruction

c=a*+b;

translates to the following bytecodes:

iload_1
iload_2
i add
istore 3

Figure 3.2: A common folding pattern that is executed in a single cycle

to and fill from the data cache to avoid overflow and underflothefstack buffer. To
provide this functionality the register file contains fivemm@y ports. Computation
needs two read ports and one write port, the concurrentamlfill operations the
two additional read and write ports. The processor coreistnef following six
pipeline stages:

Fetch: Fetch 8 bytes from the instruction cache or 4 bytes from tleilierface to
the 16-byte-deep prefetch buffer.

Decode: Group and precode instructions (up to 7 bytes) from the flefbuffer.
Instruction folding is performed on up to four bytecodes.

Register: Read up to two operands from the register file (stack cache).

Execute: Execute simple instructions in one cycle or microcode fottirmycle in-
structions.

Cache: Access the data cache.
Writeback: Write the result back into the register file.

The integer unit together with the stack unit provides a raa@m, called instruction
folding, to speed up common code patterns found in stacktaottres, as shown in
Figure 3.2. When all entries are contained in the stack ¢ableepicoJava core can
fold these four instructions to one RISC-style single cyiperation.

picoJava contains a simple mechanism to speed-up the cormmaserfor monitor
enter and exit. The two low order bits of an object refereneeuaed to indicate the
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lock holding or a request to a lock held by another thread s&léts are examined by
monitorenter andmonitorexit. For all other operations on the reference, these
two bits are masked out by the hardware. Hardware regiséatsecup to two locks
held by a single thread.

To efficiently implement a generational or an incrementabgge collector pi-
coJava offers hardware support for write barriers througimory segments. The
hardware checks all stores of an object reference if theseate points to a different
segment (compared to the store address). In this case, &tggmerated and the
garbage collector can take the appropriate action. Adwditiovo reserved bits in the
object reference can be used for a write barrier trap.

The architecture of picoJava is a stack-based CISC procesptementing 341
different instructions [73] and is the most complex Javacpssor available. The
processor can be implemented [23] in about 440K gates (128Khk logic and
314K for the memory components: 284x80 bits microcode ROKL92x64 bits
FPU ROM and 2x16KB caches).

3.2.2 aldile JEMCore

alile's JEMCore is a direct-execution Java processor shatailable as both an IP
core and a stand alone processor [2, 37]. It is based on thé 3EM2 Java chip de-
veloped by Rockwell-Collins. JEM2 is an enhanced versiai&dfl1, created in 1997
by the Rockwell-Collins Advanced Architecture Microprgser group. Rockwell-
Collins originally developed JEM for avionics applicat®hy adapting an existing
design for a stack-based embedded processor. Rockwdih€decided not to sell
the chip on the open market. Instead, it licensed the designsvely to alJile Sys-
tems Inc., which was founded in 1999 by engineers from Roti@alins, Centaur
Technologies, Sun Microsystems, and IDT.

The core contains 24 32-bit wide registers. Six of them aegl tie cache the top
elements of the stack. The datapath consists of a 32-bit ALRR-bit barrel shifter
and the support for floating point operations (disasserabbgmbly, overflow and
NaN detection). The control store is a 4K by 56 ROM to hold theratode that
implements the Java bytecode. An additional RAM controtesitan be used for
custom instructions. This feature is used to implement #sdsynchronization and
thread scheduling routines in microcode. This results wm éxecution overheads
with thread-to-thread yield of less than ope (at 100MHz). An optional Multiple
JVM Manager (MJM) supports two independent, memory prettdVMs. The two
JVMs execute time-sliced on the processor. According tie,abie processor can be
implemented in 25K gates (without the microcode ROM). Thé/Mikeds additional
10K gates.
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Two silicon versions of JEM exist today: the aJ-80 and th&Ggl- Both versions
comprise a JEM2 core, the MJM, 48KB zero wait state RAM andpperal compo-
nents, such as timer and UART. 16KB of the RAM is used for thialle control
store. The remaining 32KB is used for storage of the procestsgk. The aJ-100
provides a generic 8-bit, 16-bit or 32-bit external busriiaee, while the aJ-80 only
provides an 8-bit interface. The aJ-100 can be clocked up@Hz and the aJ-80
up to 66MHz. The power consumption is about 1mWw per MHz.

Since aldile was a member of the Real-Time for Java Expertf;the complete
RTSJ will be available in the near future. One nice featur¢ghi® processor is its
availability. A relatively cheap development system, tB¢aidnp [91], was used to
compare this processor with JOP.

3.2.3 Cjip

The Cjip processor [36, 43] supports multiple instructietssallowing Java, C, C++
and assembler to coexist. Internally, the Cjip uses 72 ldewmicrocode instructions,
to support the different instruction sets. At its core, @i 16-bit CISC architecture
with on-chip 36KB ROM and 18KB RAM for fixed and loadable micoale. Another
1KB RAM is used for eight independent register banks, sthoffer and two stack
caches. Cijip is implemented in 0.35-micron technology asuu le clocked up to
66MHz. The logic core consumes about 20% of the 1.4-miltramsistor chip. The
Cjip has 40 program controlled 1/O pins, a high-speed 8 kitlus with hardware
DMA and an 8/16 bit DRAM interface.

The JVM is implemented largely in microcode (about 88% oflhea bytecodes).
Java thread scheduling and garbage collection are impkechers processes in mi-
crocode. Microcode is also used to implement virtual penpls such as watchdog
timers, display and keyboard interfaces, sound generatatsnultimedia codecs.

Microcode instructions execute in two or three cycles. A JWidecode requires
several microcode instructions. The Cjip Java instruciehand the extensions are
described in detail in [42]. For example: a bytecod® executes in 6 cycles while
an iadd takes 12 cycles. Conditional bytecode branches are exk@utg3 to 36
cycles. Object oriented instructions suphtfield, putfield or invokevirtual
are not part of the instruction set.

3.2.4 Ignite, PSC1000

The PSC1000 [77] is a stack processor, based on ShBoomn@hgidesigned by
Chuck Moore [68]), designed for high speed Forth applicetioThe PSC1000 was
later renamed to Ignite and promoted as a Java-processagltht has it roots in
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Forth. The instruction set, called ROSC (Removed Operah@&mputer), is differ-
ent from Java bytecodes. A small JVM driver converts Javadode into the stack
instruction set of the processor.

The processor contains two on-chip stacks, as usual in pootessors [52], and
additional 16 global registers. The first elements of thekstare directly accessi-
ble. The bottleneck of instruction fetching without a cathavoided by fetching
up to four 8-bit instructions from a 32-bit memory. To sinfiplinstruction decoding
immediate values and branch offsets are placed right aligmsuch an instruction
group. The PSC1000 is available as ASIC at 80MHz and as aceudtfor Xilinx
FPGAs (9700 LCs).

3.2.5 Moon

Vulcan ASIC’s Moon processor is an implementation of the JVun in an FPGA.
The execution model is the often-used mix of direct, micdecand trapped exe-
cution. As described in [63], a simple stack folding is impknted in order to re-
duce five memory cycles to three for instruction sequengeplish-push-addThe
first version of Moon uses 3.840 LCs and 10 embedded memockdio an Altera
FPGA. The Moon2 processor [64] is available as an encrypted $ource for Altera
FPGAs (22% of an APEX 20K400E equates to 3660 LCs) or as VHDVerilog
source code. The minimum silicon cost is given as 27K gates KB ROM and
1KB single port RAM. The single port RAM is used to implemebbZntries of the
stack.

3.2.6 Lightfoot

The Lightfoot 32-bit core [62] is a hybrid 8/32-bit procesdmsed on the Harvard
architecture. Program memory is 8 bits wide and data mensoB ibits wide. The
core contains a 3-stage pipeline with an integer ALU, a badter and a 2-bit
multiply step unit. There are two different stacks with tdpneents implemented as
registers and memory extension. The data stack is useddddraporary data — it is
not used to implement the JVM stack frame. As the name impiiesreturn stack
holds return addresses for subroutines and it can be usedasdiary stack. The
TOS element is also used to access memory. The processdteetate specifies
three different instruction formats: soft bytecodes, meturnable instructions and
single-byte instructions that can be folded with a returstrirction. Soft bytecode
instructions cause the processor to branch to one of 12&doesain low program
memory, where the implementation of the soft bytecodeslessiThis operation has
a single cycle overhead and the address of the followinguaoton is pushed onto
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the return stack. The instruction set implies that it is jted to write an efficient
interpreted JVM.

The core is available in VHDL and can be implemented in less tBOK gates.
According to DCT, the performance is typically 8 times betten RISC interpreters
running at the same clock speed. The core is also provided &D# netlist for
dedicated Xilinx devices. It needs 1710 CLBs (= 3400 LCs) 2ilock RAMs. In
a Vertex-Il (2v1000-5), it can be clocked up to 40MHz.

3.2.7 LavaCORE

LavaCORE [44] is another Java processor targeted at XilP& A architectures. It
implements a set of instructions in hardware and firmwareatifig-point operations
are not implemented. A 32x32-bit dual-ported RAM implenseategister-file. For
specialized embedded applications, a tool is provided &tyaa which subset of the
JVM instructions is used. The unused instructions can beétedhirom the design.
The core can be implemented in 1926 CLBs (= 3800 LCs) in a X4it¢2V1000-5)
and runs at 20MHz.

3.2.8 Komodo

Komodo [95] is a multithreaded Java processor with a foagetpipeline. It is in-
tended as a basis for research on real-time scheduling onltéahmaaded micro-
controller [55]. Simple bytecodes are directly implementerhile more complex
bytecodes, such a@sload, are implemented as a microcode sequence. The unique
feature of Komodo is the instruction fetch unit with four émendent program coun-
ters and status flags for four threads. A priority managegsponsible for hardware
real-time scheduling and can select a new thread after agebdule instruction.

The first version of Komodo in an FPGA implements a very retd subset of
the JVM (only 50 bytecodes). The design can be clocked at 20M#tbwever, the
pipeline runs at 5SMHz for single cycle external memory as@w three-port access
of stack memory in one pipeline stage. The resource usadggl3 CLBs (= 2600
LCs) in a Xilinix XC 4036 XL.

3.2.9 FemtoJava

FemtoJava [45] is a research project to build an applicasipecific Java proces-
sor. The bytecode usage of the embedded application iszthfnd a customized
version of FemtoJava is generated. FemtoJava implements 69 bytecode in-
structions for an 8 or 16 bit datapath. These instructioks 8 4, 7 or 14 cycles to
execute. Analysis of small applications (50 to 280 byte ¢athewed that between
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22 and 69 distinct bytecodes are used. The resulting resawgage of the FPGA
varies between 1000 and 2000 LCs. With the reduction of ttepdth to 16 bits the
processor is not Java conformant.

3.3 Additional Comments

The two classes of hardware accelerators for Java can befaubdivided as shown
in Figure 3.3. Many of the Java processors are stack mactiiaebave been derived
from Forth processors. Two different stacks in these sieaaava processors (Cjip,
Ignite and Lightfoot) do not fit very well for the JVM. Althoingstack based, Forth
is different from Java bytecode. Instruction mix in Fortlowls about 25% call and
returns [52], so Forth processors are optimized for fadtazad return. In Java, the
percentage of call/return is only about 6% (see Section BVith subroutine exits so
common, it is no wonder that most of the Forth stack machiage b mechanism for
combining subroutine exits with other instructions andvpe two stacks to avoid

the mixture of parameters and return addresses. HoweWN athck frame is more

complex than in Forth (see Section 5.5) and there is no ussufthi a mechanism.
An additional return stack provides no advantage for the JVM

In Forth only the top elements can be accessed, which resuétssimple stack
design with only one access port. In the JVM parameters foethod are explicitly
pushed on the stack before invocation. These parametetbeareaccessed in the
method relative to a variable pointer. This mechanism needisal ported memory
with simultaneous read and write access. These basic afiffes between Forth
and the JVM lead to a sub-optimal implementation of the JVMaoRorth based
processor.

There are problems in getting information about commemiatiucts. When new
companies started developing Java processors, a lot aimafon was available.
This information was usually more of a presentation of thecept, nevertheless it
gave some insights into how they approached the differesigdgproblems. How-
ever, at the point at which the projects reached productiglity, this information
quietly disappeared from their websites. It was replaceith wolorful marketing
prospectuses about the wonderful world of the new Javalethahobile phones.
Only one company, adile Ltd., presented information abbeir tproduct in a ref-
ereed conference paper.

Many research projects for a Java processor in an FPGA extstamples can
be found in [45], [50] and [69]. These projects have much imown — the basic
implementation of a stack machine with integer instrudiseasy. However, the
realization of the complete JVM is the hard part and theeefmgyond the scope of
these projects.
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Java Hardware
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Figure 3.3: Java hardware

Other than the aJile processor and the Komodo project, migoladdresses the
problem of real-time predictability. For this reason, adlas its availability, the
alJile processor is used for comparison with JOP.

3.4 Research Objectives

In Table 3.2, features of selected Java processors are cethp&ategory ‘Pre-
dictability’ means how well the processor is time-predit¢a In category ‘Size’,
the chip size is estimated and category ‘Performance’ maassige performance.
The category ‘JVM conformance’ lists how complete the impdaitation of the JVM
specification [60] is. The ‘Flexibility’ parameter indiea how well the processor can
be adapted to different application domains.

The assessment of the various parameters is, however, s@nsubjective as the
information is mainly derived from written documentatidn.Section 7.3, the overall
performance of various Java systems, including the aJiegsisor, is compared with
JOP.

The last column of the table shows the features requireddéx Jhis is, therefore,
our research objective in a nutshell.

Due to the great variation in execution times for a trap, Jge@ is given a double
minus in the ‘Predictability’ category. picoJava is alse targest processor in the
list. However, its performance and JVM compatibility argpested to be superior to
those of other processors.
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picoJava aldile Komodo FemtoJava JOP

Predictability —— . — . 4t
Size —_ — + _ ++
Performance +4 + — —— +
JVM conformance  ++ + - —— .

Flexibility —— — + ++ 4+

Table 3.2: Feature comparison of selected Java processors

The alile processor is intended as a solution for real-tiystems. However, no
information is available about bytecode execution timesths processor is a com-
mercial product and has been on the market for some timegxfiscted that its JVM
implementation would conform to Java standards, as defip&ub.

Komodos multithreading is similar to hyper-threading indam processors that
are trying to hide latencies in instruction fetching. Hoeehis feature leads to very
pessimistic WCET values (in effect rendering the perforoeagain useless). The fact
that the pipeline clock is only a quarter of the system cldsk aastes a considerable
amount of potential performance.

FemtoJava is given a double plus for flexibility, due to thel@ation-dependent
generation of the processor. However, FemtoJava is onlytat Jocessor and there-
fore not JVM compliant. The resource usage is also very higimpared to the
minimal Java subset implemented and the low performandeegbitocessor.

So far, all processors in the list perform weakly in the aré&me-predictable
execution of Java bytecodes. However, a low-level anatylsexecution times is of
primary importance for WCET analysis. Therefore, the mdijective of this thesis
is to define and implement a processor architecture that pgeatictable as possi-
ble. However, it is equally important that this does not teisua low performance
solution. Performance shall not suffer as a result of the{predictable architecture.

The second main aim of this work is to design a small procesdiae and the re-
sulting energy consumption are a main concern in embeddstdrag. The proposed
Java processor needs to be small enough to be implementddvincast FPGA de-
vice. With this constraint, an implementation in an ASIClhailso result in a very
small core that can be part of a larger system-on-a-chip.

The embedded market is diverse and one size does not fit allonfigurable
processor in which we can trade size for performance previde flexibility for a
variety of application domains. The aim of the architectoifd OP is to support this
flexibility.

As this thesis is more a technical than a theoretical stindyatithor believes that
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it is important to demonstrate the implementation of thgopsed architecture. With
a simulation, the ideas proposed cannot be verified to trenextecessary. Small
details that are overlooked during simulation can rendeidaa impractical. Only
a working version (ideally in a real-world project) of theopessor can therefore
provide the confidence that the above criteria are met.

The definition of Java does not work for hard real-time agpions (described in
detail in Chapter 4). In order to prove that JOP is a viabl&qien for real-time Java,
part of this thesis looks at a definition of a real-time profdeJava.

The following list summarizes the research objectives lier proposed Java pro-
cessor:

Primary Objectives:
e Time-predictable Java platform for embedded real-timéesys
¢ Small design that fits into a low-cost FPGA

e A working processor, not merely a proposed architecture

Secondary Objectives:

e Acceptable performance compared with mainstream nontireal-Java sys-
tems

¢ A flexible architecture that allows different configuratsofor different appli-
cation domains

e Definition of a real-time profile for Java



4 Restrictions of Java for Embedded
Real-Time Systems

Java was created as a part of the Green project specificalgnfembedded device,
a handheld wireless PDA. The device was never released aslagbrand Java was
launched as the new language for the Internet. Over the dava got very popular
to build desktop applications and web services. Howevebeglded systems are still
programmed in C or C++. The pragmatic approach of Java tabbjentation, the
huge standard library and enhancements over C lead to agthatuincrease, which
now also attracts embedded system programmers. A builtiowrency model and
an elegant language construct to express synchronizatiovebn threads also sim-
plify typical programming idioms in this area.

On the other hand, there are some issues with Java in an esthsgstem. Em-
bedded systems are usually too small for JIT-compilatiGulteg in a slow inter-
preting execution model. Moreover, a major problem for edadeel systems, which
are usually also real-time systems, is the under specditati the scheduler. Even
an implementation without preemption is allowed. The ititenfor thisloosedefini-
tion of the scheduler is to be able to implement the JVM on n@atforms where no
good multitasking support is available. The Real Time Sjation for Java (RTSJ)
[8] addresses many of these problems.

This section summarizes the issues with standard Java oedelath systems and
describes various definitions for small devices given by. Skns followed by an
overview of the two real-time extensions of Java and appresdor restricting the
RTSJ for high-integrity applications. If, and how, thesedfications are sufficient
for small embedded systems in general and specifically fét i#Canalyzed. The
missing definition for small embedded real-time systemsadsigded in Section 6.1.

4.1 Java Support for Embedded Systems

When not using the cyclic executive approach, programmimegniedded (real-time)
systems is all about concurrent programming with time gaids. The basic func-
tions can be summarized as:

e Threads
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e Communication
e Activation

e Low level hardware access

Threads and Communication Java has a built-in model for concurrency, the class
Thread. All threads share the same heap resulting in a shared metoamnuni-
cation model. Mutual exclusion can be defined on methods de btocks with the
keywordsynchronized. Synchronized methods acquire a lock on the object of the
method. For synchronized code blocks, the object to be tbikexplicitly stated.

Activation  Every object inherits the methodait (), notify () andnotifyAll1()
from Object. These methods in conjunction with synchronization on thea
support activation.

The classegava.util.TimerTask andjava.util.Timer (since JDK 1.3) can
be used to schedule tasks for future execution in a backdrthuead.

4.2 |Issues with Java in Embedded Systems

Although Java has language features that simplify conotpeogramming the defi-
nition of these features is too vague for real-time systems.

Threads and Synchronization Java, as described in [33], defines a very loose be-
havior of threads and scheduling. For example, the spetiificallows even low
priority threads to preempt high priority threads. Thistpobs threads from starva-
tion in general purpose applications, but is not acceptahieal-time programming.
Wakeup of a single thread withotify () is not precisely definedhe choice is ar-
bitrary and occurs at the discretion of the implementatitiris not mandatory for a
JVM to deal with the priority inversion problem.

No notation of periodic activities, which are common in eidbed systems pro-
gramming, is available with the standarbliread class.

Garbage Collector ~ Garbage collection greatly simplifies programming and $elp
to avoid classic programming errors (e.g. memory leakshaigh real-time garbage
collectors evolve, they are usually avoided in hard reaktsystems. A more conser-
vative approach to memory allocation is necessary.
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WCET on Interfaces (OOP)  Method overriding and Interfaces, the simplified con-
cept of multiple inheritance in Java, are the key concept¥aira to support object
oriented programming. Like function pointers in C, the dyi@selection of the ac-
tual function at runtime complicates WCET analysis. Impdemation of interface
look up usually requires a search of the class hierarchyrdinne or very large dis-
patch tables.

Dynamic Class Loading  Dynamic class loading requires the resolution and veri-
fication of classes. This is a function that is usually too ptax (and consumes too
much memory) for embedded devices. An upper bound of execttitine for this
function is almost impossible to predict (or too large). SThesults in the complete
avoidance of dynamic class loading in real-time systems.

Standard Library  For an implementation to be Java-conformant, it must irelud
the full library (JDK). The JAR files for this library conaiiie about 15MB (in JDK
1.3, without native libraries), which is far too large for nyaembedded systems.
Since Java was designed to be a safe language with a saf¢ieremvironment, no
classes are defined for low-level access of hardware featdree standard library
was not defined and coded with real-time applications in mind

Execution Model ~ The first execution model for the JVM was an interpreter. The
interpreter is now enhanced with Just-In-Time (JIT) comati. Interpreting Java
bytecodes is too slow and JIT compilation is not applicableeal-time systems.
The time for the compilation process had to be included inWHET, resulting in
impracticable values.

Implementation Issues ~ The problems mentioned in this section are absolute
problems for real-time systems. However, they result inowst execution model
with a higher WCET.

According to [60] the static initializers of a class C are@xed immediately be-
fore one of the following occurs: (i) an instance of C is ceelt(ii) a static method
of C is invoked or (iii) a static field of C is used or assignecheTissue with this
definition is that it is not allowed to invoke the static ialtzers at JVM startup and
it is not so obvious when it gets invoked.

It follows that the bytecodegetstatic, putstatic, invokestatic andnew
can lead to class initialization and the possibility of \WCET values. In the JVM,
it is necessary to check every execution of these bytecddbe iclass is already
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public class Problem {

private static Abc a;
public static int cnt; // implicitly set to 0

static {
// do some class initializaion
a = new Abc(); //even this is ok.

}

public Problem() {
++Cnt;

}

}

// anywhere in some other class, in situation,
// when no instance of Problem has been created
// the following code can lead to

// the execution of the initializer

int nrOfProblems = Problem.cnt;

Listing 4.1: Class initialization can occur very late

initialized. This leads to a loss of performance and is Yeman some existing im-
plementations of the JVM. For example in CACAO [54] the statitializer is called
at compilation time. Listing 4.1 shows an example of thisabem.

Synchronization is possible with methods and on code bloElkeh object has a
monitor associated with it and there are two different waygdin and release own-
ership of a monitor. Bytecodasnitorenter andmonitorexit explicitly handle
synchronization. In other cases, synchronized methodsharked in the class file
with the access flags. This means that all bytecodes for metivocation and re-
turn must check this access flag. This results in an unnagesgarhead on methods
without synchronization. It would be preferable to encdgtsuthe bytecode of syn-
chronized methods with bytecodesni torenter andmonitorexit. This solution
is used in Suns picoJava-ll [90]. The code is manipulatedhénclass loader. Two
different ways of coding synchronization, in the bytecotteaam and as access flags,
are inconsistent.
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4.3 Java Micro Edition

The definition of Java also includes the definition of thegldgary (JDK). Thisis a
huge library and too large for some systems. To compensate for this Sufefiagd
the Java 2 Platform, Micro Edition(J2ME) [66]. As Sun has changed the focus of
Java targets several times, the specifications reflectttosigh their slightly chaotic
manner. J2ME reduces the function of the JVM (e.g. no flogbioigt support) to
make implementation easier on smaller processors. It athaces the library (API).
J2ME defines three layers of software built upon the hostatipgy system of the
device:

Java Virtual Machine:  This layer is just the JVM as in every Java implementation.
Sun has assumed that the JVM will be implemented on top of edpesating
system. There are no additional definitions for the J2ME i ldyer.

Configuration:  The configuration defines the minimum set of JVM features awd J
class libraries available on a particular category of devidn a way, a config-
uration defines the lowest common denominator of the Javbopiafeatures
and libraries that the developers can assume to be avadald# devices.

Profile: The profile defines the minimum set of Application Progranmiinterfaces
(APIs) available on a particular family of devices. Profile implemented
upon a particular configuration. Applications are writtend particular profile
and are thus portable to any device that supports that profildevice can
support multiple profiles.

There is an overlap of the layecgnfigurationandprofile: Both define/restrict Java
class libraries. Sun statesA profile is an additional way of specifying the subset
of Java APIs, class libraries, and virtual machine featutkat targets a specific
family of devices.!However, in the current available definitions JVM features a
only specified irconfigurations

4.3.1 Connected Limited Device Configuration (CLDC)

CLDC is a configuration for connected devices with at lea®KE of total memory
and a 16-bit or 32-bit processor. As the main target devicesellular phones, this
configuration has become very popular (SU®WLDC was designed to meet the rigor-
ous memory footprint requirements of cellular phohe3he CLDC is composed of
the K Virtual Machine (KVM) and core class libraries. Theléoling features have
been removed from the Java language definition:

1in JDK 1.4 the main runtime library, rt.jar, is 25MB.
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e Floating point support
e Finalization

Error handling has been altered so that the JVM halts in ateimgntation-specific
manner. The following features have been removed from thé:JV

¢ Floating point support

e Java Native Interface (JNI)

¢ Reflection

¢ Finalization

e Weak references

e User-defined class loaders

e Thread groups and daemon threads
e Asynchronous exceptions

¢ Data typelong is optional

These restrictions are defined in the final version 1.0 of CLB®Gewer version (1.1)
again adds floating-point support. All currently availabievices (as listed by Sun)
support version 1.0.

The CLDC defines a subset of the following Java class libsarigava.io,
java.lang, java.lang.ref and java.util. An additional library favax.
microedition.io) defines a simpler interface for communication thgtva.io
and java.net. Examples of connections are: HTTP, datagrams, sockets and
communication ports.

A small-footprint JVM, known as K Virtual Machine (KVM), isgrt of the CLDC
distribution. KVM is suitable for 16/32-bit microprocessowith a total memory
budget of about 128KB.

When implementing CLDC, one may choose to preload/prelotkesclasses. A
utility (JavaCodeCompartombines one or more Java class files and produces a C
file that can be compiled and linked directly with the KVM.

There is only one profile defined under CLDC: the Mobile Infation Device
Profile (MIDP) defines a user interface for LC displays, a ragdayer and a game
API.
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4.3.2 Connected Device Configuration (CDC)

The CDC defines a configuration for devices with network cetioe and assumes
a minimum of a 32-bit processor and 2MB memory. CDC definesstrictions for
the JVM. A virtual machine, the CVM, is part of the distritti The CVM expects
the following functionality from the underlying OS:

e Threads

e Synchronization (mutexes and condition variables)

e Dynamic linking

e malloc (POSIX memory allocation utility) or equivalent
¢ Input/output (I/0O) functions

¢ Berkeley Standard Distribution (BSD) sockets

e File system support

e Function libraries must be thread-safe. A thread blocking library should
not block any other VM threads.

The toolsJavaCodeCompaaind JavaMemberDependre part of the distribution.
JavaMemberDepengdenerates lists of dependencies at the class member level. T
existence oflavaCodeCompadmplies that preloading of classes is allowed in CDC.
Three profiles are defined for CDC:

Foundation Profile is a set of Java APIs that support resource-constrainedatevi
without a standards-based GUI system. The basic classiéibriiom the Java
standard editionj@va.io, java.lang andjava.net) are supported and a
connection frameworkj@vax.microedition.io)is added.

Personal Basis Profile is a set of Java APIs that support resource-constrained de-
vices with a standards-based GUI framework based on lightwecompo-
nents. It adds some parts of the Abstract Window Toolkit (A\WTpport (rel-
ative to JDK 1.1 AWT).

Personal Profile completes the AWT libraries and includes support for theletpp
interface.

Although a device can support multiple profiles additionatdries for RMI and
ODBC are known asptional packages
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4.3.3 Additional Specifications

The following specifications do not fit into the layer scherh@2ME. However, they
are defined in the same way as the above: subsets of the JVMibselts/extensions
of Java classes (API):

Java Card is a definition for the resource-constrained world of smards. The
execution lifetime of the JVM is the lifetime of the card. T&&éM is highly
restricted (e.g. no threads, data tyjet is optional) and defines a different
instructions set (i.e. new bytecodes to support smallegittypes).

Java Embedded Server is an API definition for services such as HTTP.

Personal Java was intended as a Java platform on Windows CE and is how marked
as end of life.

Java TV is an extension to produce interactive television contadtraanage digital
media. The description states that the JVM runs on top of a@RTbut no
real-time specific extensions are defined.

Other than Sun’s, the few specifications that exist for erdbddlava are:

leJOS [85] is a JVM for Lego Mindstorm with stronger restrictions ¢he core
classes than the CLDC.

RTDA [87] although named ‘Real-Time Data Access’ the definitionsists of two
parts:

e An I/O data access API specification applicable for reaktiand non
real-time applications.

e A minimal set of real-time extensions to enable the 1/0O datzss also
to cover hard real-time capable response handling.

4.3.4 Discussion

Many of the specifications (i.€onfigurationsand profileg are developed using the
Java Community Process (JCP). JCP is not an open standasditrjart of the open-
source concept. Although the acronym J2ME implies Javaorei (i.e. JDK 1.2
and later) almost all technologies under J2ME are still daseJDK 1.1.

Besides Java Card, CLDC is the ‘smallest’ definition from Silinassumes an
operating system and is quite large (the JAR file for the ekss about 450KB).
There are no API definitions for low-level hardware acceseDC is not suitable



4.4 REAL-TIME EXTENSIONS 41

for small embedded devices. Java Card defines a different ilgtvliction set and
thus compromises basic ideas of Java. A more restrictediti@iinvith following
features is needed:

e JVM restrictions, such as in CLDC 1.0
e A package for low-level hardware access
e A minimum subset of core libraries

¢ Additional profiles for different application domains

4.4 Real-Time Extensions

In 1999, a document defining the requirements for real-tiva dvas published by
NIST [47]. Based on these requirements, two groups definedfggations for real-

time Java. A comparison of these two specifications and a adsgm with Ada 95’s

Real-Time Annex can be found in [9]. The following sectioneg an overview of
these specifications and additional defined restrictionkeRTSJ.

4.4.1 Real-Time Core Extension

The Real-Time Core Extension [86] is a specification pullisbnder the J Consor-
tium. It is still in a draft version.

Two execution environments are defined: @@eenvironment is the special real-
time component. It can be combined with a traditional JVM,Blaseline For com-
munication between these two domains, every Core objediNm8Pls, one for the
Core domain and one for the Baseline domain. Baseline coemtecan synchronize
with Core components via semaphores.

Two forms of source code are supported to annotate attabstglizedcode with
calls of static methods of special classes symtacticcode with new keywords. Syn-
tactic code has to be processed by a special compiler orquegsor.

Memory A new object hierarchy witlforeObject as root is introduced. To over-
ride final methods fromdbject the semantics of the class loader is changed. It
replaces these methods with special named methods@oeeDbject. A Core task

is only allowed to allocate instances ©dreObject and its subclasses. These ob-
jects are allocated in a special allocation context or onstaek. The objects are
not garbage collected. However, an allocation context @aexplicit freed by the
application.
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Tasks and Asynchrony Core tasks represent the analogjaf’a.lang.Threads.

All real-time tasks must extentbreTask or one of its subclasses. No interface such
asjava.lang.Runnableis defined. Tasks are scheduled preemptive priority-based
(128 levels) with FIFO order within priorities. Time sligircan be supported, but is
not required.

Although stop () is depreciated in Java 2 it is allowed in thereTask for the
asynchronous transfer of control (besides a ddd€&vent). To prevent the problem
of inconsistent objects after stopping a taskaaomic synchronizedegion defers
abortion. A special task class is defined to implement iofgriservice routines.
The code for this handler is executatbmically and must be WCET analyzable.
SporadicTask is used to implement responses to sporadic events, trigdmsrén-
voking thetrigger() method of the task. No enforcement of a minimum time
between arrivals of events is available. No special evarissit types are defined for
periodic work. The methodsleep () andsTleepUntil() of CoreTask can be used
to program periodic activities.

Exceptions References from thegjava.lang.Throwable class hierarchy are
silently replaced by the class loader with referenceGotice classes. A new scoped
exception, which needs special support from the JVM, is ddfin

Synchronization ~ Javassynchronizedis only allowed orthis. To compensate for
this restriction additional synchronization objects sashsemaphores and mutexes
are defined. Queues on monitors, locks and semaphores aritypaind FIFO or-
dered. Priority inversion is avoided by using the priorigfliog emulation protocol.
To allow locks to be implemented without waiting queues, aCGask is not allowed
to execute a blocking operation while it holds a lock.

Helper Classes  The standard representation of time is a long (64-bit) etegth
nanosecond resolution. Aime class with static methods is provided for conver-
sions. A helper class supports treating signed integerasigned values. Low-level
hardware ports can be accessedii@ort.

4.4.2 Discussion of the RT Core

A new introduced object hierarchy and new language keywlmad to changes in
the class verifier and loader semantics. The behavior of\t llas changed, so it
would make sense to change the methodibgkct to fit to the Core definition. This
would result in a single object hierarchy. The restrictionsgnchronized disables

the elegant style of expressing general synchronizatioblems in Java.
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Although Nilsen lead the group, NewMonics PERC systems §tijports a dif-
ferent API.

4.4.3 Real-Time Specification for Java

The Real-Time Specification for Java (RTSJ) defines a new APl support from
the JVM [8]. The following guiding principles led to the défion:

e No restriction of the Java runtime environment

Backward compatibility for non-real-time Java programs

No syntactic extension to the Java language or new keywords

Predictable execution

Address current real-time system practice
¢ Allow future implementations to add advanced features

A Reference Implementation (RI) of the RTSJ forms part ofgpecification. The
RTSJ is backward compatible with existing non-real-timeaJarograms, which im-
plies that the RTSJ is intended to run on top of J2SE (and nd2ME). The follow-

ing section presents an overview of the RTSJ.

Threads and Scheduling  The behavior of the scheduler is clearer defined as in
standard Java. A priority-based, preemptive scheduldr atiteast 28 real-time pri-
orities is defined as base scheduler. Additional levels) fi@nthe traditional Java
threads need to be available. Threads with the same pravetgueued in FIFO order.
Additional schedulers (e.g. EDF) can be dynamically load€ke class Scheduler
and associated classes provide optional support for iégsdnalysis.

Any instances of classes that implement the interfacthedulable are
scheduled. In the RTSRealtimeThread, NoHeapRealtimeThread, and
AsyncEventHandler are schedulable objects NoHeapRealtimeThread has
andAsyncEventHandler can have a priority higher than the garbage collector. As
the available release-parameters indicate, threads #mer gieriodic or bound to
asynchronous events. Threads can be grouped togetherddharexecution cost
and deadline for a period.
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Memory As garbage collection is problematic in real-time applmad, the RTSJ
defines new memory areas:

Scoped memory is a memory area with bounded lifetime. When a scope is ahtere
(with a new thread or througénter()), all new objects are allocated in this
memory area. Scoped memory areas can be nested and sharegitaneads.
On exit of the last thread from a scope, all finalizers of thecalted objects are
invoked and the memory area is freed.

Physical memory is used to control allocation in memories with different esx
time.

Raw memory allows byte-level access to physical memory or memory-radpfoO.

Immortal memory is a memory area shared between all threads without a garbage
collector. All objects created in this memory area have #msslifetime as the
application (a new definition ammortal).

Heap memory is the traditional garbage collected memory area.

Maximum memory usage and the maximum allocation rate peathcan be limited.
Strict assignment rules between the different memory dnass to be checked by
the implementation.

Synchronization ~ The implementation ofynchronized has to include an algo-
rithm to prevent priority inversion. The priority inhentee protocol is the default
and the priority ceiling emulation protocol can be used @uest. Threads waiting
to enter a synchronized block are priority ordered and FlIFdem®d within each
priority. Wait free queues are provided for communicatie@iween instances of
java.lang.Thread andRealtimeThread.

Time and Timers  Classes to represent relative and absolute time with naonde
accuracy are defined. All time parameters are splittorag for milliseconds and an
int for nanoseconds within those milliseconds. Each time olijas an associated
Clock object. Multiple clocks can represent different sourcesnoé and resolution.
This allows for the reduction of queue management overhieadasks with different
tolerance for jitter. A new type, rationale time, can be usedescribe periods with
a requested resolution over a longer period (i.e. allowglgase jitter between the
points of theouter period). Timer classes can generate time-triggered eyents
shot and periodic).
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Asynchrony  Program logic representing external world events is sdeedand
dispatched by the scheduler. AsyncEvent object represents an external event
(such as a POSIX signal or a hardware interrupt) or an intesrent (through call of
fire()). Event handlers are associated to these events and canie toca regular
real-time thread or represent somethsgilar to a thread. The relationship between
events and handlers can be many-to-many. Release of hausdleibe restricted to a
minimum interarrival time.

Java’s exception handling is extended to represent asynchs transfer
of control (ATC). RealtimeThread overloads interrupt() to generate an
AsynchronousInterruptedException (AIE). The AIE is deferred until the
execution of a method that is willing to accept an ATC. Thehodtindicates this by
including AIE in its throw clause. The semanticsaftch is changed so that, even
when it catches an AIE, the AIE is still propagated until treppened() method
of the AIE is invoked. Timed, a subclass of AIE, simplifies the programming of
timeouts.

Support for the RTSJ  Implementations of the RTSJ are still rare and under devel-
opment:
RI is the freely available reference implementation for a kisystem [93].

jRate is an open-source implementation [19] based on aheadref-Gompilation
with the GNU compiler for Java.

FLEX is a compiler infrastructure for embedded systems devdl@peMIT [30].
Real-time Java is implemented with region-based memoryagement and a
scheduler framework.

OVM is an open-source framework for Java [74]. The emphasis & $viM that
is compliant with the RTSJ. RTSJ support is based on thelatims of the
complete Java application (including the library) to C ahdnt compiling it
into a native executable.

adile will support the RTSJ with CLDC 1.0 on top of the aJ-80 and @J-dhips.

4.4.4 Discussion of the RTSJ

The RTSJ is a complex specification leading to a big memoripfod. The follow-
ing list shows the size of the main components of the Rl onXinu

e Classes in javax/realtime: 343KB
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e All classes in library foundation.jar: 2MB
e Timesys JVM executable: 2.6MB

The RTSJ assumes an RTOS and the RI runs on a heavyweighh@X-dystem. The
RTSJ is too complex for low-end embedded systems. This aoxitplalso hampers
programming of high-integrity applications. The runtimemmory allocation of the
RTSJ classes has not been documented.

Threads and Scheduling  If a real-time thread is preempted by a higher priority
thread, it is not defined if the preempted thread is placeddntfor back of the
waiting queue. It is not specified whether the default scleedeerforms, or has to
perform, time slicing between threads of equal priority.

Memory It would be ideal if real-time systems were able to allocdter@&mory
during the initialization phase and forbid dynamic memdtgaation in the mission
phase. However, this restricts many of Java’s library fiomst

The solution to this problem in the RTSJSsopedMemory, a memory space with
limited lifetime. However, it can only be used as a paraméterthread creation
or with enter(Runnable r). In a system without dynamic thread creation, using
scoped memory at creation time of the thread leads to the baimavior as using
immortal memory.

The syntax withenter () leads to a cumbersome programming style: for each
code part where limited lifetime memory is needed, a newschas to be defined
problem elegantly with anonymous classes, as in Listinge@xample from [10], p.
623), leads to an error.

On every call ofcomputation(), an object of the anonymous class (and a
LTMemory object) is allocated in immortal memory, leading to a memeak. The
correct usage of scoped memory is shown as a code fragmerigting_4.3. The
classUseMem only exists to execute the methadn() in scoped memory. One
instance of this class is created outside of the scoped nyemor

A simpler syntax is shown in Listing 4.4. The main drawback of this ayris
that the programmer is responsible for its correct usage.

New objects and arrays of objects have to be initialized éir thefault value after
allocation [60]. This usually results in zeroing the memairthe JVM level and leads
to variable (but linear) allocation time. This is the reagarthe typeL TMemoryArea

2This syntax isnot part of the RTSJ. Is is a suggested change and part of théimeaprofile defined
in Section 6.1.
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import javax.realtime.x;
pubTlic class ThreadCode implements Runnable

{

private void computation()

{ final int min = 1x1024;
final int max = 1x1024;
final LTMemory myMem = new LTMemeory(min, max) ;
myMem.enter(new Runnable()
{
pubTic void run()
{
// access to temporary memory
{
} s
¥
pubTic void run()
{
computation();
¥

Listing 4.2: Scoped memory usage with a memory leak
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class UseMem implements Runnable {

public void run(Q {
// inside scoped memory
Integer[] = new Integer[100];

}

// outside of scoped memory

// in immortal? at initialization?
LTMemory mem = new LTMemory(1024, 1024);
UseMem um = new UseMem();

// usage
computation() {

mem.enter(um) ;
}

Listing 4.3: Correct usage of scoped memory in the RTSJ
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LTMemory myMem;

// Create the memory object once
// in the constructor
MyThread() {
myMem = new LTMemeory(min, max);

}

public void run(Q) {

myMem.enter();

{ // A new code block disables access
// to new objects in outer scope.
// Access to temporary memory:
Abc a = new Abc(Q);

}

myMem.exit();

Listing 4.4: Simpler syntax for scoped memory
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in the RTSJ. As suggested in [19], this initialization cobkllumped together with
the creation time and exit time of the scoped memory. Thigli®#n constant time
for allocation (and usually faster zeroing of the memory).

With the RTSJ memory areas, it is difficult to move data frore area to another
[70]. This results in a completely different programmingdebfrom that of standard
Java. This can result in the programmer developing his/her memory manage-
ment.

Time and Timers ~ Why is the time split into milliseconds and nanoseconds?
In the RI, it is converted to ns for add/subtract. After allppsng and convert-
ing (AbsoluteTime, HighResolutionTime, Clock and RealTimeClock) the
System.currentTimeMil1is () time, with a ms resolution, is used.

Since time triggered release of tasks can be modeled wiibdierthreads, the
additional concept of timers is superfluous.

Asynchrony  An unboundAsyncEventHandler is not allowed toenter() a
scoped memory. However, it is not clear if scoped memoryldsvald as a parameter
in the construction of a handler.

An unboundAsyncEventHandler leads to the implicit start of a thread on an
event. This can (and, in the RI, does — see [19]) lead to sutistaverheads. From
the application perspective, bound and unbound event éembehave in the same
way. This is an implementation hint expressed through iiffeclasses. A consistent
way to express th@nportanceof events would be a scheduling parameter for the
minimum allowed latency of the handler.

The syntax that is used in the throws clause of a method te #tat ATC will
be accepted is misleading. Exceptionsthrows clauses of a method are usually
generatedn that method and natccepted

J2SE Library It is not specified which classes are safe to be used in
RealTimeThread and NoHeapRealTimeThread. Several operating system func-
tions can cause unbound blocking and their usage shoulddigdeav The memory
allocation in standard JDK methods is not documented and tise in immortal
memory context can lead to memory leaks.

Missing Features  There is no concept such as start mission. Changing schgduli
parameters during runtime can lead to inconsistent scimegdioéhavior.

There is no provision for low-level blocking such as disalinterrupts. This is
a common technigue in device drivers where some hardwanmatipes have to be
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atomic without affecting the priority level of the requesfithread (e.g. a low priority
thread for a flash file system shall not get preempted duriotpserite as the chip
internal write starts after a timeout).

On Small Systems  Many embedded systems are still built with 8 or 16-bit CPUs.
32-bit processors are seldom used. Java’s default intggeris 32-bit, still large
enough for almost all data types needed in embedded systEmesdesign decision

in the RTSJ to use (often expensive) 64-hg data is questionable.

4.4.5 Subsets of the RTSJ

The RTSJ is complex to implement and applications develapitid the RTSJ are
difficult to analyze (because of some of the sophisticatatlifes of the RTSJ). Var-
ious profiles have been suggested for high-integrity riead-applications that result
in restrictions of the RTSJ.

A Profile for High-Integrity Real-Time Java Programs

In [79], a subset of the RTSJ for the high-integrity applimatdomain with hard real-
time constraints is proposed. It is inspired by the Ravensie#ile for Ada [24] and
focuses on exact temporal predictability.

Application structure: ~ The application is divided in two different phaséstializa-
tion andmission All non time-critical initialization, global object altmtions,
thread creation and startup are performed in the inititatimgphase. All classes
need to be loaded and initialized in this phase. The misdiase starts after
returning frommain(), which is assumed to execute with maximum priority.
The number of threads is fixed and the assigned prioritiesireomchanged.

Threads: Two types of tasks are defineBeriodic time-triggered activitieexecute
an infinite loop with at least one call efaitForNextPeriod(). Sporadic
activitiesare modeled with a new claSporadicEvent. A SporadicEvent
is bound to a thread and an external event on creation. Unbexent handlers
are not allowed. It is not clear if the event can also be trigdeby software
(invocation offire()). Arestriction for a minimum interarrival time of events
is not defined. Timers are not supported as time-triggeréditaes are well
supported by periodic threads. Asynchronous transfersmfal, overrun and
miss handles and calls td eep () are not allowed.

Concurrency: Synchronized methods with priority ceiling emulation al pro-
vide mutual exclusion to shared resources. Threads aratdigd in FIFO
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order within each priority level. Sporadic events are usestieiad ofwait(),
notify() andnotifyAl1() for signaling.

Memory: Since garbage collection is still not time-predictablesihot supported.
This implicitly converts the traditional heap to immortalemory. Scoped
memory (TMemory) is provided for object allocation during the mission
phase.LTMemory has to be created during the initialization phase withahiti
size equal maximum size.

Implementation:  For each thread and for the operations of the JVM the WCET must
be computable. Code is restricted to bound loops and bowudsiens. Anno-
tations for WCET analysis are suggested. The JVM needs ttkdhe timing
of events and thread execution. It is not stated how the JVddighreact to a
timing error.

Ravenscar-Java

The Ravenscar-Java (RJ) profile [56] is a restricted subdgbedrTSJ and is based
on the work mentioned above. As the name implies it resenitdeenscar Ada [24]
concepts in Java.

To simplify the initialization phase, RJ defin@aitializer, a class that has
to be extended by the application class which contai@in (). The use of time
scoped memory is further restrictedTMemory areas are not allowed to be nested
nor shared between threads. Traditional Java threadssaiodied by changing the
classjava.lang.Thread. The same is true for all schedulable objects from the
RTSJ. Two new classes are defined:

e PeriodicThread whererun() gets called periodically, removing the loop
construct withwaitForNextPeriod().

e SporadicEventHandler binds a single thread with a single event. The event
can be an interrupt or a software event.

Criticisms of Subsets of the RTSJ

If a new real-time profile is defined as a subset of the RTSJharider for the pro-
grammer to find out which functions are available or not. Toisn of compatibility
causes confusion. The use of different classes for a diffeqgecification is clearer
and less error prone.

Ravenscar-Java, as a subset of the RTSJ, claims to be cblapaiih the RTSJ,
in the sense that programs written according to the profdevalid RTSJ programs.
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However, mandatory usages of new classes sudteesodicThread need an em-
ulation layer to run on an RTSJ system. In this case, it issbétt define complete
new classes for a subset and provide the mapping to the RTi&Jallows a clearer
distinction to be made between the two definitions.

It is not necessary to distinguish between heap and immertahory. Without a
garbage collector, the heap implicitly equals to immortaihmory.

Objects are allocated in immortal memory in the initiaiaatphase. In the mis-
sion phase, no objects should be allocated in immortal mgm8coped memory
can be entered and subsequent new objects are allocatezlsodped memory area.
Since there are no circumstances in which allocation iretivr® memory areas are
mixed, nonewInstance() such as those in the RTSJ or Ravenscar-Java are neces-
sary.

4.4.6 Extensions to the RTSJ

The Distributed Real-Time Specification for Java [46] egeRMI within the RTSJ.

In 2000, it was accepted in the Sun Community Process as 0SRhis specification

is still under development. According to [94], three levalsntegration between the
RTSJ and RMI are defined:

Level 0: No changes in RMI and the RTSJ are necessary. The proxy tioresue
server acts as an ordinary Java thread. Real-time threadstcassume timely
delivery of the RMI request.

Level 1: RMIis extended to Real-Time RMI. The server thread is a tiead-thread
that inherits scheduling parameters from the calling tlien

Level 2: RMI and the RTSJ are extended to form the concepligifibuted real-time
threads These threads have a unique system-wide identifier and cae m
freely in the distributed system.

4.5 Summary

In this section, we described definitions for embedded @svgiven by Sun. Most
of these definitions are targeted for the mobile phone markdtnot for classical
embedded systems.

Standard Java is under-specified for real-time systems.cowpeting definitions,
the ‘Real-Time Core Extension’ and the ‘Real Time Speciftcator Java’, address
this problem. The RTSJ has been further restricted for mgggrity applications.
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A similar definition that avoids inheritance of complex RT&dsses is provided in
Section 6.1.



5 JOP Architecture

This chapter presents the architecture for JOP and the atiotivbehind the various
different design decisions we faced. First, we benchmagkthV, in order to extract
execution frequencies for the different bytecodes. Thedaeg will then guide the
processor design.

Pipelined instruction processing calls for a high memomdvédth. Caches are
needed in order to avoid bottlenecks resulting from the memory bandwidth. As
seen in Chapter 2, there are two memory areas that are friyjaesessed by the
JVM: the stack and the method area. In this chapter, we walig@nt time-predictable
cache solutions for both areas.

5.1 Benchmarking the JVM

The rationale behind this section is best introduced wighviarning from Computer
Architecture: A Quantitative Approach [40] p. 63:

Virtually every practicing computer architect knows Amtshaw. De-
spite this, we almost all occasionally fall into the trap afpending
tremendous effort optimizing some aspect of a system beferenea-
sure its usage. Only when the overall speedup is unrewauttnge
recall that we should have measured the usage of that fdadfwee we
spent so much effort enhancing it!

We measured how Java programs use the bytecode instrueti@ma explored the
typical and worst-case method sizes. Our measurementsthadreports are pre-
sented in the following sections.

5.1.1 Bytecode Frequency

The dynamic instruction frequency is the main measuren@nddtermining a pro-
cessor implementation. We can identify those instructitwas should be fast. For
seldom-used instructions, a trade-off can be made betwedarmance and hard-
ware resources.
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Many reports have been written about JVM bytecode freqesn.g. [34, 81,
73]). Most of these reports provide only a coarse categioizaf the bytecodes. For
example, the bytecodeis oad_n (load anint from a local variable) andetfield
(fetch a field from an object) are combined in one instructiategory. However,
these instructions are very different in terms of their iempéntation complexity. We
have chosen a fine-grained categorization of the bytecodgn greater insight into
the bytecode usage. In Table 5.1 all 201 bytecode instngtipe listed by category.

Three different applications were run on an instrumentedd &/measure dynamic
bytecode frequency. The results were compared with thdtseom the above-
mentioned reports. In Table 5.2 the dynamic instructiomtdor the three different
benchmarks is shown. The last column is the average of tke thsts weighted by
the individual instructions count.

Kaffe [48] is an independent implementation of the JVM dlstred under the
GNU Public License. Kaffe was instrumented to collect datadlgnamic bytecode
usage. Three different applications were used as bencknadbtain the dynamic
instruction count: JLex, KCJ and javac. JLex [6] is a lexiaaklyzer generator,
written for Java in Java. The data was collected by runnirexJkith the provided
sample.lex as the input file. KJC [31] is a Java compiler in Java, freelgilable
under the terms of the GNU General Public License. javacesStn Java com-
piler. Both compilers were compiling part of the KJC sourdasng the benchmark.
These benchmarks are similar to the benchmarks used inrefhents and the results
are therefore comparable. However, typical embedded @gtighs can result in a
slightly different instruction set usage pattern. Embelddpplications are usually
tightly connected with the environment and are therefoteamailable as stand-alone
programs to serve as benchmark. An embedded applicationvidsadeveloped on
JOP was adapted to serve as benchmark for Section 5.8 ante€hiap

In [25] the relationship between static and dynamic ingtomcfrequency of 19
programs from the SPECjvm98 [17] and Java Grande benchnuétsk vsere mea-
sured. The bytecodes categories were chosen differentfr@above measurements,
but detailed enough to verify our own measurements. TalBlestBows the average
dynamic execution frequency in percemif selected bytecode categories from the
SPEC and Java Grande benchmarks, compared with the relstaisen by our mea-
surements. The numbers in bold are categories or sums gfocege that are com-
parable. The frequency of the load & const instructions 1y g@milar to that in our
measurements. However, field access, control instrucaoksmethod invocations
are more frequent in our measurements. The higher countldrafieess instructions
and method invocation can result from a more object orieptedramming style in

1The values do not add up to 100% as only the most significaetbye categories are shown
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Type

Bytecode

load
load (short)

store
store (short)

const
const (short)

get
put
alu

iinc
stack
array

branch

compare
switch

call

return
conversion
new

other

aload, dload, fload, iload, lload

aload, aloadl, aload2, aload3,
dload O, dload1, dload?2, dload3,
fload.0, fload 1, fload 2, fload 3,
iload.0, iload 1, iload 2, iload 3,
lload 0, lload 1, lload 2, lload 3

astore, dstore, fstore, istore, Istore

astor®, astorel, astore2, astore3,
dstore0, dstorel, dstore2, dstore3,
fstore O, fstorel, fstore2, fstore 3,
istore 0, istorel, istore2, istore3,
Istore 0, Istorel, Istore?2, Istore3

bipush, Idc, Idev, Idc2.w, sipush

aconstull, dconst0, dconstl, fconstO, fconst1, fconst2,
iconst0, iconst1, iconst2, iconst3, iconst4, iconst5,
iconstm1, IconstO, Iconst1

getfield, getstatic

putfield, putstatic

dadd, ddiv, dmul, dneg, drem, dsub,
fadd, fdiv, fmul, fneg, frem, fsub,
iadd, iand, idiv, imul, ineg, ior, irem, ishl, ishr, isub sior, ixor,
ladd, land, Idiv, Imul, Ineg, lor, Irem, Ishl, Ishr, Isubslor, Ixor
iinc

dup, dupxl, dupx2, dup2, dup21, dup2x2, pop, pop2, swap
aaload, aastore, baload, bastore, caload, castdoadddastore,
faload, fastore, iaload, iastore, laload, lastore, salsastore
goto, gotav, if_acmpeq, ifacmpne, ificmpeq,
if _icmpge, iticmpgt, if.icmple, if.icmplt, if_icmpne,

ifeq, ifge, ifgt, ifle, iflt, ifne, ifnonnull, ifnull

dcmpg, dempl, fcmpg, fempl, lcmp

lookupswitch, tableswitch

invokeinterface, invokespecial, invokestatic, ikewairtual
areturn, dreturn, freturn, ireturn, Ireturn, retur

d2f, d2i, d2l, f2d, f2i, f2l, i2b, i2c, i2d, i22l i2s, 12d, |12f, 12i
anewarray, multianewarray, new, newarray

arraylength, athrow, checkcast, instanceof, jswjs
monitorenter, monitorexit, nop, ret, wide

Table 5.1: The 201 Java bytecodes and their assignment to differeegaaes
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JLex KJC javac Average
load (short) 32.72 31.45 27.24 30.37
get 12.02 14.39 17.04 15.04
branch 11.26 10.40 10.71 10.49
invoke 6.87 6.31 4.24 5.77
return 6.82 6.20 4.17 5.68
load 759 4.19 7.48 5.09
alu 260 4.43 4.74 4.48
const (short) 4.61 4.26 4.74 4.39
array 422 407 3.22 3.85
put 0.78 214 3.65 2.52
iinc 181 238 141 2.12
stack 1.30 211 211 2.10
store (short) 261 218 171 2.06
other 163 222 121 1.95
const 0.85 156 2.80 1.87
store 205 085 194 1.15
conversion 0.02 0.36 0.58 0.42
switch 0.00 0.20 0.60 0.30
new 0.08 0.28 0.20 0.25
compare 0.14 0.03 0.22 0.08

Table 5.2: Dynamic bytecode frequency in %
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JLex, KJC and javac

SPEC and Java Grande

Instruction Frequency Instruction Frequency
load (short) 30.37 acnst 0.07
load 5.09 aload 16.23
const (short) 4.39 fenst 0.33
const 1.87 fload 6.33
icnst 3.21
iload 18.06
load & const 41.72 44,77
get 15.04 field 11.12
put 2.52
field access 17.56 11.12
branch 10.49 cjump 5.67
compare 0.08 ujump 0.51
control 10.57 6.18
invoke 5.77 fcall 3.63
return 5.68 retrn 2.07

Table 5.3: Dynamic bytecode frequency compared with the measurenfrems[25]
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virtual special static interface

Java Grande 57.1 87 34.2 0.0
SPEC JVYM98 81.0 10.9 2.9 5.2

Table 5.4: Types of different dynamic method calls for two benchmafksng [76])

our selected applications than in the SPEC and Java Gramdfibarks. The big
difference, not seen in our measurements, between thearaolt return frequency
in the SPEC and Java Grande benchmarks is not explained]in [25

In all measurements, the load of local variables and cotsstamto the stack ac-
counts for more than 40% of instructions executed. Thisufeashows that an effi-
cient realization of the local variable memory area, thelstand the transfer between
these memory areas is mandatory.

The next most executed bytecodgsffieldandgetstatic)are the instructions
that load an object or class field onto the operand stack. dauat for these frequent
instructions, the class layout for the runtime system haset@ptimized for quick
resolution of field addresses (i.e. minimum memory indioas).

The frequency of branches is comparable with the SPECiGt208asurements
on RISC processors [40]. With such a high branch frequengypeessor without
branch prediction logic is put under pressure in terms oélpig length.

It is interesting to note that there are more method invokéruigtions than return
instructions. Two facts are responsible for this diffee=rmative methods are invoked
by a bytecode, but the return is inside the native methodbaarexception can result
in a method exit without return.

5.1.2 Methods Types and Length

Table 5.4 shows the number of dynamic method calls of the &Gamde and
SPECjvm98 benchmarks. It can be seen that the distributfomeihod types
depends on the application type. Usage of virtual methodsrdarfaces is common
in OO programming. Static methods result from the simplediation of procedural
programs to Java.

As a basis for the proposed cache solution in Section 5.8, Wexplore static
distribution of method sizes. In the JVM, only relative xhas are defined. The
conditional branches and goto have an offset of 16 bits)tregun a practical limit
of the method length of 32KB. Although there is a goto indinrcwith a wide index
(gotaw) that takes a 4-byte branch offset, other factors (e.gcewdin the exception
table) limit the size of a method to 65535 bytes.
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Length Methods Percentage Cumulative

percentage

1 1,388 1.94 1.94

2 1,580 2.21 4.16

4 1,871 2.62 6.78

8 16,192 22.67 29.45

16 12,363 17.31 46.76

32 12,638 17.70 64.45

64 11,178 15.65 80.10
128 7,287 10.20 90.31
256 4,304 6.03 96.33
512 1,727 2.42 98.75
1,024 592 0.83 99.58
2,048 175 0.25 99.83
4,096 75 0.11 99.93
8,192 37 0.05 99.98
16,384 11 0.02 100.00
32,768 1 0.00 100.00
65,536 0 0.00 100.00

Table 5.5: Static method count of different sizes from the runtimediyr(JDK 1.4).

Radhakrishnan et al. [81] measured the dynamic method $ideedSPEC suit.
They observed a ‘tri-nodal’ distribution, where most of thethods were 1, 9, or 26
bytecodes long. No explanation is given for the sizes of 9%orThe explanation of
the 1 bytecode long methods asapper methodss wrong. For a wrapper method,
the method needs to contain a minimum of two instructiondrigoke and a return).
A single instruction method caonly contain a return. However, this observation is
in sharp contrast to the measurements obtained by Power althtd in [76].

In Table 5.5, the number of methods of different sizes in thea Juntime library
(JDK 1.4) is shown. The library consists of 71419 methods léingest being 16706
bytes. The size is classified by powers of 2 because we arestee in the size of
cache memory for complete methods. In the table, the ronwoofexample, size 32
includes all methods of a size from 17 to 32 bytes. It can ba Hest methods are
typically very short. In fact, 99% of the methods are less1tha3 bytes in size. This
property is important for the proposed method cache in 8&e&ti8, where a complete
method has to fit into the instruction cache.

All larger methods are different kinds of initializationrfetions, in most cases
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Figure 5.1: Static method count for methods of size up to 32 bytes in th¢ 12
runtime library. The horizontal axis indicates the methize.s

<clinit>()2 The large class initialization methods typically resutiri the ini-
tialization of arrays with constant data. This is necessmgause of the lack of
initialized data segments, such as the BSS in C, in the Jass ¢ile. These ini-
tialization methods contain straight-line code and cametfoee be split to smaller
methods automatically, if necessary.

In Figure 5.1, the distribution of small methods up to a siz82bytes is shown.
Figure 5.2 shows the method count for methods up to 300 bytssxpected, we
see fewer methods as size increases. We observed no sunptise distribution,
unlike the ‘tri-nodal’ distribution in [81]. The only metliosize that is very common
is 5 bytes. These methods are the typical setter and gettbodsein object-oriented
programming as shown in Listing 5.1.

The methodyetval () translates to three bytecodes of 1, 3 and 1 bytes in length
respectively. These methods should show up in [81] as a pelkydecodes.

The static distribution of method sizes in an applicati@vdg, the Java compiler)
is quite similar to the distribution in the library. In theask file that contains the Java
compiler, 98% of the methods are smaller than 513 bytes,tenthtger methods are
class initializers.

2The class or interface initialization method is static ahel $pecial namecclinit> is supplied by
the compiler. These initialization methods are invokedliaiy by the JVM. The definition when
these methods get invoked is problematic for the WCET aisa(gse Section 4.2).
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Figure 5.2: Static method count from the JDK 1.4 runtime library. Theiramtal
axis indicates the method size in bytes.

private int val;

public int getvVal(Q {
return val;

}

public int getVal(Q);

Code:

0: aload.0

1: getfield #2; //Field val:I
4: ireturn

Listing 5.1: Bytecodes for a getter method
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5.1.3 Summary

In this section, we performed dynamic measurements on tié iligtruction set.

We saw that more than 40% of the executed instructions aed \@ciables or con-
stants loads onto the stack. This high frequency of stacksaccalls for an efficient
implementation of the stack, as described in Section 5.5.

In addition, we have statically measured method sizes. ddistlare typically very
short. 30% of the methods are shorter than 9 bytes and 99%r@cioy methods of
up to 512 bytes. The maximum length is further limited by te&nition of the class
file. We will use this property in the proposeaethod caché Section 5.8.

Instruction-usage data is an important input for the desitgaprocessor architec-
ture, as seen in the following sections.

5.2 Overview of JOP

This section gives an overview of JOP architecture. FiguBeshows JOP’s major
function units. A typical configuration of JOP contains thleqessor core, a mem-
ory interface and a number of 10 devices. The module extansiovides the link
between the processor core, and the memory and 10 modules.

The processor core contains the four pipeline stdggscode fetchmicrocode
fetch decodeandexecute The ports to the other modules are the address and data
bus for the bytecode instructions, the two top elementsaétack (A and B), input to
the top-of-stack (Data) and a number of control signals.ré&eno direct connection
between the processor core and the external world.

The memory interface provides a connection between the mamory and the
processor core. It also contains the bytecode cache. Thasah module controls
data read and write. THeusysignal is used by the microcode instructieai t to
synchronize the processor core with the memory unit. The peads bytecode in-
structions through dedicated buses (BC address and BCfdatajhe memory sub-
system. The request for a method to be placed in the cachef@smped through the
extension module, but the cache hit detection and load feqpeed by the memory
interface independently of the processor core (and thexefoncurrently).

The I/O interface contains peripheral devices, such asysiers time and timer
interrupt, a serial interface and application-specificices. Read and write to and

3The busy signal can also be used to stall the whole procegseline. This was the change made to
JOP by Flavius Gruian [35]. However, in this synchronizatioode, the concurrency between the
memory access module and the main pipeline is lost.
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Figure 5.3: Block diagram of JOP
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from this module are controlled by the extension module. ektiernal devicesare
connected to the I/O interface.

The extension module performs three functions: (a) it dosthardware accelera-
tors (such as the multiplier unit in this example), (b) thetcol for the memory and
the I/O module, and (c) the multiplexer for the read data ihaiaded in the top-of-
stack register. The write data from the top-of-stack (A)asrmected directly to all
modules.

The division of the processor into those four modules gyesithplifies the adap-
tation of JOP for different application domains or hardwalaforms. Porting JOP
to a new FPGA board usually results in changes in the memodute@lone. Using
the same board for different applications only involves mglchanges to the 1/0O
module. JOP has been ported to several different FPGAs anokyping boards and
has been used in different applications (see Chapter 7it ewer proved necessary
to change the processor core.

5.3 Microcode

The following discussion concerns two different instrantisets:bytecodeand mi-
crocode Bytecodes are the instructions that make up a compiledptagaam. These
instructions are executed by a Java virtual machine. The ddg& not assume any
particular implementation technology. Microcode is theugginstruction set for JOP.
Bytecodes are translated, during their execution, into d@fPocode. Both instruc-
tion sets are designed for an extertisthck machine.

5.3.1 Translation of Bytecodes to Microcode

To date, no hardware implementation of the JVM exists thatgable of executing
all bytecodes in hardware alone. This is due to the followingnestytecodes, such
asnew, which creates and initializes a new object, are too comi@eérmplement in
hardware. These bytecodes have to be emulated by software.

To build a self contained JVM without an underlying opergtgystem, direct ac-
cess to the memory and I/O devices is hecessary. There argetmbes defined for
low-level access. These low-level services are usually@mpnted innative func-
tions, which means that another language (C) is native tpribeessor. However, for

4The external device can be as simple as a line driver for thal seterface that forms part of the
interface module, or a complete bus interface, such as th&US used to connect e.g. an Ethernet
chip.

5An extended stack machine is one in which there are instmgtavailable to access elements deeper
down in the stack.
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Java Jump JOP microcode
bytecode table
. iadd: add nxt
iload_1 &dmul Csub: sub nxt
idiv .
i &f di v idiv: stmb
I. St ore_3 &ddi v stma
ldmc nxt
Java instruction Startaddress of idiv irem stmb
(e.g. 0x6¢) in JVM ROM \f

Figure 5.4: Data flow from the Java program counter to JOP microcode

a Java processor, bytecode is tiaivelanguage.

One way to solve this problem is to implement simple bytesddéhardware and
to emulate the more complex amative functions in software with a different in-
struction set (sometimes called microcode). However, agasor with two different
instruction sets results in a complex design.

Another common solution, used in Sun’s picoJava [89], isxiecate a subset of
the bytecode native and to use a software trap to executenfaimder. This solution
entails an overhead (a minimum of 16 cycles in picoJava, s&)Jor the software
trap.

In JOP, this problem is solved in a much simpler way. JOP hdsglesative
instruction set, the so-called microcode. During execytevery Java bytecode is
translated to either one, or a sequence of microcode inigtngc This translation
merely adds one pipeline stage to the core processor antisr@suno execution
overheads. With this solution, we are free to define the JGfuiction set to map
smoothly to the stack architecture of the JVM, and to find atruction coding that
can be implemented with minimal hardware.

Figure 5.4 gives an example of this data flow from the Javarprogcounter to
JOP microcode. The fetched bytecode acts as an index fourttye table. The jump
table contains the start addresses for the JVM implementati microcode. This
address is loaded into the JOP program counter for everg@géeexecuted.

Every bytecode is translated to an address in the microdwatearplements the
JVM. If there exists an equivalent JOP instruction for théebgde, it is executed in
one cycle and the next bytecode is translated. For a morelegroptecode, JOP just
continues to execute microcode in the subsequent cycleseiith of this sequence is
coded in the microcode instruction (as ting bit).
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5.3.2 Compact Microcode

For the JVM to be implemented efficiently, the microcode lefit to the Java byte-
code. Since the JVM is a stack machine, the microcode is tds&-sriented. How-
ever, the JVM is not a pure stack machine. Method parametetdoaal variables
are defined alcals These locals can reside in a stack frame of the method and are
accessed with an offset relative to the start of ibcals area.

Additional local variables (16) are available at the micrde level. These variables
serve as scratch variables, like registers in a conventi©R&). However, arithmetic
and logic operations are performed on the stack.

Some bytecodes, such as ALU operations and the short foresatdocals are
directly implemented by an equivalent microcode instarcijwith a different encod-
ing). Additional instructions are available to accessrimdregisters, main memory
and 1/0 devices. A relative conditional branch (zero/nomz# TOS) performs con-
trol flow decisions at the microcode level. For optimum uséhefavailable memory
resources, all instructions are 8 bits long. There are nabia-length instructions
and every instruction, with the exceptionwdit, is executed in a single cycle. To
keep the instruction set this dense, two concepts are applie

Two types of operands, immediate values and branch diganoemally force an
instruction set to be longer than 8 bits. The instructioniseither expanded to 16
or 32 bits, as in typical RISC processors, or allowed to beapiable length at byte
boundaries. A first implementation of the JVM with a 16-bitiiction set showed
that only a small number of different constants are necedsarimmediate values
and relative branch distances.

In the current realization of JOP, the different immediatkigs are collected while
the microcode is being assembled and are put into the in#t#n file for the local
RAM. These constants are accessed indirectly in the sameasvide local variables.
They are similar to initialized variables, apart from thetfthat there are no opera-
tions to change their value during runtime, which would sar@ purpose and would
waste instruction codes.

A similar solution is used for branch distances. The asseng#@nerates a VHDL
file with a table for all found branch constants. This tableé@exed using instruction
bits during runtime. These indirections during runtime mélpossible to retain an 8-
bit instruction set, and provide 16 different immediateues and 32 different branch
constants. For a general purpose instruction set, thegedtidns would impose too
many restrictions. As the microcode only implements the JWh\s solution is a
viable option.

To simplify the logic for instruction decoding, the insttion coding is carefully
chosen. For example, one bit in the instruction specifieshnehe instruction will
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increment or decrement the stack pointer. The offset tossctteelocalsis directly
encoded in the instruction. This is not the case for the waigéncoding of the equiv-
alent bytecodes (e.gload_0 is Ox1a andload_1 is Ox1b). Whenever a multiplexer
depends on an instruction, the selection is directly enddaléhe instruction.

5.3.3 Instruction Set

JOP implements 43 different microcode instructions. Tliesteuctions are encoded
in 8 bits. With the addition of thext andopd bits in every instruction, the effective
instruction length is 10 bits.

Bytecode equivalent: These instructions are direct implementations of bytesode
and result in one cycle execution time for the bytecode (eixse and 1d):
pop, and, or, xor, add, sub, st<n>, st, ushr, shl, shr, nop, Td<n>, 1d,
dup

Local memory access:  The first 16 words in the internal stack memory are reserved
for internal variables. The next 16 words contain constaiiisese memory
locations are accessed using the following instructicnst, 1dm, 1d1i

Register manipulation:  The stack pointer, the variable pointer and the Java program
counter are loaded or stored withitvp, stjpc, stsp, 1dvp, 1djpc, 1dsp

Bytecode operand: The operand is loaded from the bytecode RAM, converted to a
32-bit word and pushed on the stack wiilt opd_8s, 1d_opd_8u, 1d_opd_16s,
Td_opd_16u

External memory access: The autonomous memory subsystem is accessed using
the following instructions: stmra, stmwa, stmwd, wait, Tdmrd, stbcrd,
Tdbcstart

IO device access: The following instructions permit access to the 10 subsyste
stioa, stiod, 1diod

Multiplier:  The multiplier is accessed witB:tmu1, Tdmu1

Microcode branches: Two conditional branches in microcode are availabte,
bnz

Bytecode branch: All 17 bytecode branch instructions are mapped to one iastru
tion: jbr

A detailed description of the microcode instructions carfidomd in Appendix C.



70 5 JOP ARCHITECTURE

5.3.4 Bytecode Example

The example in Listing 5.2 shows the implementation of alsiegcle bytecode and
an infrequent bytecode as a sequence of JOP instructioribislexample, thelup
bytecode is mapped to the equivaleiap microcode and executed in a single cycle,
whereasdup x1 takes five cycles to execute, and after the last instrucflam (a
nxt), the first instruction for the next bytecode is executed.

dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables for the

// JVM code.

dup_x1l: stm a // save TOS
stm b // and TO0S—1
Tdm a // duplicate former TOS
Tdm b // restore TOS—1

Tdm a nxt // restore TOS and fetch next bytecode
Listing 5.2: Implementation otlup anddup_x1

Some bytecodes are followed by operands of between one aradliiites in length
(exceptlookupswitch andtableswitch). Due to pipelining, the first operand byte
that follows the bytecode instruction is available whenfitst microcode instruction
enters the execution stage. If this is a one-byte long oplerians ready to be ac-
cessed. The increment of the Java program counter afteediokeaf an operand byte
is coded in the JOP instruction (apd bit similar to thenxt bit).

In Listing 5.3, the implementation afipush is shown. The bytecode is followed
by a two-byte operand. Since the access to bytecode memamjyisne byte per cy-
cle,opdandnxtare not allowed at the same time. This implies a minimum ei@cu
time ofn+ 1 cycles for a bytecode with operand bytes.

sipush: nop opd // fetch next byte
nop opd // and one more
1d_opd_16s nxt // load 16 bit operand

Listing 5.3: Bytecode operand load

5.3.5 Flexible Implementation of Bytecodes

As mentioned above, some Java bytecodes are very complexsd@ution already
described is to emulate them through a sequence of micrdostteictions. How-
ever, some of the more complex bytecodes are very seldom Usddrther reduce
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the resource implications for JOP, in this case local memoytecodes can even
be implemented bysing Java bytecodes. During the assembly of the JVM, all la-
bels that represent an entry point for the bytecode impl¢atien are used to gen-
erate the translation table. For all bytecodes for which uhdabel is found, i.e.
there is no implementation in microcode hat-implementediddress is generated.
The instruction sequence at this address invokes a statfwohérom a system class
(com.jopdesign.sys.JVM). This class contains 256 static methods, one for each
possible bytecode, ordered by the bytecode value. The dje¢eis used as the index

in the method table of this system class. As described in@ebt6, this feature also
allows for the easy configuration of resource usage verstisrpgence.

5.3.6 Summary

In order to handle the great variation in the complexity ofalaytecodes we have
proposed a translation to a different instruction set, thhealed microcode. This
microcode is still an instruction set for a stack machiné rbore RISC-like than the
CISC-like JVM bytecodes.

In the next section we will see how this translation is haddte JOP’s pipeline
and how it can simplify interrupt handling.

5.4 The Processor Pipeline

JOP is a fully pipelined architecture with single cycle axém of microcode instruc-
tions and a novel approach to mapping Java bytecode to th&sedtions. Figure 5.5
shows the datapath for JOP.

Three stages form the JOP core, executing microcode itisingsc An additional
stage in the front of the core pipeline fetches Java bytexedne instructions of
the JVM — and translates these bytecodes into addressescinamile. Bytecode
branches are also decoded and executed in this stage. Tdredsgipeline stage
fetches JOP instructions from the internal microcode mgnaord executes mi-
crocode branches. Besides the usual decode function, ithepipeline stage also
generates addresses for the stack RAM. As every stack negicisimuction has either
pop or pushcharacteristics, it is possible to generate fill or spill m3ddes for the
following instruction at this stage. The last pipeline stage perfokirld operations,
load, store and stack spill or fill. At the execution stagegraions are performed
with the two topmost elements of the stack.

The stack architecture allows for a short pipeline, whickuhes in short branch
delays. Two branch delay slots are available after a camditimicrocode branch.
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Figure 5.5: Datapath of JOP

The method cacheéBfitecode RAY microcode ROM, and stack RAM are imple-
mented with single cycle access in the FPGA's internal mésor

5.4.1 Java Bytecode Fetch

In the first pipeline stage, as shown in Figure 5.6, the Javacbyes are fetched
from the internal memoryBytecode RAM The bytecode is mapped through the
translation table into the addreggdddr) for the microcode ROM.

The fetched bytecode results in an absolute jump in the moc® (the second
stage). If the bytecode is mapped one-to-one with a JORupi&in, the following
fetched bytecode again results in a jump in the microcodbarfdllowing cycle. If
the bytecode is a complex one, JOP continues to execute codeo At the end of
this instruction sequence the next bytecode, and theréiereew jump address, is
requested (signaixt).

The bytecode RAM serves as instruction cache and is filled ethod invoke
and return. Details about this time-predictable instarctcache can be found in
Section 5.8.

The bytecode is also stored in a register for later use as eraong (requested by
signalopd). Bytecode branches are also decoded and executed indhis. sBince
jpcis also used to read the operands, the program counter id sgyebr during an
instruction fetch.jinstr is used to decode the branch type @oabr to calculate the
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Figure 5.6: Java bytecode fetch

branch target address.

5.4.2 JOP Instruction Fetch

The second pipeline stage, as shown in Figure 5.7, fetchesriiructions from the
internal microcode memory and executes microcode branches

The JOP microcode, which implements the JVM, is stored imleegocode ROM.
The program countgrcis incremented during normal execution. If the instruci®n
labeled withnxta new bytecode is requested from the first stageparisiioaded with
jpaddr. jpaddr is the starting address for the implementation of that mdec The
label nxt is the flag that marks the end of the microcode instructiogasir for one
bytecode. Another flagypd, indicates that a bytecode operand needs to be fetched in
the first pipeline stage. Both flags are stored in a table shatlexed by the program
counter.

brdly contains the target address for a conditional branch. Tine séfset is shared
by a number of branch destinations. A talideafch offsétis used to store these rel-
ative offsets. This indirection means that only 5 bits nedokt used in the instruction
coding for branch targets and thereby allow greater offSdie three tableBC fetch
table branch offseandtranslation table(from the bytecode fetch stage) are gener-
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Figure 5.7: JOP instruction fetch

ated during the assembly of the JVM code. The outputs ara MEIDL files. For
an implementation in an FPGA, recompiling the design aftemnging the JVM im-
plementation is a straightforward operation. For an ASI@ailoadable JVM, it is
necessary to implement a different solution.

FPGAs available to date do not allow asynchronous memorgsaccThey there-
fore force us to use the registers in the memory blocks. Hewéhe output of these
registers is not accessible. To avoid having to create aitiaualal pipeline stage
just for a register-register move, the read address regitiie microcode ROM is
clocked on the negative edge.

An alternative solution for this problem would be to use thipat of the multi-
plexer for thepc and the read address register of the memory. However, thisso
results in a longer critical path, as the multiplexer canarger be combined with
the flip-flops that form th@cin the same LCs. This is an example of how implemen-
tation technology (the FPGA) can influence the architecture

5.4.3 Decode and Address Generation

Besides the usual decode function, the third pipeline, asshn Figure 5.8, also
generates addresses for the stack RAM.
As we can see in Section 5.5 Table 5.10, read and write addrass either relative
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Figure 5.8: Decode and address generation

to the stack pointer or to the variable pointer. The selactibthe pre-calculated
address can be performed in the decode stage. When an adidadise to the stack
pointer is used (either as read or as write address, nevbepth) the stack pointer is
also decremented or incremented in the decode stage.

Stack machine instructions can be categorized from a stackpulation perspec-
tive as eithepopor push This allows us to generate fill or spill TOS-1 addresses for
the following instruction during the decode stage, thereby saving oma eibeline
stage.

5.4.4 Execute

At the execution stage, as shown in Figure 5.9, operatiompenrformed using two
discrete registers: TOS and TOS-1, labeteaindB.

Each arithmetic/logical operation is performed with régisA andB as the source,
and registeA as the destination. All load operations (local variableteral register,
external memory and periphery) result in a value being Idadw registelA. There
is therefore no need for a write-back pipeline stage. Regfsts also the source for
the store operations. RegistBris never accessed directly. It is read as an implicit
operand or for stack spill on push instructions. It is writtkiring the stack spill with
the content of the stack RAM or the stack fill with the conteintegisterA.

Beside the Java stack, the stack RAM also contains microcadiables and con-
stants. This resource-sharing arrangement not only rediheenumber of memory
blocks needed for the processor, but also the number of dlte po and from the
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Figure 5.9: Execution stage
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registerA.
The inverted clock on data-in and on the write address mgidtthe stack RAM
is used, for the same reason, as on the read address refjtftemuicrocode ROM.
A stack machine with two explicit registers for the two topststack elements and
automatic fill/spill needs neither an extra write-back stagr any data forwarding.
Details of this two-level stack architecture are descrilme8Section 5.5.

5.4.5 Interrupt Logic

Interrupts are considered hard to handle in a pipelinedgssmr, meaning implemen-
tation tends to be complex (and therefore resource cong)nimJOP, the bytecode-
microcode translation is used cleverly to avoid having todh@interrupts in the core
pipeline.

Interrupts are implemented as special bytecodes. Thesednds are inserted by
the hardware in the Java instruction stream. When an igersupending and the
next fetched byte from the bytecode RAM is an instructioniakécated by thenxt
bit in the microcode), the associated special bytecodedd imstead of the instruc-
tion from the bytecode RAM. The result is that interrupts aceepted at bytecode
boundaries. The worst-case preemption delay is the exectithe of theslowest
bytecode that is implemented in microcode. Bytecodes tieainaplemented in Java
can be interrupted.

The implementation of interrupts at the bytecode-micrecotpping stage keeps
interrupts transparent in the core pipeline and avoids éexnipgic. Interrupt han-
dlers can be implemented in the same way as standard byteeoglémplemented
i.e. in microcode or Java.

This special bytecode can resultin a call of a JVM internahoe in the context of
the interrupted thread. This mechanism implicitly stolescst the complete context
of the current active thread on the stack.

5.4.6 Summary

In this section, we have analyzed JOP’s pipeline. The corhefstack machine
constitutes a three-stage pipeline. In the following segtive will see that this orga-
nization is an optimal solution for the stack access patéthe JVM.

An additional pipeline stage in front of this core pipelinage performs bytecode
fetch and the translation to microcode. This organizat@asero overheads for more
complex bytecodes and results in the short pipeline thadessary for any processor
without branch prediction. This additional translatioags also presents an elegant
way of incorporating interrupts virtuallior free
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5.5 An Efficient Stack Machine

The concept of a stack has a long tradition, but stack mastmaéonger form part of
mainstream computers. Although stacks are no longer useapoession evaluation,
they are still used for the context save on a function call. i¢h@ language, Forth
[52], is stack-based and known as an efficient language foira@iter applications.

Some hardware implementations of the Forth abstract madurexist. These Forth
processors are stack machines.

The Java programming language defines not only the languatggldm a binary
representation of the program and an abstract machine Mk tb execute this
binary. The JVM is similar to the Forth abstract machine iat ti is also a stack
machine. However, the usage of the stack differs from Fartbuch a way that a
Forth processor is not an ideal hardware platform to exetaita programs.

In this section, the stack usage in the JVM is analyzed. Wesed that, besides
the access to the top elements of the stack, an additionasagath to an arbitrary
element of the stack is necessary for an efficient implenientaf the JVM. Two
architectures will be presented for this mixed access médeecostack. Both archi-
tectures are used in Java processors. However, we will htse that the JVM does
not need a full three-port access to the stack as impleméntad two architectures.
This allows for a simple and more elegant design of the staclaflava processor.
This proposed architecture will then be compared with themotwo at the end of this
section.

5.5.1 Java Computing Model

The JVM is not a pure stack machine in the sense of, for inetahe stack model in
Forth. The JVM operates on a LIFO stack asoperand stack The JVM supplies
instructions to load values on the operand stack, and otistructions take their
operands from the stack, operate on them and push the resilitdmto the stack.
For example, the add instruction pops two values from the stack and pushes the
result back onto the stack. These instructions are the stedkine’s typical zero-
address instructions. The maximum depth of this operaruk steknown at compile
time. In typical Java programs, the maximum depth is verylisria illustrate the
operation notation of the JVM, Table 5.6 shows the evaluadican expression for a
stack machine notation and the JVM bytecodes. Instrudtiaad n loads an integer
value from a local variable at positionand pushes the value on TOS.

The JVM contains another memory area for method local ddis. area is known
aslocal variables Primitive type values, such as integer and float, and rete®
to objects are stored in these local variables. Arrays afettscannot be allocated
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A=B+C*D
Stack JVM
push B iloadl
push C iload2
push D iload3
* imul
+ iadd

pop A istore0

Table 5.6: Standard stack notation and the corresponding JVM ingbmngct

in a local variable, as in C/C++. They have to be placed on #aph Different
instructions transfer data between the operand stack aniddhl variables. Access
to the first four elements is optimized with dedicated sifgfee instructions, while
up to 256 local variables are accessed with a two-byte ictétruand, with thevide
modifier, the area can contain up to 65536 values.

These local variables are very similar to registers andgeaps that some of these
locals can be mapped to the registers of a general purposeo€Piplemented as
registers in a Java processor. On method invocation, laréhes could be saved
in a frame on a stack, different from the operand stack, tegewith the return ad-
dress, in much the same way as in C on a typical processorwthikl result in the
following memory hierarchy:

e On-chip hardware stack for ALU operations
e A small register file for frequently-accessed variables

e A method stack in main memory containing the return addradsaaditional
local variables

However, the semantics of method invocation suggest areliffenodel. The argu-
ments of a method are pushed on the operand stack. In theeihvokthod, these
arguments are not on the operand stack but are instead egda@sthe first variables
in the local variable area. Threal method local variables are placed at higher in-
dices. Listing 5.4 gives an example of the argument passeghanism in the JVM.
These arguments could be copied to the local variable arthe @fivoked method. To
avoid this memory transfer, the entire variable area (tbarmentsand the variables
of the method) is allocated on the operand stack. Howevéherinvoked method,
the arguments are buried deep in the stack.
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The Java source:
int val = foo(1l, 2);

public int foo(int a, int b) {
int ¢ = 1;
return a+b+c;

}

Compiled bytecode instructions for the JVM:

The invocation sequence:

aload.0 // Push the object reference
iconst_1l // and the parameter onto the
iconst_2 // operand stack.

invokevirtual #2 // Invoke method foo:(II)I.
istore.l // Store the result in val.

public int foo(int,int):

iconst_l // The constant is stored in a method
istore_3 // local variable (at position 3).
iload_1l // Arguments are accessed as locals
iload.2 // and pushed onto the operand stack.
iadd // Operation on the operand stack.
iload._3 // Push c onto the operand stack.
iadd

ireturn // Return value is on top of stack.

Listing 5.4: Example of parameter passing and access
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Operand stack
SP —»| Context of
Caller
var_3
SP——| arg 2 var_2
arg_1 var_1
arg_0 VP —| var 0
Operand stack Operand stack
Context of Context of
Caller Old frame < Caller
var_2 var_2
var_1 var_1
VP —»| var 0 var_0

Figure 5.10: Stack change on method invocation

This asymmetry in the argument handling prohibits passiognd parameters
through multiple levels of subroutine calls, as in Forth.efi@diore, an extra stack
for return addresses is of no use for the JVM. This singlekstawv contains the
following items in a frame per method:

e The local variable area
e Saved context of the caller

e The operand stack

A possible implementation of this layout is shown in Figur&® A method with two
argumentsarg_1 andarg_2 (arg.0 is thethis pointer), is invoked in this example.
The invoked methodeeghe arguments agar.1 andvar_2. var_3 is the only local
variable of the method. SP is a pointer to the top of stack aRg¥ints to the start
of the variable area.

5.5.2 Access Patterns on the Java Stack

The pipelined architecture of a Java processor executes ipagructions in a sin-
gle cycle. A stack that contains the operand staictt the local variables results in
following access patterns:

Stack Operation: Read of the two top elements, operate on them and push back the
result on the top of the stack. The pipeline stages for thisaifon are:
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val uel « stack[sp], value2 « stack[sp-1]
result < valuel op value2, sp « sp-1
stack[sp] « result

Variable Load: Read of a data element deeper down in the stack, relative #oi-a v
able base address pointer (VP), and push this data on thé tiog stack. This
operation needs two pipeline stages:
val ue < stack[vp+offset], sp < sp+l
stack[sp] « value

Variable Store: Pop the top element of the stack and write it in the varialktive
to the variable base address:
val ue «— stack[sp]
stack[vptoffset] « value, sp « sp-1

For pipelined execution of these operations, a three-perhary or register file (two
read ports and one write port) is necessary.

5.5.3 Common Realizations of a Stack Cache

As the stack is a heavily accessed memory region, the stackarpof it — has to be
placed in the upper level of the memory hierarchy. This pathe stack is referred
to asstack cachan this thesis. As described in [40], a typical memory hiehgr
contains the following elements, with increasing access @nd size:

e CPU register

e On-chip cache memory

e Off-chip cache memory

e Main memory

e Magnetic disk for virtual memory
For a stack cache, a register file is the solution with theteBbaccess time. How-
ever, in order to store more than a few elements in the cachen-ahip memory re-

alization can provide a larger cache. Both variants hava heed and are described
below.
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The Register File as a Stack Cache

An example of a Java processor that uses a register file is pinwJava [89]. It con-
tains 64 registers, organized as a circular buffer. To corsgte for thissmall stack
cache, an automatic spill and fill circuit needs another/wdie port to the register
file. adile’s JEMCore [37] is a direct-execution Java preoegore that contains 24
registers. Only six of them are used to cache the top elenodritee stack. With
this small register count, local variables are not part ef¢thche. The Ignite [77]
(formerly known as PSC1000) is a stack processor, origirggisigned as a Forth
processor and now promoted as a Java processor, has andpiekthat contains
18 registers with automatic spill and fill.

A basic pipeline for a stack processor with a register filetaiois the following
stages:

1. IF —instruction fetch

2. ID —instruction decode

3. EX —read register file and execute
4. WB — write result back to register file

With this pipeline structure, a single data-forwardinghpbetween WB and EX is
necessary. The ALU with the register file (with a size of 16,0enmon size for
RISC processors) and the bypass unit are shown in Figure SrlTable 5.8 the
hardware resources of this type of stack cache are apprtedgmnasing the values
given in Table 5.7 (a MUX not found in this table is assumedde combinations of
the basic types; e.g. two 8:1 and one 2:1 for a 16:1). An ewparial evaluation of
this architecture in an FPGA is described in Section 5.5.5.

Basic function Gate count

D-Flip-Flop 5
2:1 MUX 3
4:1 MUX 5
8:1 MUX 9
SRAM Bit 15

Table 5.7: Simplified gate count for basic functions



84

5 JOP ARCHITECTURE

—>| RO N I_,
—> — ALU
il
R2 —e
AN
> I
> Result
>—>/ buffer
| RI15
Figure 5.11: A stack cache with registers
Function block Basic function Gate count
Register File 512 D-Flip-Flops ,860
Read MUX 2x32 16:1 MUX 1344
Forward MUX 32 2:1 MUX 96
ALU buffer 32 D-Flip-Flops 160
Total 4,160

Table 5.8: Estimated gate count for a register stack cache
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On-chip Memory as a Stack Cache

Using SRAM on the chip provideslarge stack cache (e.g. 128 entries). However,
as we have seen in Section 5.5.2, a three-port memory issagesAn additional
pipeline stage performs the cache memory read:

1. IF —instruction fetch

2. ID —instruction decode

3. RD — memory read

4. EX —execute

5. WB — write result back to memory

With this pipeline structure, two data forwarding paths meeessary. The resulting
architecture is shown in Figure 5.12 and a gate count estiipatovided in Table 5.9.
This version needs 70% more resources than the first onetdoatps an eight times
larger stack cache.

Example designs that use this kind of stack cache are (i) Koni65], a Java
processor intended as a basis for research on multithreadetime scheduling, and
(i) FemtoJava [45], a research project to build an applbicaspecific Java processor.

A three-port memory is an expensive option for an ASIC andsualin an FPGA.
It can be emulated in an FPGA by two memories with a single egatiwrite port.
The write data is written in both memory blocks and each mgrbtwck provides a
different read port. However, this solution also doublasamount of memory.

Both designs (Komodo and FemtoJava) avoid the memory daubly serializing
the two reads. This serialization results in minimum of tMack cycles execution
time for basic instructions or halves the clock frequencshefwhole pipeline.

5.5.4 A Two-Level Stack Cache

In this section, we will discuss access patterns of the JVMtarir implication on
the functional units of the pipeline. A faster and smalleh#ecture is proposed for
the stack cache of a Java processor.

JVM Stack Access Revised

If we analyze the JVM's access patterns to the stack in mawaldere can see that
a two-port read is only performed with the two top elementthefstack. All other
operations with elements deeper in the stack, local vatdblad and store, only need
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Figure 5.12: A stack cache with on-chip RAM

Function block Basic function Gate count
Stack RAM e.g. 128x32 Bits ,644
Port buffer 2x32 D-Flip-Flops 320
Forward MUX 32x 2:1 MUX, 3:1 MUX 288
ALU buffer 2x32 D-Flip-Flops 320
Total 7,072

Table 5.9: Estimated gate count for a stack cache with RAM
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one read port. If we only implement the two top elements ofdiaek in registers,
we can use a standard on-chip RAM with one read and one write po

We will show that all operations can be performed with thiaf@uration. LetA
be the top-of-stackB the element below top-of-stack. The memory that serveseas th
second level cache is represented by the asmayTwo indices in this array are used:
p points to the logical third element of the stack and changebea stack grows or
shrinks,v points to the base of the local variables area in the stack &he address
offset of a variable.op is a two operand stack operation with a single result (i.e. a
typical ALU operation).

Case 1: ALU operation
A—AopB
B — sm[p]
p—p-1
The two operands are provided by the two top level registérsingle read
access fronsmis necessary to filB with a new value.

Case 2: Variable load Push
sm[p+1]<— B
B—A
A— sm[v+n]
p—p+l
One read access froemis necessary for the variable read. The former TOS
value moves down t8 and the data previously i is written tosm

Case 3: Variable storeRop
smv+n] — A
A—B
B — sm[p]
p—p-1
The TOS value is written tem A is filled with B andB is filled in an identical
manner to Case 1, needing a single read accesssnom

We can see that all three basic operations can be perfornte@wiack memory with
one read and one write port. Assuming a memory is used thataraaie concurrent
read and write access, there is no structural access cdrdtiweermd, B andsm That
means that all operations can be performed concurrentlysingde cycle.

As we can see in Figure 5.10 the operand stack and the lodables area are
distinct regions of the stack. A concurrent read from andeatio the stack is only
performed on a variable load or store. When the read is frenhoibal variables area
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the write goes to the operand area; a read from the operaadsatencurrent with a
write to the local variables area. Therefore there is no goeot read and write to
the same location ism There is no constraint on the read-during-write behavior o
the memory (old data, undefined or new data), which simpliiesmemory design.
In a design where read and write-back are located in diffqugeline stages, as in
the architectures described above, either the memory mogde the new data on a
read-during-write, or external forward logic is necessary

From the three cases described, we can derive the memorgssédrfor the read
and write port of the memory, as shown in Table 5.10.

Read address Write address

p p+l
v+n v+

Table 5.10: Stack memory addresses

The Datapath

The architecture of the two-level stack cache can be seeigimd=-5.13. Register
A represents the top-of-stack and regisethe data below the top-of-stack. ALU
operations are performed with these two registers and that ie placed irA. During
such an ALU operatiorB is filled with new data from the stack RAM. A new value
from the local variable area is loaded directly from the ls@8&M into A. The data
previously inA is moved toB and the data fronB is spilled to the stack RAMA is
stored in the stack RAM on a store instruction to the locaiaide. The data fronB
is moved toA andB is filled with a new value from the stack RAM.

With this architecture, the pipeline can be reduced to thtages:

1. IF —instruction fetch
2. ID —instruction decode

3. EX —execute, load or store

The estimated resource usage of this two-level stack cacéexture is given in
Table 5.11. It can be seen that this architecture is roughoanplex as the solution
given above (about 5% less gates). However, the reducedlexritypwith the two-
port RAM instead of a three-port RAM is not included in theléalilhe critical path
through the ALU contains only one 2:1 MUX to regist&rin this solution, rather
than one 3:1 MUX in one ALU path and one 2:1 MUX in the other AL&atlp As no
data forwarding logic is necessary, the decoding logicge aimpler.
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Figure 5.13: Two-level stack cache
Function block Basic function Gate count
Stack RAM e. g. 128x32 Bits ,844
TOS, TOS-1 buffer 2x32 D-Flip-Flops 320
Three MUX 3x32 2:1 MUX 288
Total 6,752

Table 5.11: Estimated gate count for a two-level stack cache
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Data Forwarding — A Non-Issue

Data dependencies in the instruction stream result in thealed data hazard$40]
in the pipeline. Data forwarding is a technique that movea &@m a later pipeline
stage back to an earlier one to solve this problem. The fermard is correct in
the temporal domain as data is transferred to an instruatioine future. However,
it is misleading in the structural domain as the forward aim is towards théast
pipeline stage for an instruction.

As the probability of data dependency is very high in a staaged architecture,
one would expect several data forwarding paths to be negessawever, in the two-
level architecture proposed, with its resulting thregstaipeline, no data hazards
will occur and no data forwarding is therefore necessarys $implifies the decoding
stage and reduces the number of multiplexers in the execptth. We will show
that none of the three data hazard types [40] are an issuésianthitecture. With
instructionsi and j, wherei is issued beforg, the data hazard types are:

Read after write: | reads a source befoiewrites it. This is the most common
type of hazard and, in the architectures described abosgelved by using the ALU
buffers and the forwarding multiplexer in the ALU datapafim a stack architecture,
write takes three forms:

e Implicit write of TOS during an ALU operation

e Write to the TOS during a load instruction

e Write to an arbitrary entry of the stack with a store instiatt
A read also occurs in three different forms:

e Read two top values from the stack for an ALU operation

e Read TOS for a store instruction

e Read an arbitrary entry of the stack with the load instrurctio

With the two top elements of the stack as discrete registeese values are read,
operated on and written back in the same cycle. No read thndis on TOS or
TOS-1 suffers from a data hazard. Read and write access tmbJariable is also
performed in the same pipeline stage. Thus, the read after evder is not affected.
However, there is also an additional hidden read and write fill and spill of register
B:



5.5 AN EFFICIENT STACK MACHINE 91

e B fill: B is written during an ALU operation and on a variable store.riby
an ALU operation, the operands are the values ffoand the old value from
B. The new value foB is read from the stack memory and does not depend
on the new value oA. During a variable store operatioA,is written to the
stack memory and does not dependBnThe new value foB is also read
from the stack memory and it is not obvious that this valuesdust depend
on the written value. However, the variable area and theampkstack are
distinct areas in the stack (this changes only on methocatian and return),
guaranteeing that concurrent read/write access doesoduige a data hazard.

e B spill: Bis read on a load operation. The new valueBas the old value of
A and does not therefore depend on the stack memory Bedaritten to the
stack. For the read value from the stack memory that go#s tiwe argument
concerning the distinct stack areas in the cas® dfl described above still
applies.

Write after read:  j writes a destination before it is read by This cannot take
place as all reads and writes are performed in the same qepsiage keeping the
instruction order.

Write after write: | writes an operand before it is written by This hazard is not
present in this architecture as all writes are performetéstime pipeline stage.

5.5.5 Resource Usage Compared

The three architectures described above are implementéiteira’s EP1C6Q240C6
[16] FPGA. The three-port memory for the second solutiormsited with two em-
bedded memory blocks. The ALU for this comparison is keppéemvith the follow-
ing functions: NOP, ADD, SUB, POP, AND, OR, XOR and load emtdrdata. The
load of external data is nhecessary in order to prevent thinegizer from optimizing
away the whole design. A real implementation of an ALU foreaJarocessor, as de-
scribed in Section 5.4, is a little bit more complex with arbashifter and additional
load paths. In order to gain the maximum operating frequéacyhe design, the
testbed for this architecture contains registers for theraal data, the RAM address
buses, and the control and select signals. Table 5.12 sli@ugs$ource usage and
maximum operation frequency of the three different architees.

LC stands for ‘Logic Cell' and is the basic element in an FP@At-bit lookup
table with a register. The LC count in the table includes #gister count. The
ALU alone without any stack cache needs 194 LCs. In the fingt lihe testbed is
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Design Total Cache Memory  fmax Size
LCs Reg. LCs Reg. [bit] [MHz] [word]

Testbed w. ALU 261 166 - - - 237 -

16 register cache 968 657 707 491 0 110 16

SRAM cache 372 185 111 19 8,192 153 128
Two-level cache 373 184 112 18 4,096 213 130

Table 5.12: Resource and performance compared

combined with the ALU without any stack caching, as a refeeetiesign. With this
configuration, we can obtain the maximum possible speedeofdfistered ALU in

this FPGA technology, in this case an operating frequenc33@MHz or a 4.2 ns
delay. This value is an upper bound of the system frequenagryEpipelined archi-

tecture needs one or more multiplexer in the ALU path, eitbedata forwarding

or for operand selection, resulting in a longer delay. Thetfoand fifth columns
represent the resource usage of the cache logic withoutstiged and ALU. The last
column shows the effective cache size in data words.

The version with the 16 registers was synthesized with tferéint synthesizer
settings. In the first setting, the register file is implensenivith discrete registers
while, with a different setting, the register file is autoroally implemented in two
32-bits embedded RAM blocks. Two different RAM blocks areessary to provide
two read ports and one write port. In both versions, the diag to read the register
file (delay through the 16:1 MUX of 4.9 ns or RAM access time @ #ds) is in the
same order as the delay time through the ALU, resulting instesy frequency of
half the theoretical frequency of that with the ALU alone. t#he structure of the
version with the embedded RAM block is very similar with theAM cache, only
the version with the discrete registers is shown in Tablg.5.1

The stack cache with a RAM and registers on the RAM output éthditional
pipeline stage) performs better than the first solution. ekmw, the 3:1 MUX in the
critical path still adds 2.3 ns to the delay time. Compareith Wie proposed solution
(in the last line), we see that double the amount of RAM is edddr the two read
ports.

The two-level stack cache solution performs at 213MHz gilmost the theoretical
system frequency (in practice, about 10% slower). Only aMUX is added to the
critical path. The single read port memory needs half thebmrmof memory bits of
the other two solutions.
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5.5.6 Summary

In this section, the stack architecture of the JVM was amalyAVe have seen that
the JVM is different from the classical stack architectufdie JVM uses the stack
both as an operand staakd as the storage place for local variables. Local variables
are placed in the stack atdeeperposition. To load and store these variables, an
access path to an arbitrary position in the stack is negesaarthe stack is the most
frequently accessed memory area in the JVM, caching of teimany is mandatory
for a high-performing Java processor.

A common solution, found in a number of different Java preoes is to imple-
ment this stack cache as a standard three-port registerifileadditional support to
address this register file in a stack like manner. The arctoites presented above dif-
fer in the realization of the register file: as a discretesegior in on-chip memory.
Implementing the stack cache as discrete registers is vgrgnsive. A three-port
memory is also an expensive option for an ASIC and unusuat IRRGA. It can be
emulated by two memories with a single read and write porivéler, this solution
also doubles the amount of memory.

Detailed analysis of the access patterns to the stack shihaednly the two top
elements of the stack are accessed in a single cycle. Giveffatit, the proposed
architecture uses registers to cache only the two top elesnoéithe stack. The next
level of the stack cache is provided by a simple on-chip mgnmidne memory auto-
matically spills and fills the second register. Implemegtihe two top elements of
the stack as fixed registers, instead of elements that aexeddby a stack pointer,
also greatly simplifies the overall pipeline.

The proposed stack architecture has the following advasta) Simpler cache
memory results in having half the memory usage of the othetisas in an FPGA.
(i) Minimal impact on the raw speed of the ALU. Operates at@st the theoretical
maximum system frequency of the ALU. (iii) Single read, axecand write-back
pipeline stage results in an overall 3-stage pipeline msmedesign. (iv) No data
forwarding is necessary, which simplifies instruction dkrdtogic and reduces the
multiplexer count in the critical path.

5.6 HW/SW Codesign

Using a hardware description language and loading thenlés@n FPGA the former
strict border between hardware and software gets blurredonfiguring an FPGA
not more like loading a program for execution?

This looser distinction makes it possible to move functieasily between hard-
ware and software resulting in a highly configurable desifrspeed is an issue,



94 5 JOP ARCHITECTURE

more functions are realized in hardware. If cost is the prn@ancern these func-
tions are moved to software and a smaller FPGA can be usedislestamine these
possibilities on a relatively expensive function: mulikion.

In Java bytecoddmul performs a 32 bit signed multiplication with a 32 bit re-
sult. There are no exceptions on overflow. Since 32 bit siogbte multiplications
are far beyond the possibilities of current, mainstream A®the first solution is a
sequential multiplier.

Sequential Booth Multiplier in VHDL Listing 5.5 shows the VHDL code of the
multiplier. Two microcode instructions are used to acchissftinction:stmul stores
the two operands (from TOS and TOS-1) and starts the sequemtitiplier. After
33 cycles, the result is loaded witkdmu1. Listing 5.6 shows the microcode fomu1.

Multiplication in Microcode If we run out of resources in the FPGA, we can move
the function to microcode. The implementationieful is almost identical with the
Java code in Listing 5.7 and needs 73 microcode instructions

Bytecode imul in Java  Microcode is stored in an embedded memory block
of the FPGA. This is also a resource of the FPGA. We can movectite to
external memory by implementingmul in Java bytecode. Bytecodes not im-
plemented in microcode result in a static Java method caihfa special class
(com.jopdesign.sys.JVM). This class has prototypes for each bytecode ordered
by the bytecode value. This allows us to find the right methgdnidexing the
method table with the value of the bytecode. Listing 5.7 shdlwe Java method
for imul. The additional overhead for this implementation is a catl eeturn with
cache refills.

Implementations Compared  Table 5.13 lists the resource usage and execution
time for the three implementations. Execution time is mesgwith both operands
negative, the worst-case execution time for the softway@ementations. The im-
plementation in Java is slower than the microcode impleat®mt as the Java method
is loaded from main memory into the bytecode cache.

Only a few lines of code have to be changed to select one ofhitee imple-
mentations. The shown principle can also be applied to @hpensive bytecodes:
e.g.idiv, ishr, iushr andish1. As a result, the resource usage of JOP is highly
configurable and can be selected for each application aogaialthe needs of the ap-
plication. Treating VHDL as a software language allows easyement of function
blocks between hardware and software.
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process(clk, wr_a, wr_b)

variable count : integer range 0 to width;
variable pa : signed(64) downto 0);
variable a_1 : std_Togic;

alias p : signed(32 downto 0)

is pa(64 downto 32);

begin
if rising_edge(clk) then
if wr_a="1" then
p := (others = '0’);
pa(width—1 downto 0) := signed(din);

elsif wr_b="1" then
b <= din;
a.l :=’0";
count := width;
else
if count > 0 then
case std_.ulogic.vector’(pa(0), a.1l)
when "01" =>
p :=p + signed(b);
when "10" =>
p := p — signed(b);
when others =>

null;
end case;
a_l := pa(0);
pa := shift_right(pa, 1);
count := count — 1;
end if;
end if;

end if;
dout <= std_logic_vector(pa(31 downto 0));
end process;

Listing 5.5: Booth multiplier in VHDL

is
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imul:

stmul // store both operands and start
pop // pop second operand
1di 5 // 6x5+3 cycles wait

imul_ loop: // wait Toop
dup
nop
bnz imul_loop
1di —1 // decrement in branch slot
add
pop // remove counter

Tdmul nxt // load result
Listing 5.6: Microcode to access the Booth multiplier

Hardware Microcode Time

[LC] [Byte] [Cycle]
VHDL 156 10 35
Microcode 0 73 750
Java 0 0 2300

Table 5.13: Different implementations ofmu1 compared
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public static int imul(int a, int b) {

int c, i;
boolean neg = false;
if (a<0) {
neg = true;
a = —aj;
¥
if (b<0) {
neg = !neg;
b =—b;
¥
c =0;
for (i=0; 1<32; ++1) {
C <<= 1;
if ((a & 0x80000000)!=0) c += b;
a <<= 1;
¥
if (neg) c = —c;
return c;

Listing 5.7: Implementation of bytecod@émul in Java
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5.7 Real-Time Predictability

General-purpose processors are optimized for averageghpot and non real-time
operating systems are responsible for fair and efficierdcglng of resources. Real-
time systems need a processor with low and known WCET oftiastms. Real-
time operating systems have properties, such as fastupteesponse, rapid context
switch, short blocking times and a scheduler that implemsargimple, in most cases
strict priority driven, scheduling algorithm. This sectidescribes design decisions
for JOP to support such real-time systems.

5.7.1 Interrupts

Interrupts are usually associated with low-level prograngnof device drivers. The
priorities of interrupts and their handler functions areabtask priorities and yield

to an immediate context switch. In this form, interrupts reainbe integrated in a
schedule witnormal tasks. The execution time of the interrupt handler has to be
integrated in the schedulability analysis as additionatking time. A better solution

is to handle interrupts, which represent external evestschedulable objects with
priority levels in the range of real-time tasks, as suggkstéhe RTSJ.

The Timer Interrupt ~ The timer or clock interrupt has a different semantic thamept
interrupts. The main purpose of the timer interrupt is repngation of time and re-
lease of periodic or time triggered tasks. One common imeteation is a clock tick.
The interrupt occurs at a regular interval (e.g. 10 ms) andcésibn has to be taken
whether a task has to be released. This approach is simpheplernent, but there
are two major drawbacks: The resolution of timed events ismddoy the resolution
of the clock tick and clock ticks without a task switch are sstezof execution time.

A better approach, used in JOP, is to generate timer intesratghe release times
of the tasks. The scheduler is now responsible for reprogriamthe timer after each
occurrence of atimer interrupt. The list of sleeping theehds to be searched to find
the nearest release time in the future of a higher prioritgatti than the one that will
be released now. This time is used for the next timer intérrup

External Events Hardware interrupts, other than the timer interrupt, amree
sented as asynchronous events with an associated thresdn&ans that the event
is anormal schedulable object under the control of the scheduler. W/ithinimum
interarrival time, enforced by hardware, these events @mtorporated into the
priority assignment and schedulability analysis in the savay as periodic tasks.
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Software Interrupts ~ The common software generated interrupts, such as illegal
memory access or divide by zero, are represented by Javaneuekceptions and
need no special handler. They can be detected with a trir&éack.

Asynchronous notification from the program is supportedthia same way as
an external event, as a schedulable object with an asstdiatead. The event is
triggered through the call ofire(). The thread with the handler is placed in the
runnable state and scheduled according to priority.

Hardware Failures  Serious hardware failures, such as illegal opcode or pamnityr
from the memory systems, lead to a shutdown of the system.ekfewvalast try to
call a handler that changes the state of the system to a saééeasid inform an upper
level system, can improve the integrity of the overall syste

5.7.2 Task Switch

An important issue in real-time systems is the time for a &g#ch. A task switch
consists of two actions:

e Schedulings the selection of the task order and timing

e Dispatchingis the term for the context switch between tasks

Scheduling Most real-time systems use a fixed-priority preemptive dules.
Tasks with the same priority are usually scheduled in a FIFd@ro Two common
ways to assign priorities are rate monotonic or, in a moreeg@rform, deadline
monotonic assignment. When two tasks get the same priar@ygan choose one of
them and assign a higher priority to that task and the tasis sétl schedulable. We
get a strictly monotonic priority order and do not have tolddgth FIFO order. This
eliminates queues for each priority level and results imglsi priority ordered task
list.

Strictly fixed priority schedulers suffer from a problem ledlpriority inversion
[84]. The problem where a low priority task blocks a high ptiotask on a shared
resource is solved by raising the priority of the low priptiask. Two standard prior-
ity inversion avoidance protocols are common:

Priority Inheritance Protocol: A lock assigns the priority of the highest-priority
waiting task to the task holding the lock until that task askes the resource.

Priority Ceiling Emulation Protocol: A lock gets a priority assigned above the pri-
ority of the highest-priority task that will ever acquiresttock. Every task will
be immediately assigned the priority of that lock when agggiit.
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The priority inheritance protocol is more complex to imptrhand the time when
the priority of a task is raised is not so obvious. It is nosedl because the task does
anything, but because another task reaches some poinexeitsition path.

Using priority ceiling emulation with unique prioritiesifigrent from task prior-
ities, the priority order is still strictly monotonic. Theiprity ordered task list is
expanded with slots for each lock. If a task acquires a Iddk,placed in the corre-
sponding slot. With this extension to the task list, schiedyuis still simple and can
be efficiently implemented.

Dispatching  The time for a context switch depends on the size of the sfateeo

tasks. For a stack machine it is not so obvious what belongjsetstate of a task.
If the stack resides in main memory, only a few registers. (ptggram counter and
stack pointer) need to be saved and restored. However, dok & a frequently

accessed memory region of the JVM. The stack can be seen da aathe and

should be placed near the execution unit (in this casay means on the chip and
not in external memory). However, on-chip memory is usutadtly small to hold the

stack content for all tasks. This means that the stack isgbdine execution context
and has to be saved and restored on a context switch.

In JOP, the stack is placed in local (on-chip) FPGA memonhwinhgle cycle
access time. With this configuration, the next question w hauch of the stack
to place there. Either the complete stack of a thread or dmystack frame of the
current method can reside locally. If the complete stacktbf@ad is stored in local
memory, the invocation of methods and returns are fastHeutontext is large. For
fast context switches, it is preferable to have only a shtadksin local memory. This
results in less data being transferred to and from main mgnbot more memory
transfers on method invocation and return. The local staokoe further divided into
small pieces, each holding only one stack frame of one thr8adting the context
switch, only the stack pointer needs to be saved and restdradoutcome of this is
a very fast context switch, although the size of the local w®rfimits the maximum
number of threads.

Since JOP is a soft-core processor, these different snkittan be configured for
different application requirements. It is even possiblenig of these policies: some
stack slots can be assigneditoportantthreads, while the remaining threads share
one slot. This stack slot only needs to be exchanged with #ie memory when
switchingto a lessimportantthread.
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5.7.3 Architectural Design Decisions

In hard real-time systems, meeting temporal requiremesrni$ the same importance
as functional correctness. This results in different decitiiral constraints than in a
design for a non real-time system. A low upper bound of theetien time is of
premium importance. Good average execution time is usé&ess pure hard real-
time system.

Common architectural components, found in general purposeessors to en-
hance average performance, are usually problematic fOMBET analysis. A prag-
matic approach to this problem is to ignore these featurethoanalysis. With a
processor designed for real-time applications, theseifesithave to be substituted
by predictable architecture enhancements.

Branch Prediction  As the pipelines of current general-purpose processors get
longer to support higher clock rates the penalty of brangetsoo high. This is
compensated by branch prediction logic with branch targéets. However, the
upper bound of the branch execution time is the same as withisueature. In JOP,
branch prediction is avoided. This results in pressure enpipeline length. The
core processor has a pipeline length of as little as thregsteesulting in a branch
execution time of three cycles in microcode. The two slotth&branch delay can

be filled with instructions onop. With the additional bytecode fetch and translation
stage, the overall pipeline is four stages and results imadgcle execution time for

a bytecode branch.

Caches and Instruction Prefetch To reduce the growing gap between the clock
frequency of the processor and memory access times mudii-t@ache architectures
are commonly used. Since even a single level cache is pralilefor WCET analy-
sis, more levels in the memory architecture are almost radyaable. The additional
levels also increase the latency of memory access on a cashe m

In a stack machine, the stack is a frequently accessed mesneay This makes
the stack an ideal candidate to be placed near the executibmthe memory hier-
archy. In JOP the stack is implemented as internal memotytiv two top elements
as explicit registers. This single cycle memory can be ssendata cache. However,
unlike in picoJava, this limited memory is not automatigaipilled and filled. Au-
tomatically spill and fill introduces unpredictable accesshe main memory. Data
exchange between internal stack and main memory is undgrgsmocontrol and can
be done on method invocation/return or on a thread switch.

The next most accessed memory area is the code area. A simfid¢ch queue,
as it is found in older processors, could increase instvadtiroughput after execut-
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ing a multi-cycle bytecode. For a stream of single cycle tyties, prefetching is
useless and the frequent occurrence of branches and metraéiions, about 12—
23% (see Section 5.1) in typical Java programs, reduceseitiermance gain. The
prefetch queue also results in (probably unbounded) exectitne dependencies
over a stream of instructions, which complicates timinglysia.

JOP has a method cache with a novel replace policy. Sincealypiethods in
Java programs are short and there are only relative brantlasethod, a complete
method is loaded in the cache on invocation and on returns ddche fill strategy
lumps all cache misses together and is very simple to analyizalso simplifies
the hardware of the cache since no tag memory or addressatianss necessary.
Theromizertool JavaCodeCompact checks the maximum allowed methed Sex-
tion 5.8 describes the proposed cache solution in detaimdg areas for the heap
and class description with the constant pool are not cachd@Fp.

Superscalar Processors A superscalar processor consists of several execution
units and tries to extract instruction level parallelisrhR) with out of order exe-
cution. Again, this is a nightmare for timing analysis. Thele for a stack machine
has less implicit parallelism than a register machine.

One form of enhancement, usually implemented in stack mashiis instruc-
tion folding. The instruction stream is scanned to find flgupatterns like load-
load-add-store and substitutes these four instructiotis avie, RISC-like, operation.
There are two issues with instruction folding in JOP: The bimd instruction needs
two read and one write access to the stack in a single cycis.vilduld result in dou-
bling of the internal memory usage in the FPGA. It also neatisninimum, four
bytes read access to the method cache. To overcome word d@s)dorefetching
has to be introduced after the method cache. This results additional pipeline
stage, time dependency of instructions with a more compiakyais and more hard-
ware resources for the multiplexers.

Programs for embedded and real-time systems are usualtyj-thmeladed. In fu-
ture work, it will be investigated if the additional hardwaresources needed for ILP
can be better used with additional processor cores utittirs implicit thread-level
parallelism.

Garbage Collection  As use of the heap is avoided in hard real-time systems, no
garbage collector is implemented. Without a garbage doliethe memory layout of
objects can be simplified. Every reference points directié object. No indirection
through a handle, which would simplify memory compactiothiegarbage collector,

is needed. This reduces access time to object fields and dsetho
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Time-Predictable Instructions A good model of a processor with accurate timing
information is essential for a tight WCET analysis. The #@sgture of JOP and the
microcode are designed with this in mind. Execution time yiebodes is known
cycle accurately (see Section 7.4 and Appendix D). It is iptsgo analyze the
WCET on the bytecode level [7] without the uncertaintiesrofraerpreting JVM [5]

or generated native code from ahead-of-time compilerséiea.J

5.7.4 Summary

In this section, we argued that, while common techniquesdagssor architectures
increase average throughput, they are not feasible fottireal systems. The influ-
ence of these architectural enhancements is at best haldiTWéanalyzable.

The proposed alternatives influence the processor artiniée@s described in ear-
lier sections, as well as the software architecture thdateitescribed in Section 6.1.

However, the most important architectural enhancemenpifeelined machines
is caching, which is necessary even in embedded systems.aVéeshown in Sec-
tion 5.5 how a time-predictable data cache for a stack maatan be implemented.
In the following section, we will propose a time-predicelglache for instructions.

5.8 A Time-Predictable Instruction Cache

Worst-case execution time (WCET) analysis [78] of realetiprograms is essential
for any schedulability analysis. To provide a low WCET valaegood processor
model is necessary. However, the architectural advandemeanodern processor
designs is dominated by the ruléiake the common case fasthis is the opposite
of "Reduce the worst casand complicates WCET analysis.

Cache memory for the instructions and data is a classic eapfiphis paradigm.
Avoiding or ignoring this feature in real-time systems, dués unpredictable behav-
ior, results in a very pessimistic WCET value. Plenty of gffas gone into research
into integrating the instruction cache in the timing aneys tasks [4, 38, 58] and
the influence of the cache on task preemption [57, 11]. Theaenfie of different
cache architectures on WCET analysis is described in [39].

We will tackle this problem from the architectural side —astiuction cache orga-
nization in which simpler and more accurate WCET analysiadse important than
average case performance.

In this section, we will propose a method cache with a novelaeement policy.
In Java bytecode only relative branches exist, and a methdiderefore only left
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when a return instruction has been execBitdétihas been observed that methods are
typically short (see Section 5.1.2) in Java applicationsese properties are utilized
by a cache architecture that stores complete methods. Aletenmpethod is loaded
into the cache on both invocation and return. This cachetfdtegy lumps all cache
misses together and is very simple to analyze.

5.8.1 Cache Performance

In real-time systems we prefer time-predictable architest over those with a high
average performance. However, performance is still ingmdrt In this section, we
will give a short overview of the formulas from [40] that arsed to calculate the
cache’s influence on execution time. We will extend the simgéasurememhiss rate

to a two value set, memory read and transaction rate, thath#ecture independent
and better reflects the two properties (bandwidth and lggewicthe main memory.
To evaluate cache performanddE Mqx memory stall cycles are added to the CPU
execution timetgye equation:

texe= (CPUgik + MEMcik) X teik
ME Mk = Missesx M Py

The miss penalty P is the cost per miss, measured in clock cycles. When the
instruction countC is given as the number of instructions executeB] the average
clock cycles per instruction and the number of misses péniction, we obtain the
following result:

CPU.k = IC x CPleye
Misses "
Instruction

Misses
texe= IC x (CPI _
exe (CPlecet Instruction

MEMgk = IC x clk

X MPeik) X tek

As this section is only concerned with the instruction caeewill split the memory
stall cycles into misses caused by the instruction fetchrars$es caused by data
access.

CPIl = CPlexe+CPlim +CPlpm

CPlexelis the average number of clock cycles per instruction, garideal memory
system without any stallSCPl;y are the additional clock cycles caused by instruc-
tion cache misses ar@PIpy the data miss portion of the CPI. This split between

6An uncaught exception also results in a method exit.
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instruction and data portions of the CPI better reflects fiie af the cache between
instruction and data cache found in actual processors. TégeBper instruction are
often given as misses per 1000 instructions. However, tuierseveral drawbacks to
using a single number:

Architecture dependent: ~ The average number of memory accesses per instruction

differs greatly between a RISC processor and the Java Yivtaehine (JVM).

A typical RISC processor needs one memory word (4 bytes) nsruction
word, and about 40% of the instructions [40] doad or store instructions.
Using the example of a 32-bit RISC processor, this resulis@rbytes memory
access per instruction. The average length of a JVM byteicsdieiction is 1.7
bytes and about 18% of the instructions access the memonatarload and
store.

Block size dependent:  Misses per instruction depends subtly on the block size. On
a single cache miss, a whole block of the cache is filled. Toerethe proba-
bility that a future instruction request is a hit is highetiwa larger block size.
However, a larger block size results in a higher miss perstynore memory
is transferred.

Main memory is usually composed of DRAMs. Access time to tidsnory is mea-

sured in terms of latency (the time taken to access the firsd wba larger block)

and bandwidth (the number of bytes read or written in a sirgf@est per time unit).
These two values, along with the block size of a cache, am tasgalculate the miss
penalty:

Block size

Bandwidth

To better evaluate different cache organizations andrdiffeinstruction sets (RISC

versus JVM), we will introduce two performance measurememhemory bytes read
per instruction byte and memory transactions per instadiyte:

MPgx = Latency+

Memor {
MBIB = emo ypytes ead
Instruction bytes
Memory transactions
Instruction bytes

MTIB =

These two measures are closely related to memory bandwidtHadéency. With
these two values and the properties of the main memory, wealaunlate the average
memory cycles per instruction by#CIB andCPly, i.e. the values we are concerned
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in this section.

MBIB

Bandwith
CPlm = MCIB x Instruction length

MCIB = ( +MTIB x Latency

The misses per instruction can be converted to MBIB and MTH&mvthe following
parameters are known: the average instruction length oéitigtecture, the block
size of the cache and the miss penalty in latency and banawitie will examine
this further in the following example:

We use the following architecture to illustrate the conersa RISC architecture
with a 4 bytes instruction length, an 8KB instruction cachth\84-byte blocks and
a miss rate of 8.16 per 1000 instructions [40]. The miss pgimall00 clock cycles.
The memory system is assumed to deliver one word (4 bytes)ypés.

Firstly, we need to calculate the latency of the memory syste

Blocksize
Latency: M PCIk — mh

4
= 100— % = 84 clock cycles

With Miss rate= Sachemiss ye gptain MBIB.

MBIB — Memory pytes read
Instruction bytes
B Cache miss Block size
~ Cache access Instruction length
Block size
Instruction length
=816x 10 3x %5

=0.131

= Miss ratex
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MTIB is calculated in a similar way:

Memory transactions
Instruction bytes
Cache miss

~ Cache access Instruction length
Miss rate

~ Instruction length
~ 816x10°°
S
—204x10°3

MTIB =

For a quick check, we can calculd@@®ly:

MBIB
MCIB = m+ MTIB x Latency

= 0'%31+2.04>< 10 3 x84

=0.204

CPlm = MCIB x Instruction length
=0.204x 4
=0.816

This is the same value as that which we get from using the ratgswith the miss
penalty:

CPlj = Miss ratex Miss penalty
=8.16x 1073 x 100
=0.816

However, MBIB and MTIB are architecture independent antdbeéflect the latency
and bandwidth of the main memory.

5.8.2 Proposed Cache Solution

In this section, we will develop a solution for a predictabdehe. Typical Java pro-
grams consist of short methods. There are no branches obeohéthod and all
branches inside are relative. In the proposed architedhuedull code of a method is
loaded into the cache before execution. The cache is fillédvmcations and returns.
This means that all cache fills are lumped together with a knexecution time. The
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full loaded method and relative addressing inside a mettsm rasult in a simpler
cache. Tag memory and address translation are not necessary

However, we will first discuss an even simpler solution — nchaag at all. With-
out an instruction cache, prefetching is mandatory, eaflgavith a variable length
instruction set. The issues surrounding prefetching aeudsed in the next section.

Instruction Prefetching

A simple prefetch queue, as found in older processors, carease instruction
throughput after a multi-cycle bytecode is executed. Haxdor a stream of single-
cycle bytecodes, prefetching is useless and the frequanirrenice of branches,
method invocations, and method returns (see Section Sdlres the performance
gain. Using a prefetch queue also results in execution tispendencies over a
stream of instructions, which complicates timing analysis

For a variable length instruction set, prefetching is alsbanstraightforward op-
tion. The prefetching unit needs to guarantee the avaihabil a complete instruction
for the fetch unit. As the actual length of the instructiond known at this stage, the
prefetch unit must be a minimum ofaximum lengthk 1 bytes ahead of the requested
instruction. This can lead to unnecessary memory transféms return instruction is
a typical example of this. It is 1 byte long and the additiopafetched instruction
bytes are never used.

A memory interface with a bus width greater than one byte addstificial bound-
ary to the instruction stream. For the purpose of this exampé are assuming a 4
byte memory interface. In this case we need an 8 byte prefetffar. On a branch
to an addresaddress mod! > 4 — maximum instruction lengthiwo words need to
be loaded from main memory before the processor can continue

A memory technology, such as synchronous DRAM, has a latgadg for the
first accessed word and then a high bandwidth for the follgwiords. Prefetching
that only loads small quantities (one or two words) from themmory is therefore
impracticable with these memory technologies.

Single Method Cache

A single method cache, although less efficient than a commaitinstruction cache,
can be incorporated very easily into the WCET analysis. Tie heeded for the
memory transfer must be added to the invoke and return oigins.

The method cache also simplifies the hardware of the cachepasans that no
tag memory or address translation is necessary. Othergfatie processor are also
smaller. The program counter, the associated adders arniplexer are shorter than
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in a standard cache solution. For example, for a 1KB caclessite of these units is
only 10 bits, instead of 32 bits.

The main disadvantage of this single method cache is thedughhead when a
complete method is loaded into the cache and only a smatidraof the code is
executed. This issue is similar to that encountered wittsedulata in a cache line.
However, in extreme cases, this overhead can be very highs@tond problem can
be seen in following example:

foo) {
aQ;
bQO;
}

This code sequence results in the following cache loads:
1. methodfoo is loaded on invocation ofoo ()
2. methoda is loaded on invocation af()
3. methodfoo is loaded on return fromm()
4. methodb is loaded on invocation df()
5. methodfoo is loaded on return frorh O

The main drawback of the single method cache is the multiatde fill of foo ()

on return from methods() andb(). In a conventional cache design, if these three
methods fit in the cache memory at the same time and there igoempent conflict,
each method is only loaded once. This issue can be overcormmachyng more than
one method. The simplest solution is a two-block cache.

Two-Block Cache

The two-block cache can hold up to two methods in the cachis.rébults in having
to decide which block is replaced on a cache miss. With only iecks, Least-
Recently Used (LRU) is trivial to implement. The code seqaenow results in the
cache loads and hits as shown in Table 5.14. With the twdkbtache, we have to
double the cache memory or use both blocks for a single laejdod. The WCET
analysis is slightly more complex than with a single block.skort history of the
invocation sequence has to be used to find the cache fills &nd hi

However, a cache that can only hold two methods is still vesyrictive. The next
code sequence shows the conflict. Table 5.15 shows theingscdiche loads.
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Instruction Block1l Block2 Cache

foo() foo - load
a() foo a load
return foo a hit
b() foo b load
return foo b hit

Table 5.14: Cache load and hit example with the two-block cache

foo() {
aQ;
}
aQ {
bO;
}
Instruction Block1 Block2 Cache
foo() foo - load
a() foo a load
b() b a load
return b a hit
return foo a load

Table 5.15: Cache conflict example with the two-block cache

A memory (similar to the tag memory) with one word per blocluged to store a
reference to the cached method. However, this memory caitolersthan the tag

memory as it is only accessed on invocation or return, ratmem on every cache
access.

More Blocks

We can improve the hit rate by adding more blocks to the cd€bealy one block per

method is used, the cache size increases with the numbesadblWith more than
two blocks, LRU replacement policy means that another werdeieded for every
block containing a use counter that is updated on every anasid return. During
replacement, this list is searched for the LRU block. Hied#gbn involves a search
through the list of the method references of the blocks. i #earch is done in
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aQ {
for (53) {
bQ;
cO;
}
}

Listing 5.8: Code fragment for the replacement example

microcode, it imposes a limit on the maximum number of blocks

Variable Block Cache

Several cache blocks, all of the size as the largest methed, &@aste of cache mem-
ory. Using smaller block sizes and allowing a method to spen several blocks, the
blocks become very similar to cache lines. The main diffeeginom a conventional
cache is that the blocks for a method are all loaded at onceeeito be consecutive.

Choosing the block size is now a major design decision. milbck sizes allow
better memory usage, but the search time for a hit also isesea

With varying block numbers per method, an LRU replacemenbimes impracti-
cal. When the method found to be LRU is smaller than the loadethod, this new
method invalidates two cached methods.

For the replacement, we will use a pointextthat indicates the start of the blocks
to be replaced on a cache miss. Two practical replace polivie

Next block: At the very first beginningnextpoints to the first block. When a method
of lengthl is loaded into the block, nextis updated tgn+1) mod block count

Stack oriented: nextis updated in the same way as before on a method load. It is
also updated on a method return — independent of a resulitireg miss — to
point to the first block of the leaving method.

We will show the operation of these different replacemerlicigs in an example

with three methods: a(), b() and c() of block sizes 2, 2 andhke dache consists of 4
blocks and is therefore too small to hold all the methodsmndutine execution of the
code fragment shown in Listing 5.8. Tables 5.16 and 5.17 gheveache content
during program execution for both replacement policiese Tantent of the cache
blocks is shown after the execution of the invoke or retustrirction. An uppercase
letter indicates that this block has been newly loaded. Atrégrow depicts the block
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)
Block 1 A —a —a C c B b b —- B b
B

Block 2 A a a — A —a —a C c b
Block 3 —- B b b A a a —- A —a —a
Block 4 - B b b —- B b b A a a
Fill 2 4 5 7 9 11 13 15

a() b() ret cf ret b() ret cf

) )
Block 1 A —a a a a —a a a a —a a
Block 2 A a a a a a a a a a a
Block3 —- B —b C —c B —b C —c B —b
Block 4 - B b —- - B b —- - B b
Fill 2 4 5 7 8 10

Table 5.17: Stack oriented replacement policy

to be replaced on a cache miss (ttextpointer). The last row shows the number of
blocks that are filled during the execution of the program.

In this example, the stack oriented approach needs fewgrdglonly methods b()
and c() are exchanged and method a() stays in the cache. HEufefor example,
method b() is the size of one block, all methods can be heldarcache using the
the next blockpolicy, but b() and c¢() would be still exchanged using steckpolicy.
Therefore, the first approach is used in the proposed cache.

5.8.3 WCET Analysis

The proposed instruction cache is designed to simplify W@Ralysis. Due to the
fact that all cache misses are only included in two instangi{nvokeandreturn), the
instruction cache can be ignored on all other instructidie time needed to load a
complete method is calculated using the memory propeitagsnCy and bandwidth)
and the length of the method. On an invoke, the length of takied method is used,
and on a return, the method length of the caller is used taledécthe load time.
With a single method cache this calculation can be furthepkfied. For every
invoke there is a corresponding return. That means thairtteerieeded for the cache
load on return can be included in the time for the invoke urtton. This is simpler



5.8 A TIME-PREDICTABLE INSTRUCTION CACHE 113

because both methods, the caller and the callee, are knothie atcurrence of the
invoke instruction. The information about which method g caller need not be
stored for the return instruction to be analyzed.

With more than one method in the cache, a cache hit detecéistolbe performed
as part of the WCET analysis. If there are only two blockss thitrivial, as (i) a hit
on invoke is only possible if the method is the same as theragked (e.g. a single
method in a loop) and (ii) a hit on return is only possible whigs method is a leaf
in the call tree. In the latter case, it is always a hit.

When the cache contains more blocks (i.e. more than two rdstten be cached),
a part of the call tree has to be taken into account for hitafiete. The variable
block cache further complicates the analysis, as the mddragth also determines
the cache content. However, this analysis is still simgianta cache modeling of a
direct-mapped instruction cache, as cache block replatedepends on the call tree
instead of instruction addresses.

In traditional caches, data access and instruction cadhredilests can compete
for the main memory bus. For example, a load or store at theoétite processor
pipeline competes with an instruction fetch that resulta tache miss. One of the
two instructions is stalled for additional cycles by theastinstruction. With a data
cache, this situation can be even worse. The worst-casarszdor the memory
stall time for an instruction fetch or a data load is two missadties when both
cache reads are a miss. This unpredictable behavior leagsyt@essimistic WCET
bounds.

A method cachewith cache fills only on invoke and return, does not intexfeith
data access to the main memory. Data in the main memory issetevithgetfield
and putfield instructions that never overlap withvokeandreturn. This property
removes another uncertainty found in traditional cachéydss

5.8.4 Caches Compared

In this section, we will compare the different cache ardtitees in a quantitative way.
Although our primary concern is predictability, perforngarremains important. We
will therefore first present the results from a conventiaiedct-mapped instruction
cache. These measurements will then provide a baselinddoevaluation of the
proposed architecture.

Cache performance varies with different application domsaiAs the proposed
system is intended for real-time applications, the benckrfa these tests should
reflect this fact. However, there are no standard benchnaki$able for embed-
ded real-time systems. A real-time application was theecmlapted to create this
benchmark. The application is from one node of a distribuedor control system
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Cache size Blocksize MBIB MTIB

1KB 8 0.28 0.035
1 KB 16 0.38 0.024
1KB 32 0.58 0.018
2KB 8 0.17 0.022
2KB 16 0.25 0.015
2KB 32 0.41 0.013
4 KB 8 0.00 0.001
4 KB 16 0.01 0.000
4 KB 32 0.01 0.000

Table 5.18: Direct-mapped cache

[83] (see also Section 7.5.1). A simulation of the environtrgensors and actors)
and the communication system (commands from the mastargtédrms part of the
benchmark for simulating the real-world workload.

The data for all measurements was captured using a simulaitidOP and running
the application for 500,000 clock cycles. During this tinlee major loop of the
application was executed several hundred times, effégtiendering any misses
during the initialization code irrelevant to the measuretae

Direct-Mapped Cache

Table 5.18 gives the memory bytes and memory transactiariegieuction byte for
a standard direct-mapped cache. As we can see from the valuesache size of
4KB, the kernel of the application is small enough to fit coetgly into the 4KB
cache. The cache performs better (i.e. fewer bytes ardérapd) with smaller block
sizes. With smaller block sizes, the chance of unused datg bead is reduced and
the larger number of blocks reduces conflict misses. Howegducing the block
size also increases memory transactions (MTIB), whichctireelates to memory
latency.

Which configuration performs best depends on the relatiprisitween memory
bandwidth and memory latency. Examples of average memagsadimes in cycles
per instruction byte for different memory technologies previded in Table 5.19.
The third column shows the cache performance for a Static RBRIAM) that is
very common in embedded systems. A latency of 1 clock cyakaaraccess time of
2 clock cycles per 32-bit word are assumed. For the synclubiRAM (SDRAM)
in the forth column, a latency of 5 cycles (3 cycle for the raddieess and 2 cycle
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Cache size Blocksize SRAM SDRAM DDR

1KB 8 0.18 0.25 0.19
1KB 16 0.22 0.22 0.16
1KB 32 0.31 0.24 0.15
2KB 8 0.11 0.15 0.12
2KB 16 0.14 0.14 0.10
2KB 32 0.22 0.17 0.11

Table 5.19: Direct-mapped cache, average memory access time

CAS latency) is assumed. The memory delivers one word (4spyter cycle. The
Double Data Rate (DDR) SDRAM in the last column has an entdhlatency of 4.5
cycles and transfers data on both the rising and falling efigiee clock signal.

The data in bold give the best block size for different memeghnologies. As
expected, memories with a higher latency and bandwidtlroparbetter with larger
block sizes. For small block sizes, the latency clearly datds the access time.
Although the SRAM has half the bandwidth of the SDRAM and artpraof the
DDR, with a block size of 8 bytes, it is faster than the DRAM nogi@s. In most
cases a block size of 16 bytes is the fastest solution and Wéeherefore use this
configuration for comparison with the following cache silns.

Fixed Block Cache

Cache performance for single method per block architestigrenown in Table 5.20.
The measurements for a simple 8 byte prefetch queue areistsa fpr reference.
With prefetching, we would expect to see an MBIB of about 1e B7% overhead
results from the fact that the prefetch queue fetches 4 laytiese and has to buffer a
minimum of 3 bytes for the instruction fetch stage. On a binamicreturn, the queue
is flushed and these bytes are lost.

A single block that has to be filled on every invoke and retequires considerable
overheads. More than twice the amount of data is read frorm#ia memory than
is consumed by the processor. However, the memory trangactiunt is 16 times
lower than with simple prefetching, which can compensatetie large MBIB for
main memories with high latency.

The solution with two blocks for two methods performs almivgte as well as
the simple one method cache. This is due to the fact that,llfteaves in the call
tree, the caller method can be found on return. If the bloaknt@s doubled again,
the number of misses is reduced by a further 25%, but the csizhealso doubles.
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Type Cache size MBIB MTIB
Prefetch 8B 1.37 0.342
Single method 1KB 232 0.021
Two blocks 2KB 1.21 0.013
Four blocks 4 KB 0.90 0.010

Table 5.20: Fixed block cache

Type Cache size SRAM SDRAM DDR
Prefetch 8B 1.02 2.05 1.71
Single Method 1KB 1.18 0.69 0.39
Two blocks 2 KB 0.62 0.37 0.21
Four blocks 4 KB 0.46 0.27 0.16

Table 5.21: Fixed block cache, average memory access time

For this measurement, an LRU replacement policy applieg#otwo and four block
caches.

The same memory parameters as in the previous section angsald in Table 5.21.
With the high latency of the DRAMS, even the simple one bloaghe is a faster (and
more accurately predictable) solution than a prefetch quéds MBIB and MTBI
show the same trend as a function of the number of blocks,ighisflected in the
access time in all three memory examples.

Variable Block Cache

Table 5.22 shows the cache performance of the proposedosplue. of a method
cache with several blocks per method, for different cachessaind number of blocks.
For this measurement,reext blockreplacement policy applies.

In this scenario, as the MBIB is very high at a cache size of Ja8 almost
independent of the block count, the cache capacity is sebe tdearly dominant.
The most interesting cache size with this benchmark is 2K&eHwe can see the
influence of the number of blocks on both performance pamsetBoth values
benefit from more blocks. However, a higher block count nexpumore time or more
hardware for the hit detection. With a cache size of 4KB anough blocks, the
kernel of the application completely fits into the variabledik cache, as we have
seen with a 4KB traditional cache. From the gap between 1&ardocks (within
the 4KB cache), we can say that the application consistsvedrféghan 32 different
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Cache size Block count MBIB MTIB

1KB 8 0.80 0.009
1KB 16 0.71  0.008
1KB 32 0.70  0.008
1KB 64 0.70  0.008
2KB 8 0.73  0.008
2KB 16 0.37 0.004
2KB 32 0.24  0.003
2KB 64 0.12 0.001
4 KB 8 0.73  0.008
4 KB 16 0.25 0.003
4 KB 32 0.01 0.000
4 KB 64 0.00 0.000

Table 5.22: Variable block cache

methods.

It can be seen that even the smallest configuration with aecsizie of 1KB and
only 8 blocks outperforms fixed block caches with 2 or 4KB irttbparameters
(MBIB and MTIB). Compared with the fixed block solutions, MTis low in all
configurations. This is due to the better hit rate, as inditéty the lower MBIB.

In most configurations, MBIB is higher than for the directppad cache. It is
very interesting to note that, in all configurations (evemsmall 1KB cache), MTIB
is lower than in all 1KB and 2KB configurations of the direc&pped cache. This
is a result of the complete method transfers when a miss s@nut is clearly an
advantage for main memory systems with high latency.

As in the previous examples, Table 5.23 shows the averageomgesucess time
per instruction byte for three different main memories.

In the DRAM configurations, the variable block cache dingetténefits from the
low MTBI. When comparing the values between SDRAM and DDRcae see that
the bandwidth affects the memory access time in a way thatpsoaimately linear.
The high latency of these memories is completely hidden. ddrdiguration with
16 or more blocks and dynamic RAMs outperforms the diregimed cache of the
same size. As expected, a memory with low latency (the SRARhi® example)
depends on the MBIB values. The variable block cache is sitian the direct-
mapped cache in the 1KB configuration because of the highdBN®7 compared
to 0.3-0.6), and performs very similarly at a cache size d82K

In Table 5.24, the different cache solutions with a size oB2&e summarized.
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Cache size Block count SRAM SDRAM DDR

1KB 8 0.41 0.24 0.14
1 KB 16 0.36 0.22 0.12
1KB 32 0.36 0.21 0.12
1 KB 64 0.36 0.21 0.12
2 KB 8 0.37 0.22 0.13
2KB 16 0.19 0.11 0.06
2KB 32 0.12 0.08 0.04
2KB 64 0.06 0.04 0.02

Table 5.23: Variable block cache, average memory access time

Cache type MBIB MTIB
Single method 232 0.021
Two blocks 1.21 0.013

Variable block (16) 0.37  0.004
Variable block (32) 0.24  0.003
Direct-mapped 0.25 0.015

Table 5.24: Caches compared

The detail results of all caches can be found in Appendix Bfullmethod caches
with two or more blocks have a lower MTIB than a conventioredtte solution. This
becomes more significant with increasing latency in main orégs. The MBIB
value is only quite high for one or two methods in the cache weéier, the most
surprising result is that the variable block cache with 3ké outperforms a direct-
mapped cache of the same size at both values.

We can see that predictability is indirectly related to perfance — a trend we had
anticipated. The most predictable solution with a singléhroe cache performs very
poorly compared to a conventional direct-mapped cachee lgcept a slightly more
complex WCET analysis (taking a small part of the call tree account), we can
use the two-block cache that is about two times better.

With the variable block cache, it could be argued that the W@Balysis be-
comes too complex, but it is nevertheless simpler than thiht tive direct-mapped
cache. However, every hit in the two-block cache will als@lhét in a variable block
cache (of the same size). A tradeoff might be to analyze tbhgram by assuming
a two-block cache but using a version of the variable bloathea The additional
performance gain can than be used by non- or soft real-tinte phan application.
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5.8.5 Summary

In this section, we have extended the single cache perfaenareasuremermiss
rate to a two value set, memory read and transaction rate, in dodeerform a
more detailed evaluation of different cache architecturesom the properties of
the Java language — usually small methods and relative lheane we derived the
novel idea of anethod cache.e. a cache organization in which whole methods are
loaded into the cache on method invocation and the retum &anethod. This cache
organization is time-predictable, as all cache missesarpéd together in these
two instructions. Using only one block for a single methotiaduces considerable
overheads in comparison with a conventional cache, butrig sieple to analyze.
We extended this cache to hold more methods, with one blackpthod and several
smaller blocks per method.

Comparing these organizations quantitatively with a beraitk derived from a
real-time application, we have seen that the variable bbadhe performs similarly
to (and in one configuration even better than) a direct-mamaehe, in respect of
the bytes that have to be filled on a cache miss. In all configmsand sizes of the
variable block cache, the number of memory transactiong;hwielates to memory
latency, is lower than in a traditional cache.

Only filling the cache on method invocation and return sifigdi WCET analysis
and removes another source of uncertainty, as there is npetdion for the main
memory access between instruction cache and data cache.






6 JOP Runtime System

A Java processor alone is not a complete JVM. This chapteribdes the definition
of a real-time profile for Java and a framework for a user-aefischeduler in Java. It
concludes with the description of the JVM internal datacttrtes to represent classes
and objects.

6.1 A Real-Time Profile for Embedded Java

As standard Java is under-specified for real-time systegtenRTSJ does not fit
for small embedded systems a new and simpler real-time @nsfitlefined in this
section and implemented on JOP. The guidelines of the speiifin are:

¢ High-integrity profile

Easy syntax, simplicity

Easy to implement

Low runtime overhead

No syntactic extension of Java

Minimum change of Java semantics

Support for time measurement if a WCET analysis tool is natlalile

Known overheads (documentation of runtime behavior and ongmequire-
ments of every JVM operation and all methods have to be peolid

The real-time profile under discussion is inspired by thériced versions of the
RTSJ described in [79] and [56] (see Section 4.4.5). It isrided for high-integrity
real-time applications and as a test case to evaluate thaeattire of JOP as a Java
processor for real-time systems.

The proposed definition is not compatible with the RTSJ. &itie application
domain for the RTSJ is different from high-integrity systent makes sense forriiot
to be compatible with the RTSJ. Restrictions can be enfdogetkfining new classes
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(e.g. setting thread priority in the constructor of a realet thread alone, enforcing
minimum interarrival times for sporadic events).

All hardware interrupts are represented by threads undecdhtrol of the sched-
uler. With this solution, a priority is assigned to the devirivers and the execu-
tion time can be incorporated in the schedulability analygith normal tasks. This
solution also avoids problems with preemption latency pked by device drivers.
One example of this problem is tleaps-lockissue in Linux [59]: A device driver
performs a spinlock wait for keyboard acknowledgement amdiyces preemption
latency up to 9166s. With the proposed concept of hardware interrupts undesdsc
uler control, a lower assigned priority to such a devicearavoids preemption de-
lays of more importanteal-time threads and events.

To verify that this specification is expressive enough fghhintegrity real-time
applications, Ravenscar-Java (RJ) [56] (see Section)4wuith the additional neces-
sary RTSJ classes, has been implemented on top of it. HowR¥énherits some of
the complexity of the RTSJ. Therefore, the implementatioRbhas a larger memory
and runtime overhead than this simple specification.

6.1.1 Application Structure

The application is divided in two different phaséstialization andmission All non
time-critical initialization, global object allocationthread creation and startup are
performed in the initialization phase. All classes needdddaded and initialized in
this phase. The mission phase starts after invocatiaaftMission(). The num-
ber of threads is fixed and the assigned priorities remaihamged. The following
restrictions apply to the application:

e Initialization and mission phase
e Fixed number of threads
e Threads are created at initialization phase

e All shared objects are allocated at initialization

6.1.2 Threads

Concurrency is expressed with two typessohedulable objects

Periodic activities  are represented by threads that execute in an infinite loakin
ingwaitForNextPeriod() to get rescheduled in predefined time intervals.
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Asynchronous sporadic activities are represented by event handlers. Each event
handler is in fact a thread, which is released by an hardwaegrupt or a
software generated event (invocationfdafre()). Minimum interarrival time
has to be specified on creation of the event handler.

The classes that implement teehedulable objectsre:

RtThread represents a periodic task. As usual task work is codediir(), which
gets invoked omissionStart(). A scoped memory object can be attached
to anRtThread at creation.

HwEvent represents an interrupt with a minimum interarrival timiethe hardware
generates more interrupts, they get lost.

SwEvent represents a software-generated event. It is triggerefd by() and needs
to overridehand1e().

Listing 6.1 shows the definition of the basic classes.
Listing 6.2 shows the principle coding of a worker thread.ekample for creation
of two real-time threads and an event handler can be seerstimd i6.3.

6.1.3 Scheduling

The scheduler is a preemptive, priority-based scheduliruwlimited priority levels
and a unique priority value for each schedulable object. &&-time threads or
events are scheduled during the initialization phase.

The design decision to use unique priority levels, instddel 6O within priorities,
is based on following facts: Two common ways to assign gréxiare rate monotonic
and, in a more general form, deadline monotonic assignmafhten two tasks are
given the same priority, we can choose one of them and asdiighar priority to
that task and the task set will still be schedulable. Thigltesn a strictly monotonic
priority order and we do not need to deal with FIFO order. T@lisiinates queues
for each priority level and results in a single, priority erdd task list with unlimited
priority levels.

Synchronized blocks are executed with priority ceiling é&tian protocol. An
object, used for synchronization, for which the prioritynist set, top priority is as-
sumed. This avoids priority inversions on objects that aeatcessible from the
application (e.g. objects inside a library).

In addition, the scheduler contains methods for worst-tiase measurement for
both the periodic work and handler methods. These measkeedition times can be
used during development when no WCET analysis tool is aveila
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public class RtThread {

pubTic RtThread(int priority, int period)

public RtThread(int priority, int period, int offset)

pubTic RtThread(int priority, int period, Memory mem)

pubTic RtThread(int priority, int period, int offset,
Memory mem)

pubTlic void enterMemory()
pubTic void exitMemory()

pubTic void run()
pubTic boolean waitForNextPeriod()

pubTlic static void startMission()

}

public class HwEvent extends RtThread {
pubTic HwEvent(int priority, int minTime, int number)
public HwEvent(int priority, int minTime, Memory mem,

int number)

pubTic void handle()

}

public class SwEvent extends RtThread {

public SwEvent(int priority, int minTime)
public SwEvent(int priority, int minTime, Memory mem)

pubTic final void fire(Q)
pubTic void handle()

Listing 6.1: Schedulable objects
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6.1.4 Memory

The profile does not support a garbage collector. All membukl be allocated
at the initialization phase. Without a garbage collectiog, lheap implicitly becomes
immortal memory (as defined by the RTSJ). For objects credieithg the mission
phase, a scoped memory is provided. Each scoped memorysaassigned to one
RtThread. A scoped memory area cannot be shared between threadsfekences
are allowed from the heap to scoped memory. Scoped memokplisidy entered
and left using invocations from the application logic. Mesnareas are cleared both
on creation and when leaving the scope (invocatioaxdftMemory ()), leading to a
memory area with constant allocation time, as opposed toanemith linear allo-
cation time (as the memory typdMemory in the RTSJ) [21].

6.1.5 Restriction of Java

A list of some of the language features that should be avdioied/ CET analyzable
real-time threads and bound memory usage:

WCET: Only analyzable language constructs are allowed (see.[78])

Static class initialization: ~ Since the definition when to call the static class initialize
is problematic (see Section 4.2), they are disallowed. Miiecode to a static
method (e.ginit()) and invoke it explicit in the initialization phase.

Inheritance: Reduce usage of interfaces and overridden methods.

String concatenation:  In immortal memory scope only string concatenation with
string literals is allowed.

Finalization: finalize() has a weak definition in Java. Because real-time
systems rurforever, objects in the heap, which is immortal in this specifi-
cation, will never be finalized. Objects in scoped memory r@teased on
exitMemory (). However, finalizations on these objects complicate WCET
analysis ofexitMemory ().

Dynamic Class Loading: Due to the implementation and WCET analysis complex-
ity dynamic class loading is avoided.

A program analysis tool can greatly help in enforcing thesgrictions.
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public class Worker extends RtThread {
private SwEvent event;

pubTic Worker(int p, int t,
SwEvent ev) {

super(p, t,
// create a scoped memory area
new Memory(10000)

);

event = ev;

initQ;

}

private void initQ {
// all initialzation stuff
// has to be placed here

}

public void runQ {

for (53) {
work(); // do some work
event.fire(); // and fire an event

// some work in scoped memory
enterMemory() ;

workWithMem() ;

exitMemory();

// wait for next period
if (!waitForNextPeriod()) {
missedDeadline();
}
}

// should never reach this point

Listing 6.2: A periodic real-time thread
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// create an Event
Handler h = new Handler(3, 1000);

// create two worker threads with

// priorities according to their periods
FastWorker fw = new FastWorker(2, 2000);
Worker w = new Worker(l, 10000, h);

// change to mission phase for all
// periodic threads and event handler
RtThread.startMission(Q);

// do some non real-time work
// and invoke sleep() or yield()
for G3) {
watchdogB1ink() ;
Thread.sleep(500);

Listing 6.3: Start of the application
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6.1.6 Implementation Results

The initial idea was to implement scheduling and dispatghimmicrocode. How-
ever, many Java bytecodes have a one to one mapping to a oderatstruction,
resulting in a single cycle execution. The performance gaam algorithm coded in
microcode is therefore negligible. As a result, almost ithe scheduling is imple-
mented in Java. Only a small part of the dispatcher, a menupy, ¢s implemented
in microcode and exposed with a special bytecode.

Experimental results of basic scheduling benchmarks, asgheriodic thread jit-
ter, context switch time for threads and asynchronous syean be found in Sec-
tion 7.3.2.

To implement system functions, such as scheduling, in Ja@ess to JVM and
processor internal data structures have to be availablevei#zr, Java does not al-
low memory access or access to hardware devices. In JORdtess is provided
by way of additional bytecodes. In the Java environmentgehmytecodes are repre-
sented as static native methods. The compiled invoke ttgtrufor these methods
(invokestatic)is replaced by these additional bytecodes in the classTii& so-
lution provides a very efficient way to incorporate low-Iefegctions into a pure Java
system. The translation can be performed during classrgadiavoid non-standard
class files.

A pure Java system, without an underlying RTOS, is an unusisadém with some
interesting new properties. Java is a safer execution @mvient than C (e.g. no
pointers) and the boundary betwedeasrnelanduser spacean become quite loose.
Scheduling, usually part of the operating system or the JigNnplemented in Java
and executed in the same context as the application. Thigepsoprovides an easy
path to a framework for user-defined scheduling.

6.2 User-Defined Scheduler

The novel approach to implement a real-time scheduler ia é@ens up new pos-
sibilities. An obvious next step is to extend this systemrmvje a framework for
user-defined scheduling in Java. New applications, suchudisnmedia streaming,
result insoft real-time systems that need a more flexible scheduler thauralli-
tional fixed priority based ones. This section provides gfnto-use framework to
evaluate new scheduling concepts for these applicatioreairtime Java.

The following section analyzes which events are exposedhaostheduler and
which functions from the JVM need to be available in the uparcs. It is followed
by the definition of the framework and examples of how to impmat a scheduler
using this framework.
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6.2.1 Schedule Events

The most important element of the user-defined schedulerdefine which events
result in the scheduling of a new task. When such an eventrgcthe user-defined
scheduler is invoked. It can update its task list and decidiemtask is dispatched.

Timer interrupt:  For timed scheduling decisions, a programmable timer géeer
exact timed interrupts. The scheduler controls the timervat for the next
interrupt.

HW interrupt:. Each hardware-generated interrupt can be associated wigsymn-
chronous event. This allows the execution of a device duweler the control
of the scheduler. Latencies of the device driver can be olvetr by assigning
the right priority in a priority scheduler.

Monitor: To allow different implementations of priority inversiomgtocols, hooks
for monitorenter andmonitorexit are provided.

Thread block: Each thread can cease execution via a call of the schedulds T
function is used to implement methods suchwastForNextPeriod() or
sleep(). The reason for blocking (e.g. end of periodic work) has tacd®-
municated to the scheduler (e.g. next time to be unblocked periodic task).

SW event: Invoking fire() on an event provides support for signalingait(),
notify() or notifyA11() are not necessary. However, this mechanism is
not part of the scheduling framework. It can be implementéiti whe user-
defined scheduler and an associated thread class.

6.2.2 Data Structures

To implement a scheduler in Java, some JVM internal datatsies need to be
accessible.

Object: In Java, any object (including an object from the classss for static meth-
ods) can be used for synchronization. Different priorityeirsion protocols
require different data structures to be associated withlbgect Each object
provides a field, accessed througS@eduler method, in which these data
structures can be attached.

Thread: A list of all threads is provided to the scheduler. The scherds also noti-
fied when a new thread object is created or a thread termin&ltesscheduler
controls the start of threads.
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6.2.3 Services for the Scheduler

The real-time JVM and the hardware platform have to provim®e minimum ser-
vices. These services are exposed throtgieduler:

Dispatch: The current active thread is interrupted and a new threathéed in the
run state.

Time: System time with high resolution (microseconds, if the gk can provide
it) is used for time derived scheduling decisions.

Timer: A programmable timer interrupt (not a timer tick) is necegdar accurate
time triggered scheduling.

Interrupts:  To protect the data structures of the scheduler all intésrapn be dis-
abled and enabled.

6.2.4 Class Scheduler

The classscheduler has to be extended to implement a user-defined scheduler. The
classTask representschedulable objects For non-trivial scheduling algorithms,
Task is also extended. The scheduler lives in normal thread spabtere is no
special context such as kernel space. The methoBstafduler are categorized by

the caller module and described in detail below.

Application ~ To use a scheduler in an application, the application ordytb&reate
one instance of the scheduler class and has to decide whedudicly starts.

public Scheduler()
A single instance of the scheduler is created by the apitat
public void start()

This method initiates the transition to the mission phastaefapplication. All cre-
ated tasks are started and scheduled under the control oéé¢nescheduler.

Task A user-defined scheduler usually needs an associated efseedithread class
(an extension ofask). This class interacts with the scheduler by invoking failog
methods frontcheduler:

void addTask(Task t)
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The scheduler has access to the list of created tasks to tlee sthrt of scheduling.
For dynamic task creation after the start of the scheduiermethod is called by the
constructor of Task, to notify the scheduler to update #s li

void isDead(Task t)

The scheduler is notified when a Task returns fromrtine() method. The scheduler
removes this Task from the list of schedulable objects.

void block()

EveryTask can cease execution via a call of the scheduler. This methaded to
implement methods such aaitForNextPeriod() or sleep() in a user defined
thread class.

Java Virtual Machine  The methods listed below provide the essential points of
communication between the JVM and the scheduler. As a regptanan interrupt
(hardware or timer), entrance or exit of a synchronized ou#tilock the JVM in-
vokes a method from the scheduler.

abstract void schedule()

This is the main entry point for the scheduler. This methosl todbe overridden to
implement the scheduling algorithm. It is called from theéMl¥n a timed event or a
software interrupt (segenInt())is issued (e.g. whenTBask gives up execution).

void interrupt(int nr)

The scheduler is notified on a hardware event. It can direethan associated device
driver or use this information to unblock a waiting task.

void monitorEnter(Object o)
void monitorExit(Object o)

These methods are invoked by the JVM on synchronized methadiblocks (JVM
bytecodeamonitorenter andmonitorexit). They provide hooks for executing
dynamic priority changes in the scheduler.

Scheduler  Services of the JVM needed to implement a scheduler are gedvi
through static methods.

static final void genInt()

This service from the JVM schedules a software interruptaAssult,schedule()
is called. This method is the standard way of switching artr the scheduler. It is
e.g. invoked byblock ().
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static final void enableInt()
static final void disableInt()

The scheduler cannot use monitors to protect its data stesas the scheduler itself
is in charge of handling monitors. To protect the data stmest of the scheduler, it
can globally enable and disable interrupts.

static final void dispatch(Task nextTask, int nextTim)
This method dispatchesTask and schedules a timer interruptratx tT+m.

static final void attachData(Object obj, Object data)
static final Object getAttachedData(Object obj)

The behavior of the priority inversion avoidance protosaléfined by the user sched-
uler. The root of the Java class hierarchg\a. Tang.0Object) contains a JVM in-
ternal reference of generic type Object that can be usedégcheduler to attach
data structures for monitors. The first argument of thesénoaistis the object that is
used as monitor.

Scheduler or Task  The following two methods are utility functions useful fdwet
scheduler and the thread implementation.

static final int getNow()

To support time-triggered scheduling, the system provéaesss to a high-resolution
time or counter. The returned value is the time since stdrtupicroseconds. The
exact resolution is implementation-dependent.

static final Task getRunningTask()

The current runningask (in which context the scheduler is called) is returned by
this method.

6.2.5 Class Task

A basic structure for schedulable objects is shown in Lgs€@it. This class is usually
extended to provide a thread implementation that fits to #es-defined scheduler.
The classrask is intended to be minimal. To avoid inheriting methods trandt fit
for some applications, it does not extejdlva.lang.Thread. However,Task can
be used tamplementjava.lang.Thread.

The methodsnterMemory andexitMemory are used by the application to pro-
vide scoped memory for temporary allocated objeGtssk provides a list of active
tasks for the scheduler.
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public class Task {

pubTic Task()
pubTic Task(Memory mem)
void start()

public void enterMemory()
public void exitMemory()

pubTic void run()

static Task getFirstTask()
static Task getNextTask()

Listing 6.4: A basic schedulable object

One issue, raised by the implementation of the frameworkésway in which
access rights to methods need to be defined in Java. All ngtleadeptstart(),
should beprivate or protected. However, some methods, suchsasedule(),
are invoked by a part of the JVM, which is also written in Javd tesides in a
different package. This results in defining the methods &fipandhopingthat they
are not invoked by the application code. The C++ conceptiendis would greatly
help in sharing information over package boundaries withwaking this information
public.

6.2.6 A Simple Example Scheduler

Listing 6.5 shows a full example of using this framework tgplement a simple
round robin scheduler.

The only method that needs to be supplieddgedule(). For a more advanced
scheduler, it is necessary to provide a combination of adesined thread class and
a scheduler class. These two classes have to be tightlyratéely as the scheduler
uses information provided by the thread objects for its dalieg decisions.
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public class RoundRobin extends Scheduler {

//
// test threads

/7

static class Work extends Task {
private int c;

Work(int ch) {
c = ch;

}

public void run(Q {

for (55) {
Dbg.wr(c); // debug output

// busy wait to simulate

// 3 ms workload in Work.

int ts = Scheduler.getNow();

ts += 3000;

while (ts—Scheduler.getNow()>0)

}
}
}
//
// user scheduler starts here
//

public void addTask(Task t) {
// we do not allow tasks to be
// added after start().

}

//
// called by the JWM
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//

public void schedule() {
Task t = getRunningTask() .getNextTask();
if (t==null) t = Task.getFirstTask();
dispatch(t, getNow()+10000);

public static void main(String[] args) {

new Work(’a’);
new Work(’b’);
new Work(’c’);

RoundRobin rr = new RoundRobin();

rr.startQ);

Listing 6.5: A very simple scheduler

6.2.7 Interaction of Task, Scheduler and the JVM

The framework is used to re-implement the scheduler destiibSection 6.1. In the
original implementation, the interaction between schieduind threads was simple,
as the scheduling was part of the thread class. Using thesfvank, these functions
have to be split to two classes, extendifgsk and Scheduler. Both classes are
placed in the same package to provide simpler informati@miisy with some pro-
tection from the rest of the application. For performana@soms data structures are
directly exposed from one class to the other.

The resulting implementation is compatible with the firstimiéon, with the ex-
ception thatRtThread now extendsrask. However, no changes in the application
code are necessary.

Figure 6.1 is an interaction example of this scheduler withe framework. The
interaction diagram shows the message sequences betweespphlication tasks,
the scheduler, the JVM and the hardware. The hardware mypeesterrupt and
timer logic. The corresponding code fragments of the appba, RtThread and
PriorityScheduler are shown in Listing 6.6, 6.7 and 6.8. Task 2 is a periodic task
with a higher priority than Task 1.
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Figure 6.1: Interaction and message exchange between the applictitescheduler,
the JVM and the hardware
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for ;) {
doPeriodicWork();
waitForNextPeriod();

Listing 6.6: Code fragment oft the application

The first event is a timer event to unblock Task 2 for a new erithe generated
timer event results in a call of the user defined schedules. stheduler performs its
scheduling decision and issues a context switch to Task th &/ery context switch
the timer is reprogrammed to generate an interrupt at thetime® triggered event
for a higher priority task. Task 2 performs the periodic warld ceases execution
by invocation ofwaitForNextPeriod(). The scheduler is called and requests an
interrupt from the hardware resulting in the same call segeieas with a timer or
other hardware interrupt. The software generated inteimaposes negligible over-
head and results in a single entry point for the schedulesk Tas the only ready task
in this example and is resumed by the scheduler.

Using a general scheduling framework for a real-time scleeds not without
its costs. Additional methods are invoked from a schedudimgnt until the actual
dispatch takes place. The context switch is about 20% sltiaaT in the original
implementation. It is the opinion of the author that the &iddal cost is outweighed
by the flexibility of the framework.

6.2.8 Predictability

The architecture of JOP is designed to simplify WCET analysivery JVM bytecode
maps to one ore more microcode instructions. Every micredogtruction takes
exactly one cycle to execute. Thus, the execution time dbytecode level is known
cycle accurately. The microcode contains no data deperwtantbound loops that
would compromise the WCET analysis (see Section 7.4).

The worst-case time for dispatching is known cycle acclyate this architecture.
Only the time behavior of the user scheduler needs to be zethlywith the known
WCET of every bytecode, as listed in Appendix D, the WCET & sikheduler can
be obtained by examining it at the bytecode level. This catdpe manually or with
a WCET analysis tool.
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public boolean waitForNextPeriod() {

synchronized(monitor) {

}

// bs is the instance of
// the PriorityScheduler
int nxt = ps.next[nr] + period;

int now = Scheduler.getNow()
if (nxt—now < 0) {
// missed deadline
doMissAction();
return false;
} else {
// time for the next unblock
ps.next[nr] = nxt;
}
// just schedule an interrupt
// schedule() gets called.
ps.block();

return true;

Listing 6.7: Implementation in RtThread
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public void schedule() {

// Find the ready thread with
// the highest priority.
int nr = getReady();

// Search the list of sleeping threads
// to find the nearest release time
// in the future of a higher priority
// thread than the one that will be
// released now.

int time = getNextTimer(nr);

// This time is used for the next

// timer interrupt.

// Perform the context switch.
dispatch(task[nr], time);

// No access to locals after this point.
// We are running in the NEW context!

Listing 6.8: Implementation of the PriorityScheduler
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6.2.9 Related Work

Several implementations of user-level schedulers in stahdperating systems have
been proposed. In [59], the Linux scheduling mechanism liseced. It is divided
into a dispatcher and an allocator. The dispatcher remaikerinel space; while the
allocator is implemented as a user space function. Thesatiotransforms four basic
scheduling parameters (priority, start time, finish time &adget) into scheduling
attributes to be used by the dispatcher. Many existing sdbesican be supported
with this parameter set, but others that are based on diffgr@ameters cannot be
implemented. This solution does not address the implertientaf protocols for
shared resources.

A different approach defines a hew API to enable applicationsse application-
defined scheduling in a way compatible with the schedulingehdefined in POSIX
[82]. It is implemented in the MaRTE OS, a minimal real-tingrrkel that provides
the C and Ada language POSIX interface. This interface has babmitted to the
Real-Time POSIX Working Group for consideration.

One approach to user-level scheduling in Java can be foufigd9in A thread
multiplexor, as part of the FLEX ahead-of-time compiler system for Javaised
for utility accrual scheduling. However, the underlyingeogting system — in this
case Linux — can still be seen through the framework and ikere support for Java
synchronization.

6.2.10 Summary

This section and Section 6.1 consider the implementatioraiftime scheduling on
a Java processor. The novelty of the described approachinspiementing func-
tions usually associated with an RTOS in Java. That meansghktime Java is not
based on an RTOS, and therefore not restricted to the funadtip provided by the
RTOS. With JOP, a self-contained real-time system in puva Bacomes possible.
This system is augmented with a framework to provide sclirgldlinctions at the
application level. The implementation of the specificatidescribed in Section 6.1,
is successfully used as the basis for a commercial realdappécation in the railway
industry. Future work will extend this framework to supportitiple schedulers. A
useful combination of schedulers would be: one for standaxd.l1ang.Thread
(optimized for throughput), one for soft real-time tasksl ame for hard real-time
tasks.
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6.3 JVM Architecture

This section presents the details of the implementatioh@flyM on JOP. The rep-
resentation of objects and the stack frame is chosen to supP® as processor for
real-time systems. However, since the data structuresalieed through microcode
they can be easily changed for a system with different neEdsexample: to sim-
plify a compacting GC a handle to an object can be implemebyedhanging the
microcode ofgetfield, putfield andnew.

6.3.1 Runtime Data Structures

Memory is addressed as 32-bit data, which means that menoimjeps are incre-
mented for every four bytes. No single byte or 16-bit accessecessary. The ab-
stract type reference is a pointer to memory that repregbet®bject or an array.
The reference is pushed on the stack before an instructiomperate on it. A null
reference is represented by the value 0.

Stack Frame

On invocation of a method, the invoker’s context is savediealy allocated frame
on the stack. It is restored when the method returns. Thedsawatext consists of
following registers:

SP: Immediately before invocation the stack pointer pointshie last argument for
the called function. This value is reduced by the argumenntdi.e. the
arguments are consumed) and saved in the new stack frame.

PC: The pointer to the next bytecode instruction after the isvislstruction.
VP: The pointer to the memory area on the stack that contain®tadsl
CP: The pointer to the constant pool of the class from the invpkirethod.

MP: The pointer to the method structure of the invoking method.

SP, PC and VP are registers in JOP while CP and MP are localblesi of the
JVM. Figure 6.2 provides an example of the stack before aed @ivoking a method.
In this example, the called method has two arguments andicentwo local vari-
ables. If the method is a virtual one, the first argument igdfierence to the object
(thethis-pointer). The arguments implicit become locals in theezhthethod and are
accessed in the same way as local variables. The start ofdtle fsame Framein
the figure) needs not to be saved. It is not needed during Baraf the method or
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VP —| var_0 8 var_0
var_1 var_1
var_2 var_2
Previous SP Previous SP
Previous PC Previous PC
- Old frame < -
Previous VP Previous VP
Previous CP Previous CP
Previous MP Previous MP
Operand stack Operand stack
L
arg_0 VP —>»| var 0
SP—»| arg_1 var_1
var_2
var_3
Frame ------ »| Previous SP
Previous PC
Previous VP
Previous CP
SP —»| Previous MP

on return. To access the starting address of the frame (@.gnfexception) it can be

Figure 6.2: Stack change on method invocation

calculated with information from the method structure:

Object Layout

Frame=V P+ arg_cnt+ locals.cnt

Figure 6.3 shows the representation of an object in memohg dbject reference
points to the first instance variable of the object. At theeiff-1, a pointer is located
to access class information. To speed-up method invogatipoints directly to the
method table of the objects class instead of the beginnirigeotlass data.
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Object reference

Method vector base

Instance variable 1

Instance variable 2

Instance variable n

Figure 6.3: Object format

Array reference

Array length

First element

Second element

Element n

Figure 6.4: Array format

Array Layout

Figure 6.4 shows the representation of an array in memorye difject reference
points to the first element of the array. At the offset, the length of the array can
be found.

Class Structure

Runtime class information, as shown in Figure 6.5, consiftise class variables, the
dispatch table for the methods, the constant pool and aar@itinterface table.

The class reference is obtained from the constant pool whaweaobject is cre-
ated. The method vector base pointer is a reference from jactdb its class (see
Figure 6.3). It is used ofinvokevirtual with an index retrieved from the constant
pool. A pointer to the method structure of the current metisoshved in the JVM
variable MP. The method structure, as shown in Figure 6@agas the starting ad-
dress and length of the method (in 32-bit words), argumedti@ceal variable count
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Class reference
Method vector base
Current Method (MP)

Constant Pool (CP)

Class variable 1

Class variable 2

Instance size

Interface table

Method
structure 0O

Method
structure 1

Method
structure 2

.

Class reference

Constant pool length

Constant 1

Constant 2

Interface reference 0

Interface reference 1

Static variables

. Virtual method
table

> Constant pool

> Interface table

Figure 6.5: Runtime class structure
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Start address Method length

Constant pool Local count | Arg. count

Figure 6.6: Method structure

and a pointer to the constant pool of the class. Since thetangool is an often
accessed memory area, a pointer to it is kept in the JVM Jari@ap.

The interface table contains references to the methodstascof the implementa-
tion. Only classes that implement an interface containttbte. To avoid searching
the class hierarchy oimvokeinterface, each interface method is assigned a unique
index. This provides constant execution time, but can leddrge interface tables.

The constant pool contains various constants of a classefitng at index 0 is the
length of the pool. All constants, which are symbolic in thess files, are resolved
on class loading or during pre-linking. The different camttypes and their values
after resolving are listed in Table 6.1. The names for thesyare the same as in the
JVM specification [60].

Constant type Description

Class A pointer to a class (class reference)

Fieldref For static fields: a direct pointer to the field
For object fields: the position relative to the object
reference

Methodref For static methods: a direct pointer to the mestagtcture

For virtual methods: the offset in the method table
(= index*2) and the number of arguments
InterfaceMethodref A system wide unique index into theriiaige table

String A pointer to the string object that represents thiagtr
constant

Integer The constant value

Float The constant value

Long This constant value spans two entries in the constasit po

Double Same as for long constants

NameAndType Not used

utf8 Not used

Table 6.1: Constant pool entries






7 Results

In this chapter, we will present the evaluation results foPJwith respect to size,
performance and WCET. Table 7.1 compares JOP with othemhaadavare solutions
(see also Chapter 3). The column year indicates the firstadathich the processor
became available or the first publication about the procesEbe research project
Komodo has now ceased, while FemtoJava is still being usedbasis for active
research.

We can see that JOP is the smallest realization in an FPGAlsmtas the highest
clock frequency. JOP also has a minimum CPI of 1 while, for dkdmand Femto-
Java, the minimum CPIs are four and three respectively.

Target Size Speed| Java Min. | Year
technology [MHz] | standard CPI
Altera,
JOP Xilinx éi:;oé‘ia 100 | J2ME CLDC 1| 2001
FPGA
picoJava No o 128K gates + Full 1| 1999
realization memory
adile ASIC 0.25 ZR%KMgates * 100 | J2ME CLDC 2000
Altera 3660 LCs,
Moon FPGA 4KB RAM 2000
. Xilinx
Lightfoot FPGA 3400 LCs 40 2001
Xilinx
Komodo FPGA 2600 LCs 33 4 | 2000
Altera Flex Subset: 69
FemtoJava 10K 2000 LCs 4 | bytecodes, 3 | 2001
16-bit ALU

Table 7.1: Comparison of Java hardware with JOP

In the following section, the hardware platform that is usedbenchmarking is
described. This is followed by a comparison of JOP’s resuwrsage with other
soft-core processors. In the ‘General Performance’ sectiimumber of different so-
lutions for embedded Java are compared at the bytecodedesat the application
level. The basic properties of the real-time scheduler gatuated using the Refer-
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ence Implementation (RI) of the RTSJ on a Linux system andehétime profile
from Section 6.1 on top of JOP. It is also shown that our oljeatf providing an
easy target for WCET analysis has been achieved. This chepteludes with a
short description of real-world applications that use JOP.

7.1 Hardware Platforms

During the development of JOP and its predecessors, salifesbnt FPGA boards
were developed. The first experiments involved using AlteRGAs EPF8282,
EPF8452, EPF10K10 and ACEX 1K30 on boards that were corthéatine printer
port of a PC for configuration, download and communicatiorne Tfiext step was
the development of a stand-alone board with FLASH memory static RAM.
This board was developed in two variants, one with an ACEX@QIdad the other
with a Cyclone EP1C6 or EP1C12. Both boards are pin-comlpagihd are used in
commercial applications of JOP. The Cyclone board is thdware that is used for
the following evaluations.

This board is an ideal development system for JOP. Static RAMFLASH are
connected via independent buses to the FPGA. All unused Ft2and the serial
line are available via four connectors. The FLASH can be tiseatbre configuration
data for the FPGA and application program/data. The FPGAearonfigured with
a ByteBlasterMV download cable or loaded from the flash (wittmall CPLD on
board). As the FLASH is also connected to the FPGA, it can bgrammed from
the FPGA. This allows for upgrades of the Java program and #we processor
core itself in the field. The board is slightly different frasther FPGA prototyping
boards, in that its connectors are on the bottom side. Ttvereit can be used as a
module (60mm x 48mm), i.e. as part of a larger board that amnthe periphery.
The Cyclone board contains:

Altera Cyclone EP1C6Q240 or EP1C12Q240

Step Down voltage regulator (1V5)

Crystal clock (20MHZz) at the PLL input (up to 640MHz interpal

e 512KB FLASH (for FPGA configuration and program code)

e 1MB fast asynchronous RAM (15 ns)

Up to 128MB NAND FLASH

ByteBlasterMV port
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Watchdog with LED

EPM7064 PLD to configure the FPGA from the FLASH on watchdagte

Serial interface driver (MAX3232)

56 general-purpose |10 pins

The RAM consists of two independent 16-bit banks (with theim address and
control lines). Both RAM chips are on the bottom side of theBP@irectly under
the FPGA pins. As the traces are very short (under 10mm) pib$sible to use the
RAMs at full speed without reflection problems. The two baole be combined to
form 32-bit RAM or support two independent CPU cores. P&swuand the schematic
of the board can be found in Appendix F.

An expansion board hosts the CPU module and provides a ctenjdga proces-
sor system with Internet connection. A step down switchegufator with a large
AC/DC input range supplies the core board. All input and atigins are EMC/ESD-
protected and routed to large connectors (5.08mm Phoehmglog comparators can
be used to build sigma-delta ADCs. For FPGA projects withtavagk connection,
a CS8900 Ethernet controller with an RJ45 connector is deduon the expansion
board.

7.2 Resource Usage

Cost, alongside energy consumption, is an important issuerhbedded systems.
The cost of a chip is directly related to the die size (the pesdie is roughly propor-
tional to the square of the die area [40]). Chips with fewdegalso consume less
energy. Processors for embedded systems are therefongizgatifor minimum chip
size. In this section, we will compare JOP with differentqessors in terms of size.

One major design objective in the development of JOP wastier small system
that could be implemented in a low-cost FPGA. Table 7.2 shibwsesource usage
for different configurations of JOP and different soft-camr@cessors implemented
in an Altera EP1C6 FPGA [16]. Estimating equivalent gatentstior designs in an
FPGA is problematic. It is therefore better to compare the basic structures, LC
(logic cell) and memory.
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Processor Resources Memory fmax
[LC] [KB] [MHZz]
JOP Minimal 1,077 25 98
JOP Basic 1,452 .35 98
JOP Typical 1,831 25 101
Lightfoot! 3,400 1 40
NIOS A 1,828 62 120
NIOS B 2,923 % 119
SPEAR 1,700 8 80

Table 7.2: FPGA soft-core processors

All configurations of JOP contain a memory interface to a 8&tatic RAM and
an 8-bit FLASH for the Java program and configuration datae mimimum config-
uration implements multiplication and the shift operasiam microcode. In the basic
configuration, these operations are implemented as a siajURooth multiplier and
a single-cycle barrel shifter. The typical configuratiomtzins a variable block in-
struction cache (1KB, 4 blocks — see Section 5.8.2) and seefelu/O devices such
as an UART and a timer with interrupt logic for multi-threadi The typical configu-
ration of JOP needs about 30% of the LCs in a Cyclone EP1CS§ J¢lavring enough
resources free for application-specific logic.

Lightfoot [62] is a commercial Java processor, targetedibtXFPGA architec-
tures. We can see from Table 7.2 that this processor needs toe the resources
of JOP.

As a reference, NIOS [15], Altera’s popular RISC soft-caseglso included in the
list. NIOS has a 16-bit instruction set, a 5-stage pipelimg @an be configured with
a 16 or 32-bit datapath. Version A is the minimum configuratid NIOS. Version
B adds an external memory interface, multiplication suppad a timer. Version A
is comparable with the minimal configuration of JOP, and Mer8 with its typical
configuration.

SPEAR [22] (Scalable Processor for Embedded ApplicationReal-time Envi-
ronments) is a 16-bit processor with deterministic executimes. SPEAR contains

1The data for the Lightfoot processor is taken from the daées[62]. The frequency used is that in
a Vertex-1l device from Xilinx. JOP can be clocked at 100Midzhe Vertex-Il device, making this
comparison valid.

2As SPEAR uses internal memory blocks in asynchronous moieniot possible to synthesize it
without modification for the Cyclone FPGA. The clock freqogmf SPEAR in an Altera Cyclone
is an estimate based on following facts: SPEAR can be cloakd@MHz in an APEX device and
JOP can be clocked at 50MHz in the same device.
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Processor Core Memory Sum.
[gate] [gate]  [gate]
JOP 11K 39K 50K
picoJava 128K 314K 442K
aldile 25K 912K 937K
Pentium MMX 1125K

Table 7.3: Gate count estimates for various processors

predicated instructions to support single-path programymiSPEAR is included in
the list as it is also a processor designed for real-timeesyst

To prove that the VHDL code for JOP is as portable as possilid was also
implemented in a Xilinx Spartan-3 FPGA. Only the instambiatand initialization
code for the on-chip memories is vendor-specific, whilstrée of the VHDL code
can be shared for the different targets. JOP consumes dfsositne LC count (1844
LCs) in the Spartan device, but has a slower clock frequed8iyitz).

From this comparison we can see that we have achieved owtiobjef designing
a small processor. The Java processor, Lightfoot, is 2.84ilarger (and 2.5 times
slower) than JOP in the basic configuration. A typical 32RiiEC processor con-
sumes about 1.6 to 1.8 times the resources of JOP. HowegdR|8C processor can
be clocked 20% faster than JOP in the same technology. Thepomtessor that is
similar in size is SPEAR. However, while SPEAR is a 16-bitqassor, JOP contains
a 32-bit datapath.

Table 7.3 provides gate count estimates for JOP, picoJaeaJile processor, and
the Intel Pentium MMX processor that is used in the benchmarkhe next section.
Equivalent gate count for an I3&aries between 5.5 and 7.4 — we chose a factor of
6 gates per LC and 1.5 gates per memory bit for the estimatiedcgant for JOP
in the table. JOP is listed in the typical configuration thaisumes 1831 LCs. The
Pentium MMX contains 4.5M transistors [26] that are equinalto 1125K gates.

We can see from the table that the on-chip memory dominate®\whrall gate
count of JOP, and to an even greater extent, of the aJile gsoceThe alile processor
is roughly the same size as the Pentium MMX, and both are &fitirnes larger than
JOP.

3The factors are derived from the data provided for variouws@ssors in Chapter 3 and from the
resource estimates in Section 5.5.
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7.3 Performance

In this section, we will evaluate the performance of JOP fati@n to other Java sys-
tems. Although JOP is intended as a processor with a low W@E®@IF operations,
its general performance is still important. In the first gegtwe will evaluate JOP’s
average performance.

In the section that follows it, the implementation of the glenreal-time profile, as
described in Section 6.1, on JOP is compared to the RI of tHf&IJRR top of Linux.

7.3.1 General Performance

Running benchmarks is problematic, both generally andogshein the case of
embedded systems. The best benchmark would be the appii¢htt is intended to
run on the system being tested. To get comparable result€ Rzides benchmarks
for various systems. However, the one for Java, the SPE@\H, is usually too
large for embedded systems.

Due to the absence ofsgandardJava benchmark for embedded systems, a small
benchmark suit that should run on even the smallest devigeisded here. It con-
tains several micro-benchmarks for evaluating CPI forlsitgytecodes or short se-
guences of bytecodes, a synthetic benchmark (the SieveabbdEinenes) and two
application benchmarks.

To provide a realistic workload for embedded systems, atnea application was
adapted to create the first application benchmark (Kfl). Tiptieation is taken from
one of the nodes of a distributed motor control system [83 Gection 7.5.1). Asim-
ulation of both the environment (sensors and actors) anddimmunication system
(commands from the master station) forms part of the bendhns® as to simu-
late the real-world workload. The second application beratk is an adaptation of
a tiny TCP/IP stack (Ejip) for embedded Java. This benchroarkains two UDP
server/clients, exchanging messages via a loopback device

As we will see, there is a great variation in processing paweeoss different em-
bedded systems. To cater for this variation, all benchmamisself adjusting’. Each
benchmark consists of an aspect that is benchmarked in adlod@n ‘overhead’
loop that contains any overheads from the benchmark thaldihe subtracted from
the result (this feature is designed for the micro-bencks)aiThe loop count adapts
itself until the benchmark runs for more than a second. Thebar of iterations
per second is then calculated, which means that higher vataécate better perfor-
mance.

The benchmark framework only needs two system functions:tomeasure time
in millisecond resolution and one to print the results. Eh&sctions are encap-
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sulated inLowLevel.java and can be adapted to environments, in which the full
Java library is not available. For example, the 1eJOS systasvery limited out-
put capabilities and there is therefore a spekcialLevel . java for this device. The
following list gives a brief description of the Java systeimst were benchmarked:

JOP is implemented in a Cyclone FPGA, running at 100MHz. The magmory is
a 32-bit static RAM (15ns) with an access time of 3 clock cycle

leJOS As an example for a low-end embedded device we use the RCX coine
troller from the LEGO MindStorms series. It contains a 16Hitachi H8300
microcontroller [41], running at 16MHz. 1eJOS [85] is a timgerpreting JVM
for the RCX.

TINI is an enhanced 8051 clone running a software JVM. The resatistaken from
a custom board with a 20MHz crystal, and the chip’s PLL is get factor of
2. The TINIOS firmware revision running on the board is 1.12p9

Komodo Komodo [55] is a Java processor as a basis for research oftimeal
scheduling on a multithreaded microcontroller (see Sec8a.8). The
benchmark results were obtained by Matthias Pfeffer [754 agcle-accurate
simulation of Komodo. The values are obtained without gaebaollec-
tion. According to Pfeffer, Komodo can be clocked with 33Midza Xlinix
XCV800.

JStamp adile’s JEMCore is a direct-execution Java processor steatdilable in two
different versions: the aJ-80 and the aJ-100 [2]. The aJpi®ddes a generic
8-bit, 16-bit or 32-bit external bus interface, while the82Jonly provides an
8-bit interface. A development system, the JStamp [91], wsed for this
benchmark. It contains the aJ-80, clocked at 74MHz.

SalJe is a board that contains the aJ-100 clocked with 100MHz and BRRAM.

EJC The EJC (Embedded Java Controller) platform [27] is a typgs@ample of a
JIT system on a RISC processor. The system is based on a BRBI7T20T
processor running at 74MHz. It contains up to 64 MB SDRAM apdai16
MB of NOR flash.

SUN jvm is the Sun JVM 1.4.1, running on a 266MHz Pentium MMX undenixin

gcj is the GNU compiler for Java. This configuration represeimsktatch compiler
solution, running on a 266MHz Pentium.
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Xint As areference the benchmark is also run with the Sun JVM @rpnéting mode
(with option -Xint).

MB is the realization of Java on a RISC processor for an FPGAnXMicroBlaze
[18]). Java is compiled to C with a Java compiler for realdisystems [72]
and the C program is compiled with the standard GNU toolchain

In Figure 7.1, the geometric mean of the two application berarks is shown. The
unit used for the result is iterations per second. Note ti@tvertical axis is logarith-
mic, in order to obtain useful figures to show the great vianeih performance. The
top diagram shows absolute performance, while the bottagrdim shows the same
results scaled to a 1MHz clock frequency. The results of fpdieation benchmarks
and the geometric mean are shown in Table 7.4. The raw da#dl toenchmarks can
be found in Appendix E.

It should be noted that scaling to a single clock frequenayctcprove problematic.
The relation between processor clock frequency and mentagsa time cannot al-
ways be maintained. To give an example, if we were to incrédaseesults of the
100MHz JOP to 1GHz, this would also involve reducing the memazcess time
from 15ns to 1.5ns. Processors with 1GHz clock frequencylaeady available, but
the fastest asynchronous SRAM to date has an access timasf 10

To compare the performance relatively to the size of theedifiit systems, Fig-
ure 7.2 shows the performance of JOP, the aJ100 and the tweRDns relative
to the gate count (from Table 7.3) and clock frequency. Reldb size and clock
frequency, JOP outperforms the aJile processor by a fa€tb® and even the JIT-
compiler on the Pentium MMX by a factor of 4.

All the benchmarks measure how often a function is executedg@cond. There-
fore, execution time is only measured indirectly — a highedug means shorter exe-
cution time. In the Kfl benchmark, this function contains thain loop of the appli-
cation (see Listing 7.2) that is executed in a periodic cyctée original application.
In the benchmark the wait for the next period is omitted, sd the time measured
solely represents execution time. The UDP benchmark amnthe generation of a
request, transmitting it through the UDP/IP stack, geivegahe answer and trans-
mitting it back as a benchmark function. The iteration casittte number of received
answers per second.

In the application benchmarks, the main function is exetirea loop until one
second (or a longer period of time) has elapsed. For theagpigh benchmark, there
is no ‘overhead’ loop. This feature is only used in the mibemchmarks. As the
benchmark is self-adjusting, the measured time can alsorgget than one second.
The result is the iteration count, scaled to one second.
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Frequency Kfl UDP/IP Geom. Mean Per MHz

[MHZ] [lterations/s]

JOP 100 14,222 6,050 , 376 93
leJOS 16 25 13 18 1
TINI 40 64 29 43 1
Komodo 33 924 520 693 21
JStamp 74 2,221 1,004 ,493 20
Sale 103 14,148 6,415 , 327 92
EJC 74 9,893 2,822 ,384 71
Sun jvm 266 212,952 91,851 13b7 526
acj 266 139,884 38,460 7348 276
Xint 266 17,310 8,747 1305 46
MB 2KB/OKB 100 3,792

Table 7.4: Application benchmarks on different Java systems. Thestabbws the
benchmark results in iterations per second — a higher vakesnmhigher
performance.

The accuracy of the measurement depends on the resolutithe afystem time.
For the measurements under Linux, the system time has aitiesobf 10ms, result-
ing in an inaccuracy of 1%. The accuracy of the system timed@8§, TINI and the
alJile is not known, but is considered to be in the same ramyel®P, aus counter is
used for time measurement.

Discussion

When comparing JOP and the aJile processor against leJOSlEhdve can see
that a Java processor is up to 500 times faster than an ietigngpJVM on a standard
processor for an embedded system. The average performad@Pas a little bit
better than a JIT-compiler solution on an embedded systeme@esented by the
EJC system.

Even when scaled to the same clock frequency, each compgNMion a PC (Sun
jvm and gcj) is much faster than either embedded solutionwéver, as we saw
in Section 5.8, the kernel of the application is smaller tA&B. It therefore fits in
the level one cache of the Pentium MMX (16KB + 16KB level onehsy. For a
comparison with a Pentium class processor we would neegerlapplication.

JOP is about 6 times faster than the aJ80 Java processor gogh&ar JStamp
board. However, the aJ80 processor only contains an 8-bitaneinterface, and
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Figure 7.1: Performance comparison of different Java systems withicgifmn
benchmarks. The diagrams show the geometric mean of theenchb
marks in iterations per second — a higher value means higidorp
mance. The top diagram shows absolute performance, wigilbdtiom
diagram shows the result scaled to 1MHz clock frequency.
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Figure 7.2: Performance comparison of different Java systems with icgimn
benchmarks. The diagram shows the result scaled to the cép s
(Kgates) and clock frequency (MHz).

suffers from this bottleneck. The SaJe system containsh@Oawith 32-bit, 10ns
SRAMs and is as fast as JOP with its 15ns SRAMSs.

The MicroBlaze system is a representation of a Java bateipitation system
for a RISC processor. MicroBlaze is configured with the samehé as JOP and
clocked at the same frequency. JOP is about three times thatethis solution, thus
showing that native execution of Java bytecodes is fastertatch-compiled Java on
a similar system. However, the results of the MicroBlazetsoh are at a preliminary
stagé, as the Java2C compiler [72] is still under development.

The micro-benchmarks are intended to give insight into imgleémentation of the
JVM. In Table 7.5, we can see the execution time in clock ©yoevarious byte-
codes. As almost all bytecodes manipulate the stack, ittipogsible to measure the
execution time for a single bytecode. As a minimum requineima second instruc-
tion is necessary to reverse the stack operation.

For JOP we can deduce that the WCET for simple bytecodes yas gi Ap-
pendix D) is also the average execution time. We can seelibatdmbination of
iload andiadd executes in two cycles, which means that each of these twa-ope

4The MicroBlaze with a 8KB data and 8KB instruction cache iswh2.5 times faster than JOP.
However, a 16KB memory is not available in low-cost FPGAs &ndn unbalanced system with
respect to the LC/memory relation. Furthermore, the bemchrfits into a 4KB cache and the
resulting measurement does not include main memory access.

5As not all language constructs can be compiled, only the Kfthmark was measured.
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JOP 1eJOS TINI Komodo JStamp Salde Xint

iload iadd 2 836 789 8 38 8 17
iinc 11 422 388 4 41 11 2
Idc 10 1,340 1,128 40 67 9 31
if _icmplt taken 6 1,609 1,265 24 42 18 36
if _icmplt not taken 6 1,520 1,211 24 40 14 37
getfield 25 1,879 2,398 48 142 23 39
getstatic 17 1,676 4,463 80 102 15 40
iaload 30 1,082 1,543 28 74 13 30
invoke 128 4,759 6,495 384 349 112 182
invoke static 101 3,875 5,869 680 271 92 164

invoke interface 146 5,094 6,797 1617 531 148 193

Table 7.5: Execution time in clock cycles for various JVM bytecodes

tions is executed in a single cycle. Thénc bytecode is one of the few instructions
that do not manipulate the stack and can be measured alon&i n&ds not imple-
mented in hardware, we have a total of 11 cycles that are s&e@du microcode. It
is fair to assume that this comprises too great an overheaahfinstruction that is
found in every iterative loop with an integer index. Howewtbe decision to imple-
ment this instruction in microcode was derived from the olet#on that the dynamic
instruction count foriinc is only 2% (see Section 5.1).

The sequence for the branch benchmairk {cmp1t) contains the two load in-
structions that push the arguments onto the stack. The ampgrare then consumed
by the branch instruction. This benchmark verifies that adltaequires a constant
four cycles on JOP, whether it is taken or not.

For compiling versions of the JVM, these micro-benchmaxkaat produce useful
results. The compiler performs optimizations that makenjpassible to measure
execution times at this fine a granularity.

During the evaluation of the aJile system, unexpected behawas observed. The
aJ80 on the JStamp board is clocked at 7.3728MHz and theaatEequency can
be set with a PLL. The aJ80 is rated for 80MHz and the maximurh faictor
that can be used is therefore ten. Running the benchmarksdifierent PLL set-
tings gave some strange results. For example, with a PLLiphaltsetting of ten,
the aJ80 was about 12.8 times faster! Other PLL factors &lsolted in a greater
than linear speedup. The only explanation we could find watttte internal time,
System.currentTimeMillis(), used for the benchmarks depends on the PLL set-
ting. A comparison with the wall clock time showed that theeinal time of the aJ80
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is 23% faster with a PLL factor of 1 and 2.4% faster with a factioten — a property
we would not expect on a processor that is marketed for mmal-systems.

The SaJe board is also clocked with 7.3728MHz and the PLIofastset to 14.
This gives a 103.2192MHz internal clock frequency. Howegités not known how
accurate the internal time is in this setting. The resultglie SaJe board can also
suffer from the problem described above.

Execution Time Jitter

For real-time systems, the worst-case of the executionigragprimary importance.
We have measured the execution times of several iteratidhe onain function from
the Kfl benchmark. Figure 7.3 shows the measurements, staléttk minimum
execution time.

A period of four iterations can be seen. This period resutisnfsimulating the
commands from the base station that are executed every fiberation. At iteration
10, a command to start the motor is issued. We see the rapulbi@ in execution
time at iteration 12 to process this command. At iterationtbd simulation triggers
the end sensor and the motor is stopped.

The different execution times in the different modes of tppligation are inher-
ent in the design of the simulation. However, the ratio betwthe longest and the
shortest period is five for the JStamp, four for the gcj systewh only three for JOP.
Therefore, a system with an aJile processor needs to benieg faster than JOP in
order to provide the same WCET for this measurement. Attimre883, we can see
a higher execution time for the JStamp system that is not@e&®P. This variation
at iteration 33 is not caused by the benchmark.

The execution time under gcj on the Linux system showed sa@nehigh peaks
(up to ten times the minimum, not shown in the figures). Thiseotation was to be
expected, as the gcj/Linux system is not a real-time saiutibhe Sun JIT-solution
is omitted from the figure. As a result of the invocation of tt@mpiler at some
point during the simulation, the worst-case ratio betwéemtaximum and minimum
execution time was 1313 — showing that a JIT-compiler is anfical for real-time
applications.

It should be noted that execution time measurement is noteansethod for ob-
taining WCET estimates. However, in situations where no W@BRalysis tool is
available, it can give some insight into the WCET behaviodiierent systems.

7.3.2 Real-Time Performance

In this section, the implementation of the simple real-tipnefile (from Section 6.1)
with JOP is compared with the Reference Implementation ¢Rifie RTSJ (see Sec-
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Period Avg. Std. Dev. Min. Max.
[us]  [us] [Ls] [bs]  [us]

50 50 13 35 63
70 70 0 70 70
100 100 0 100 100
500 500 0 500 500
1,000 1,000 0 1,000 1,000

Table 7.6: Jitter of periodic threads with JOP

tion 4.4.3) on top of Linux. We use the Linux platform for thengparison, as it is the
only platform for which the RTSJ is available. The RI is arenptreting implemen-
tation of the JVM that is, however, not optimized for perfamee. A commercial
version of the RTSJ, JTime by TimeSys, should perform betkgowever, it was
not possible to get a license of JTime for research purpal@B. is implemented in
Altera’s low-cost Cyclone EP1C6 FPGA, and clocked with 160M The test re-
sults for the RI were obtained on an Intel Pentium MMX 266Midmning Linux
with two different kernels: a generic kernel version 2.4a2( the real-time kernel
from TimeSys [92], as recommended for the RI. For each t€¥, rbeasurements
were taken. Time was measured using a hardware counter iad®te time stamp
counter of the Pentium processor under Linux.

Periodic Threads

Many activities in real-time systems must be performedquicilly. Low release
jitter is of major importance for tasks such as control loopEhe test setting is
similar to the periodic thread test in [20]. A single reahdé thread only calls
waitForNextPeriod() in a loop and records the time between subsequent calls.
A second idle thread, with a lower priority, merely consumpescessing time. This
test setting results in two context switches per period.l€T@6 shows the average,
standard deviation and extreme values for different petioés on JOP. The same
values are shown in Table 7.7 for the RI. Please note thatatues are inus for JOP
and in ms for the RI.

Using microsecond accurate timer interrupts, programnyabddoscheduler, results
in excellent performance of periodic threads in JOP. Nerjiftom the scheduler can
be seen with a single thread at periods longer thass.70

The measurement for the Rl excludes the first values meastinedirst values are
misleading as the Rl behaves unpredictablgtattup The RI performs inaccurately
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Period Avg. Std. Dev. Min. Max.

[ms] [ms] [ms] [ms] [ms]
5 4.0 7.92 0017 1990
10 6.6 9.34 0019 1994

20 200 0.015 1987 2014

35 350 5001 2975 4025

50 500 0018 4995 5006
100 1000 0.002 9994 1001

Table 7.7: Jitter of periodic threads with RI/RTSJ

Avg. Std. Dev. Min. Max.

JOP 2,686 14 2,676 2,709
RI Linux 4,253 1239 3,232 19,628
RITS Linux 12,923 1145 11,529 21,090

Table 7.8: Time for a thread switch in clock cycles

at periods below 20ms. This effect has also been observel®in [Larger periods
that are multiples of 10ms have very low jitter. Howeverngsa period such as 35ms
shows a standard deviation of five ms. A detailed look intcctiikeected samples only
shows values of 30 and 40ms. This implies a timer tick of 10mthé underlying
operating system. No significant difference is observednamoening this test on
the generic Linux kernel and the TimeSys kernel. The comialeversion of the
TimeSys Linux kernel should perform better as the resahutid the timer tick is
1ms and a programmable time can be used for periodic thrésmgever, it was not
possible to obtain a license to evaluate the combinatioiofid on the commercial
Linux kernel. Table 7.7 represents the measurements onetherig kernel. This
comparison shows the advantage of an adjustable timerupteover a fixed timer
tick.

Context Switch

This test setting consists of two threads. A low priority el continuously
stores the current time in a shared variable. A high prioggriodic thread
measures the time difference between this value and the itimeediately af-
ter waitForNextPeriod(). Table 7.8 gives the times for the context switch in
processor clock cycles.
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Avg. Std. Dev. Min. Max.

JOP 2,935 7 2,773 2,935
RI Linux 53,685 7014 47,400 87,196
RITS Linux 69,273 7832 63,060 101,292

Table 7.9: Dispatch latency of event handlers in clock cycles

This test did not produce the expected behavior from the Rhergeneric Linux
kernel. When the low priority thread ran in this tight lodpe thigh priority thread was
not scheduled. AfterinsertingTaread.yield() and an operating system call, such
asSystem.out.print(),in thisloop, the test performed as expected. This indgcate
a major problem in either the RI or the operating system sdieedThis problem did
not occur when the Rl was run on the TimeSys Linux kernel. Hanehe context
switch time on the TimeSys kernel is three times longer thathe standard kernel.

Asynchronous Event Handler

In this test setting, a high priority event handler is triggge by a low priority pe-
riodic thread. AsAsynchEventHandler performs poorly in the RI (see [19]), a
BoundAsynchEventHandler is used for the RI test program. The time elapsed
between the invocation dfire() and the first statement of the event handler was
measured. Table 7.9 shows the elapsed times in clock cymlelOP and the RTSJ
RI.

The time taken to dispatch an asynchronous event is sinoildret context switch
time in JOP. This is to be expected as events are schedulatispadched as threads.
The minimum value only occurred in the first event, all follogyevents having been
dispatched in the maximum time.

In the RI, the dispatch time is about 12 times larger than aestorswitch with a
significant variation in time. This indicates that the implntation offire() and
the communication of the event to the underlying operatiygiesn are not optimal.
The time factor between context switch and event handlinthermimeSys kernel is
lower than on the standard kernel, but is neverthelesssigitificant.

Summary

In this section, we have compared the RTSJ on top of Linux thithmplementation
of a simple real-time profile on top of JOP. The RTSJ addressesral issues relating
to the use of Java for real-time systems. However, the RT&X jzecification too
large and complex to be implemented in small embedded sgstaife therefore



164 7 RESULTS

use the simpler real-time profile for JOP. Tight integratidrthe real-time scheduler
with the supporting processor results in an efficient ptatféor Java in embedded
real-time systems. A performance comparison betweenripgementation and the
RTSJ showed that a dedicated Java processor without anyingeyperating system
is more predictable than trying to adopt a general purposéoOi2al-time systems.
Time will show if an implementation of the RTSJ orreal RTOS will outperform
the presented solution.

7.4 WCET

Worst-case execution time (WCET) estimates of tasks aeng&abfor designing and
verifying real-time systems. WCET estimates can be obthaier by measurement
or static analysis. The problem with using measurementsaisthe execution times
of tasks tend to be sensitive to their inputs. As a rule, measent does not guarantee
safe WCET estimates. Instead, static analysis is necefssdrgrd real-time systems.
Static analysis is usually divided into a number of diffénehases:

Path analysis generates the control flow graph (a directed graph of basitkb) of
the program and annotates (manual or automatic) loops withdis.

Low-level analysis determines the execution time of basic blocks obtained by th
path analysis. A model of the processor and the pipelineigees\the execution
time for the instruction sequence.

Global low-level analysis  determines the influence of hardware features such as
caches on program execution time. This analysis can useriafon from
the path analysis to provide less pessimistic values.

WCET Calculation collapses the control flow graph to provide the final WCET-esti
mate. Alternative paths in the graph are collapsed to asiwvajle (the largest
of the alternatives) and loops are collapsed once the loapd known.

For the low-level analysis, a good timing model of the preoess needed. The main
problem for the low-level analysis is the execution timeeategency of instructions in
modern processors that are not designed for real-timeragst#OP is designed to be
an easy target for WCET analysis. The WCET of each bytecoddegredicted in
terms of number of cycles it requires. There are no depeieebetween bytecodes.
Each bytecode is implemented by microcode. We can obtaMABET of a single

bytecode by performing WCET analysis at the microcode leVelprove that there
are no time dependencies between bytecodes, we have to bhbwa processor
states arsharedbetween different bytecodes.
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7.4.1 Microcode Path Analysis

To obtain the WCET values for the individual bytecodes wéquar the path analysis
at the microcode level. First, we have to ensure that a numibestrictions (from
[78]) of the code are fulfilled:

e Programs must not contain unbounded recursion. This projsesatisfied by
the fact that there exists no call instruction in microcode.

e Function pointers and computegbtos complicate the path analysis and
should therefore be avoided. Only simple conditional bin@scre available at
the microcode level.

e The upper bound of each loop has to be known. This is the oniyt pmat has
to be verified by inspection of the microcode.

To detect loops in the microcode we have to find all backwamhdires (e.qg.
with a negative branch offset). The branch offsets can beddn a VHDL file
(offtb1.vhd) that is generated during microcode assembly. In the cuimeple-
mentation of the JVM there are ten different negative offsdtiowever, not each
offset represents a loop. Most of these branches are usedr® common code. All
backward branches found ifvm.asm are summarized below:

e Three branches are found in the initialization code of th#1JVhey are not
part of a bytecode implementation and can be ignored.

e Five branches are used by exceptions, the interrupt bygeadl for the call
of Java implemented bytecodes. The target of these bramli@snd in the
implementation ofinvoke to share part of the microcode sequence. These
branches are therefore not part of a loop.

e One branch is found in the implementationiaful to perform a fixed delay.
The iteration count for this loop is constant.

e Two backward branches share the same offset and are useabm tio move
data between the stack memory and main memory. This looptiparbof a
regular bytecode. It is contained in a system function usettido scheduler for
the task switch. The bound for this loop has to be determineldd scheduler
code.

A few bytecodes are implemented in Java. The implementa@onbe found in the
classcom. jopdesign.sys.JVMand can be analyzed in the same way as application
code. The bytecodetdiv andirem contain a constant loop. The bytecodesy
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andanewarray contain loops to initialize (with zero values) new objectsaaoays.
The loop is bound by the size of the object or array. The bytedookupswitch®
performs a linear search through a table of branch offsefi® WWCET depends on
the table size that can be found as part of the instruction.

As the microcode sequences are very short, the calculafidheocontrol flow
graph for each bytecode is done manually.

7.4.2 Microcode Low-level Analysis

To calculate the execution time of basic blocks in the mioda; we need to establish
the timing of microcode instructions on JOP. All microcodstiuctions excepiait
execute in a single cycle, reducing the low-level analyse tase of merely counting
the instructions.

Thewai t instruction is used to stall the processor and wait for thenorg subsys-
tem to finish a memory transaction. The execution time ofstinet instruction de-
pends on the memory system and, if the memory system is pabtlic has a known
WCET. A main memory consisting of SRAM chips can provide thisdictability
and this solution is therefore advised. The predictablelliag of DMA, which is
used for the instruction cache fill, is explained in Secticdh® Thewait instruc-
tion is the only way to stall the processor. Hardware evenish as interrupts (see
Section 5.4.5), do not stall the processor.

Microcode is stored in on-chip memory with single cycle ascé€each microcode
instruction is a single word long and there is no need foregitaching or prefetching
at this stage. We can therefore omit performing a low-levellygsis. No pipeline
analysis [28], with its possible unbound timing effectsnésessary.

7.4.3 Bytecode Independency

We have seen that all microcode instructions exeeptt take one cycle to execute
and are therefore independent of other instructions. Titaipgaty directly translates
to independency of bytecode instructions.

Thewait microcode instruction provides a convenient way to hide mmgraccess
time. A memory read or write can be triggered in microcodéh{wimra andstmwd)
and the processor can continue with microcode instructidveen the data from a
memory read is needed, the processor explicitly waits itfdiécomes available.

For a memory store, this wait can be deferred until the mersgsgem is used
next. It is possible to initiate the store in a bytecode sigpuafield and continue

6l0okupswitch is one way of implementing the Jawaitch statement. The other bytecodableswitch,
uses an index in the table of branch offsets and has therafooastant execution time.



7.4 WCET 167

with the execution of the next bytecode, even when the stasabt been completed.

In this case, we introduce a dependency over bytecode boaggdas the state of the
memory system ishared To avoid these dependencies that are difficult to analyze,
each bytecode that accesses memory waits (preferably anthef the microcode
sequence) for the memory system.

Furthermore, the deferring ofait in a store operation results in an additional
wait in every read operation. Since read operations are moredrgghan write
operations (15% vs. 2.5%, see Section 5.1), the performgaicefrom the hidden
memory store is lost.

7.4.4 WCET of Bytecodes

The control flow of the individual bytecodes together wita trasic block length (that
directly corresponds with the execution time) and the tioreniemory access result
in the WCET (and BCET) values of the bytecodes. These valaeshe found in
Appendix D.

7.4.5 Evaluation

We conclude this section with a worst and best case analiaislassic example, the
Bubble Sort algorithm. The values calculated are compaiiuthe measurements
of the execution time on JOP on all permutations of the inpit dFigure 7.1 shows
the test program in Java. The algorithm contains two nesigusland one condition.
We use an array of five elements to perform the measuremeanddl feermutations
(i.e. 5!'=120) of the input data. The number of iterations of the outeplis one
less than the array size; = N — 1, in this case four. The inner loop is executed
=732 i=ci(c1+1)/2 times, i.e. ten times in our example.

The compiled version, i.e. the bytecodes of the test progsalit into basic blocks,
is given in Table 7.10. The fourth column contains the exeoutime of the byte-
codes and the basic blocks in clock cycles.

The annotated control flow graph (CFG) of the example is shiomfigure 7.4.
The edges contain labels showing how often the path betweemades is taken.
We can identify the outer loop, containing the blocks B2, B3,and B8. The inner
loop consists of blocks B4, B5, B6 and B7. Block B6 is executben the condition
of the i f statement is true. The path from B5 to B7 is the only path teaedds on
the input data.
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final static int N = 5;
static void sort(int[] a) {

int i, j, vl, v2;
// loop count = N-1
for (i=N-1; i>0; —i) {
// loop count = (N—1)*N/2
for (3=1; j<=i; ++j) {
vl = a[j—1];
v2 = a[jl;
if (vi> v2) {
aljl = vi1;
a[j—1] = v2;

Listing 7.1: Bubble Sort in Java
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WCET BCET
Block Addr. Bytecode Cycles Count Total Count Total
Bl 2 1 2 1 2
0: iconst4 1
1 istore. 1 1
B2 5 5 25 5 25
2: iload .1 1
3: ifle 53 4
B3 2 4 8 4 8
6: iconst1 1
7 istore 2 1
B4 6 14 84 14 84
8: iload 2 1
9: iload.1 1
10: if_icmpgt 47 4
B5 74 10 740 10 740
13: aload0 1
14. iload 2 1
15: iconst1 1
16: isub 1
17: iaload 29
18: istore3 1
19: aload0 1
20: iload 2 1
21: iaload 29
22: istore 4 2
24: iload.3 1
25: iload 4 2
27. if_icmple 41 4
B6 73 10 730 0 0
30: aloadO 1
31: iload 2 1
32: iload.3 1
33: iastore 32
34: aload0 1
35: iload 2 1
36: iconstl 1

Table 7.10: WCET and BCET in clock cycles of the Bubble Sort test program
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WCET BCET
Block Addr. Bytecode Cycles Count Total Count Total
37: isub 1
38: iload 4 2
40: iastore 32
B7 15 10 150 10 150
41: inc2,1 11
44: goto 8 4
B8 15 4 60 4 60
47: iincl,-1 11
50: goto 2 4
B9 1 1
53: return
Execution time calculated 1,799 1,069
Execution time measured 1,799 1,069

Table 7.10: WCET and BCET in clock cycles of the Bubble Sort test program

The values in the fifth and seventh columns (Count) of Taldlé @re derived from
the CFG and show how often the basic blocks are executed iwohgt and best
cases. The WCET and BCET value for each block is calculateahiiplying the
clock cycles by the execution frequency. The overall WCEd@ BRET values are
calculated by summing the values of the individual blockst®B8. The last block
(B9) is omitted, as the measurement does not contain thenrstatement.

The execution time of the program is measured using the calater in JOP.
The current time is taken at both the entry of the method arileaend, resulting
in a measurement spanning from block B1 to the beginning @ékoB9. The last
statement, theeturn, is not part of the measurement. The difference betweemr thes
two values (less the additional 8 cycles introduced by thesueement itself) is given
as the execution time in clock cycles (the last row in TablY. The measured
WCET and BCET values are exactly the same as the calculaleelsva

In Figure 7.5, the measured execution times for all 120 p&atioms of the input
data are shown. The vertical axis shows the execution tinodock cycles and the
horizontal axis the number of the test run. The first inputaris an already sorted
array and results in the lowest execution time. The last garsphe worst-case value
resulting from the reversely ordered input data. We cansdeathe 11 different exe-
cution times that result from executing basic block B6 (vhperforms the element
exchange and takes 73 clock cycles) between 0 and 10 times.
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Figure 7.4: The control flow graph of the Bubble Sort example
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Figure 7.5: Execution time in clock cycles of the Bubble Sort program

This example has demonstrated that JOP is a simple targiefOW CET analysis.
Most bytecodes have a single execution time (WCET = BCETJ,thke WCET of a
task depends only on the control flow. No pipeline or data dépecies complicate
the low-level part of the WCET analysis.

7.5 Applications

During the research for this thesis, the first working versibJOP was used in a real-
world application. Using an architecture under developniea commercial project
entails risks. Nevertheless, this was deemed to be the lagsvprove the feasibility
of the processor. In this section, the experiences of thipfiogect involving JOP are
summarized.

7.5.1 Motor Control

In rail cargo, a large amount of time is spent on loading andading of goods
wagons. The contact wire above the wagons is the main obst&alfour Beatty
Austria developed and patented a technical solution, theaBed Kippfahrleitung
to tilt up the contact wire. This is done on a line up to onerkikter. An asynchrony
motor on each mast is used for this tilting. However, it hasgaone synchronously
on the whole line.

Each motor is controlled by an embedded system. This sydsameeasures the
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Figure 7.6: Picture of aKippfahrleitungmast in down and up position

position and communicates with a base station. Figure & slthe mast with the

motor and the control system in the ‘down’ and ‘up’ positiofi$ie base station has
to control the deviation of individual positions during ttile It also includes the user
interface for the operator. In technical terms, this is &itisted, embedded real-time
control system, communicating over an RS485 network.

Real Hardware

Although this system is not mass-produced, there were ti@less cost constraints.
Even a small FPGA is more expensive than a general purpose GPtdmpensate
for this, additional chips for the memory and the FPGA confidjon were optimized
for cost. One standard 128KB Flash was used to hold FPGA aoafign data, the
Java program and a logbook. External main memory was redocE2BKB with an
8-bit data bus.

To reduce external components, the boot process is a litttgplicated. A watch-
dog circuit delivers a reset signal to a 32 macro-cell PLOsHLD loads the con-
figuration data into the FPGA. When the FPGA starts, it desslthe PLD and loads
the Java program from the Flash into the external RAM. AfteriVM is initialized,
the program starts atain().

The motor is controlled by silicon switches connected toRR&A with opto cou-
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plers. The position is measured with two end sensors andadviiey sensor. The
processor supervises the voltage and current of the magbphstA display and key-
board are attached to the base station for user interfaccdimmunication bus (up
to one kilometer) is attached via an isolated RS485 datafaue.
Synthesized Hardware
The following 1/0O modules were added to the JOP core in the&APG

e Timer

e UART for debugging
e UART with FIFO for the RS485 line

Four sigma delta ADCs

I/O ports

Five switches in the power line needed to be controlled byptiogram. A wrong
setting of the switches due to a software error could reaudt $hort circuit. Ensur-
ing that this could not happen was a straightforward tasketMHDL level. The
sigma-delta ADCs are used to measure the temperature oilittus switches and
the current through the motor.

Software Architecture

The main task of the program was to measure the position tisengevolving sensor
and communicate with the base station. This has to be doner uadl-time con-
straints. This is not a very complicated task. However, attitme of development,
many features from a full-blown JVM implementation, suchtfagads or objects,
were missing in JOP. The resulting Java was more likayaJava It had to be kept
in mind which Java constructs were supported by JOP. Bet¢hase was no multi-
threading capability, and in the interests of simplicitysimple infinite loop with

constant time intervals was used. Listing 7.2 shows theldiegprogram structure.
After initialization and memory allocation, this loop wastered and did never exit.

Communication

Communication is based on a client server structure. Orlyp#se station is allowed
to send a request to a single mast station. This station isréguiired to reply. The
maximum reply time is bounded by two time intervals. The bsts¢ion handles
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public static void main(String[] args) {

initQ);

Timer.startQ;

forever();

// this point is NEVER reached

}

private static void forever() {

for (5D {

Msg.loop(Q);

Triac.ToopQ);

if (Msg.available) {
handleMsg(Q);

} else {
chkMsgTimeout();

}

handleWatchDog();
Timer.waitForNextInterval();

Listing 7.2: Simplified program structure
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timeout and retry. If an irrecoverable error occurs, theelstation switches off the
power to the mast stations, including the power supply taribéor. This is the safe
state of the whole system.

From the mast station perspective, every mast station @wspsrthe base station.
The base station is required to send requests on a reguiar liahis requirement
is violated, the mast station switches off its motor. Theadatexchanged in small
packets of four bytes, including a one-byte CRC. To simglify development, com-
mands to program the Flash in the mast stations and forceebwese included. It
is therefore possible to update the program, or even chéegEeRGA configuration,
over the network.

7.5.2 Further Projects

TAL, short for TeleAlarm, is a remote tele-control and daigding system. TAL
communicates via a modem or an Ethernet bus with a SCADA rsystevia SMS
with a mobile phone. For this application, a minimal TCP/tRck needed to be
implemented. This stack was the reason for implementirgptis and a simple real-
time system in JOP.

Another application of JOP is in a communication device witft real-time prop-
erties — Austrian Railways'@BB) new security system for single-track lines. Each
locomotive is equipped with a GPS receiver and a communpicatevice. The posi-
tion of the train, differential correction data for GPS amhenands are exchanged
with a server at the central station over a GPRS virtual priveetwork. JOP is the
heart of the communication device in the locomotive. Theilfié®y of the FPGA
and an Internet connection to the embedded system makesibf$o upgrade the
software and even the processor in the field.

7.6 Summary

In this chapter, we presented an evaluation of JOP. We haue that JOP is the
smallest hardware realization of the JVM available to d&tee to the efficient im-
plementation of the stack architecture, JOP is also smihlder acomparableRISC
processor in an FPGA. Implemented in an FPGA, JOP has thedtigtock fre-
guency of all known Java processors.

We compared JOP against several embedded Java systems amelfeaence, with
Java on a standard PC. A Java processor is up to 500 timestfestean interpreting
JVM on a standard processor for an embedded system. JOPussibtimes faster
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than the aJ80 Java processor and as fast as the ‘aJPo6liminary results using
compiled Java for a RISC processor in an FPGA, with a simédaource usage and
maximum clock frequency to JOP, showed that native exetwtidava bytecodes is
faster than compiled Java.

We compared the basic properties of the real-time schednlelOP against the
RTSJ implementation on Linux. The integration of the schedin the JVM, and
the timer interrupt under scheduler control, results in ficient platform for Java
in embedded real-time systems. JOP performs better and pnedectably than the
reference implementation of the RTSJ under Linux.

We also performed WCET analysis of the implemented JVM atntii@ocode
level. This analysis provides the WCET and BCET values ferittdividual byte-
codes. We have also shown that there are no dependencieselatvdividual byte-
codes. This feature, in combination with the method cacke ection 5.8), makes
JOP an easy target for low-level WCET analysis of Java agiios.

Usage of JOP in three real-world applications showed tlepthcessor is mature
enough to be used in commercial projects.

"The measured aJ100 system contained faster SRAMs than @& B&ard for JOP.






8 Conclusions

In this chapter we will undertake a short review of the thesid summarize the
contributions. Java for real-time systems is a very new atidearesearch area. This
chapter is completed by suggestions for future researc®dban the proposed Java
processor.

8.1 Conclusions

In the following list, we draw conclusions about the Javacpssor presented in this
thesis, in relation to the problem stated in Section 3.4:

1. A time-predictable Java platform has been demonstratedshown in Sec-
tion 5.7 and 5.8, the architectural design decisions amdexfiredictable cache
provide the basis for a time-predictable Java processogebition 7.4, it was
shown that all bytecodes have a known WCET and there are mdin@pde-
pendencies. JOP’s architecture can therefore be modetdetagcurately for
the low-level WCET analysis.

2. The implementation of a RISC-style stack architecturig) @ novel mapping
of Java bytecodes to microcode addresses (see SectiorabB)he analysis
of the JVM stack usage pattern (see Section 5.5) with theureseefficient
two-level stack cache resulted in a small design. In fack &the smallest
implementation of the JVM in hardware available to date.

3. The usage of JOP in real-world applications, as desciib8dction 7.5, shows
that JOP is a working processor and not only a theoreticaitature.

4. Comparing JOP with various embedded Java solutions iticBet.3 showed
that the time-predictable processor architecture doesewtt to be slow. JOP’s
average performance is similar to that of non real-time 3sgtems.

5. The flexibility of an FPGA allows for a HW/SW-co-design apach, with the
aim of generating application-specific configurations oPJO
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6. In Section 6.1, a simple real-time profile for Java was @efinThis profile
solves a number of issues that arise from using standarddaneal-time sys-
tems. This profile was elaborated upon in Section 6.2 to et@f&tamework for
a user-defined scheduler in Java, thus enabling the implati@mof advanced
scheduling concepts at the application level.

8.2 Summary of Contributions

The research contributions made by this thesis are relat®ebtareas: real-time Java
and resource-constrained embedded systems.

A Real-Time Java Processor

The goal of time-predictable execution of Java programs avéisst-class guiding
principle throughout the development of JOP:

e The execution time for Java bytecodes can be exactly pestlict terms of
the number of clock cycles. JOP is therefore a straightfaivtarget for low-
level WCET analysis. There is no mutual dependency betweasecutive
bytecodes that could result in unbounded timing effects.

¢ In order to provide time-predictable execution of Java tyties, the proces-
sor pipeline is designed without any prefetching or queuifigis fact avoids
hard-to-analyze and possibly unbounded pipeline depemeenThere are no
pipeline stalls, caused by interrupts or the memory subgysto complicate
the WCET analysis.

e A pipelined processor architecture calls for higher memuoaypdwidth. A
standard technique to avoid processing bottlenecks duketdigher mem-
ory bandwidth is caching. However, standard cache orgaoiaimprove the
average execution time but are difficult to predict for WCHiRlgsis. Two
time-predictable caches are proposed for JO$taek caches a substitution
for the data cache andmaethod cachéo cache the instructions.

As the stack is a heavily accessed memory region, the stackaroof it — is
placed in local memory. This part of the stack is referredstthastack cache
and described in Section 5.5. Fill and spill of the stack eashsubjected to
microcode control and therefore time-predictable.

In Section 5.8, a novel way to organize an instruction caabmethod cache
is given. The cache stores complete methods, and cachesnoislyeoccur on
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method invocation and return. Cache block replacementraispen the call
tree, instead of instruction addresses. Thisthod cachés easy to analyze
with respect to worst-case behavior and still provides tauttigl performance
gain when compared against a solution without an instronataxche.

e The above described time-predictable processor providdsdsis for real-time
Java. The issues with standard Java and the Real-Time Spéoifi for Java
were analyzed in Chapter 4. To enable real-time Java to tgperaresource-
constrained devices, a simple real-time profile was definegeiction 6.1 and
implemented in Java on JOP. The beauty of this approach mmpiementing
functions usually associated with an RTOS in Java. This sézat real-time
Java is not based on an RTOS, and therefore not restrictée fanctionality
provided by the RTOS. With JOP, a self-contained real-tiystesn in pure
Java becomes possible.

The tight integration of the scheduler and the hardwaregbaerates schedule
events results in low latency and low jitter of the task dishpa

e The defined real-time profile suggests a new way to handlenaaednterrupts
to avoid interference between blocking device drivers goplieation tasks.
Hardware interrupts other than the timer interrupt are es@nted as asyn-
chronous events with an associated thread. These evemsranal schedu-
lable objects and subject to the control of the schedulerth \&iminimum
interarrival time, these events, and the associated devieers, can be incor-
porated into the priority assignment and schedulabilitglysis in the same
way as normal application tasks.

The above-described contributions result in a time-ptatlle execution environ-
ment for real-time applications written in Java, withowg tiesource implications and
unpredictability of a JIT-compiler. The proposed processchitecture is a straight-
forward target for low-level WCET analysis.

Implementing a real-time scheduler in Java opens up newitpiitgss. The sched-
uler is extended to provide a framework for user-defined chgliveg in Java. In Sec-
tion 6.2, we analyzed which events are exposed to the savegiodl which functions
from the JVM need to be available in the user space. A simplese framework to
evaluate new scheduling concepts is given.

A Resource-Constrained Processor

Embedded systems are usually very resource-constrairsdg b low-cost FPGA as
the main target technology forced the design to be small.f@lleving architectural
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features address this issue:

e The architecture of JOP is best described as:

The JVM is a CISC stack architecture, whereas JOP is a RISK sta
architecture.

JOP contains its own instruction set, called microcode is tihesis, with a

novel way of mapping bytecodes to microcode addresses. riajping has
zero overheads as described in Section 5.3. Basic bytensttadgtions have a
one-to-one mapping to microcode instructions and theeedgecute in a single
cycle. The stack architecture allows compact encoding ofemstructions in

8 bit to save internal memory.

This approach allows flexible implementation of Java bydesoin hardware,
as a microcode sequence or even in Java itself.

e The analysis of the JVM stack usage pattern in Section 5.%ol¢de design
of a resource-efficient two-level stack cache. This twaletack cache fits to
the embedded memory technologies of current FPGAs and A8i€ensures
fast execution of basic instructions.

Part of the stack cache, which is implemented in an on-chimang is also
used for microcode variables and constants. This resotnaeng does not
only reduce the number of memory blocks needed for the psocebut also
the number of data paths to and from the execution unit.

¢ Interrupts are considered hard to handle in a pipelinedgssar, resulting in
a complex (and therefore resource consuming) implementatin JOP, the
above mentioned bytecode-microcode mapping is used ivarchay to avoid
interrupt handling in the core pipeline. Interrupts geteispecial bytecodes
that are inserted in a transparent way in the bytecode stréai@rrupt han-
dlers can be implemented in the same way as bytecodes arenmapted: in
microcode or in Java.

The above design decisions where chosen to keep the size pfdabhessor small
without sacrificing performance. JOP is the smallest Javagasor available to date
that provides the basis for an implementation of the CLDC#jgation (see Sec-
tion 4.3.1). JOP is a fast execution environment for Javéhomt the resource im-
plications and unpredictability of a JIT-compiler. The eage performance of JOP is
similar to that of mainstream, non real-time Java systems.

JOP is a flexible architecture that allows different configians for different appli-
cation domains. Therefore, size can be traded againstrpafwe. As an example,
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resource intensive instructions, such as floating pointaifmas, can be implemented
in Java. The flexibility of an FPGA implementation also altoadding application-
specific hardware accelerators to JOP.

The small size of the processor allows usage of low-cost FFiGaAmbedded sys-
tems that can compete against standard microcontrolld?. K3 been implemented
in several different FPGA families and is used in differezdl¥world applications.

Programs for embedded and real-time systems are usually-thmeladed and a
small design provides a path to a multi-processor systemiidasized FPGA or in
an ASIC.

A tiny architecture also opens new application fields wheplé@mented in an
ASIC. Smart sensors and actuators, for example, are vesitisento cost, which
is proportional to the die area.

8.3 Future Research Directions

JOP provides a basis for various directions for future nreseé&some suggestions are
given below:

Real-time garbage collector:  In Section 6.1, a real-time profile was defined that
avoids the unpredictability of a garbage collector. Howgtlgere have been
advances in the research field of real-time GCs. Hardwarpostipf a real-
time GC would be an interesting topic for further research.

Another question that remains with a real-time GC is the ymmslof the
worst-case memory consumptions of tasks (similar to the W&#ues), and
scheduling the GC so that it can keep up with the allocatite ra

Hardware accelerator:  The flexibility of an FPGA implementation of a processor
opens up new possibilities for hardware accelerators. We shown in Sec-
tion 5.6 how the implementation of a bytecode can be movedd®si hard-
ware and software. A further step would be to generate aricapiph specific-
system in which part of the application code is moved to hardwldeally, the
hardware description should be extracted automaticadiyn fthe Java source.
Preliminary work in this area, using JOP as its basis, camied in [35].

Hardware scheduler:  In JOP, scheduling and dispatch is done in Java (with some
microcode support). For tasks with very short periods, titeeduling over-
heads can prove to be too high. A scheduler implemented itwzaie can
shorten this time, due to the parallel nature of the algorith
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Multiprocessor JVM:  In order to generate a small and predictable processor, sev-

eral advanced and resource-consuming features (such tasctitn folding

or branch prediction) were omitted from the design. The Itiegulow re-
source usage of JOP makes it possible to integrate more tieaprocessor in

an FPGA. Since embedded applications are naturally mukiaded systems,
the performance can easily be enhanced using a multi-mocsslution. A
multi-processor JVM with shared memory offers followingearch possibil-
ities: scheduling of Java threads and synchronization é&tvthe processors;
WCET analysis for the shared memory access.

Instruction cache:  The cache solution proposed in Section 5.8 provides piedulit
instruction cache behavior while, in the average casépstiforming in a sim-
ilar way to a direct-mapped cache. However, an analysidoothe worst-case
behavior is still needed. With this tool, and a more complealysis tool for
traditional instruction caches, we also need to verify thatworst-case miss
penalty is lower than with a traditional instruction cache.

A second interesting aspect of the proposed method cache fadt that the
replacement decision on a cache miss only occurs on methokkiand return.
The infrequency of this decision means that more time islavia for more
advanced replacement algorithms.

Real-time Java: Although there is already a definition for real-time Jave, the
RTSJ [8], this definition is not necessarily adequate. Theoagoing research
on how memory should be managed for real-time Java apmlitatiscoped
memory, as suggested by the RTSJ, usage of a real-time G@plcadion
managed memory through memory pools. However, almost rearels has
been done into how the Java library which has proven a majpbropaava’s
success, can be used in real-time systems or how it can béesddapdo so.
The question of what the best memory management is for the standard
library remains unanswered.

Java computer: How would a processor architecture and operating systehitace
ture look in a ‘Java only’ system? Here, we need to rethinkapproach to
processes, protection, kernel- and user-space, and Ivinemory. The stan-
dard approach of using memory protection between diffguestesses is nec-
essary for applications that are programmed in languagésiie memory ad-
dresses as data, i.e. pointer usage and pointer manipulétidava, no mem-
ory addresses are visible and pointer manipulation is nssipte. This very
important feature of Java makes Javaade language. Therefore, an error-
free JVM means we do not need memory protection between ggeseand
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we do not need to make a distinction between kernel and useegwith all
the overhead) in a Java system. Another reason for usingaliaddresses is
link addresses. However, in Java this issue does not esst|l @lasses are
linked dynamically and the code itself (i.e. the bytecodmdy uses relative
addressing.

Another issue here is the paging mechanism in virtual merapstem, which
has to be redesigned for a Java computer. For this, we needrggerthe vir-
tual memory management with the GC. It does not make sensaveodvir-

tual memory manager that works with plain (e.g. 4KB) memages without
knowledge about object lifetime. We therefore need to ipomate the virtual
memory paging with a generational GC. The GC knows whichatbjeave not
been accessed for a long time and can be swapped out to theHiisdling

paging as part of the GC process also avoids page fault éans@nd thereby
simplifies the processor architecture.

Another question is whether we can substitute the processtiom with
threads, or whether we need several JVMs on a Java only sy#telepends.
If we can live with the concept of shared static class membeescan substi-
tute heavyweight processes with lightweight threads. dtds possible that we
would have to define some further thread local data strustarthe operation
system.

It is the opinion of the author that Java is a promising laggutor future real-time
systems. However, a number of issues remain to be solved, wWi@Pits time-
predictable execution of Java bytecodes, is an importaméxertheless only a small
part of a real-time Java system.
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B Acronyms

ADC
ALU
ASIC
BCET
CFG
CISC
CLDC
CPI
CRC
DMA
DRAM
EDF
EMC
ESD
FIFO
FPGA
GC
IC
ILP
JOP
J2ME
J2SE
JDK
JIT
JVM
LC
LRU
MBIB
MCIB
MP
MTIB
MUX

Analog to Digital Converter
Arithmetic and Logic Unit
Application-Specific Integrated Circuit
Best Case Execution Time

Control Flow Graph

Complex Instruction Set Computer
Connected Limited Device Configuration
average Clock cycles Per Instruction
Cyclic Redundancy Check

Direct Memory Access

Dynamic Random Access Memory
Earliest Deadline First
Electromagnetic Compatibility
Electrostatic Discharge

Fist In, First Out

Field Programmable Gate Array
Garbage Collect(ion/or)

Instruction Count

Instruction Level Parallelism

Java Optimized Processor

Java2 Micro Edition

Java2 Standard Edition

Java Development Kit

Just-In-Time

Java Virtual Machine

Logic Cell

Least-Recently Used

Memory Bytes read per Instruction Byte
Memory Cycles per Instruction Byte
Miss Penalty

Memory Transactions per Instruction Byte
Multiplexer
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0]0)
0S
RISC
RT
RTOS
RTSJ
SCADA
SDRAM
SRAM
TOS
UART
VHDL

WCET

Object Oriented

Operating System

Reduced Instruction Set Computer
Real-Time

Real-Time Operating System

Real-Time Specification for Java
Supervisory Control And Data Acquisition
Synchronous DRAM

Static Random Access Memory

Top Of Stack

Universal Asynchronous Receiver/Transmitter
Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language
Worst-Case Execution Time



C JOP Instruction Set

The instruction set of JOP, the so-called microcode, isride=tt in this appendix.
Each instruction consists of a single instruction word (8)bwithout extra operands
and executes in a single cytleTable C.1 lists the registers and internal memory
areas that are used in the dataflow description.

Name Description

A Top of the stack

B The element one below the top of stack

stack(] The stack buffer for the rest of the stack

sp The stack pointer for the stack buffer

vp The variable pointer. Points to the first local in the sthoier
pc Microcode program counter

offtbl Table for branch offsets

jpc Program counter for the Java bytecode

opd 8 bit operand from the bytecode fetch unit

Opdie 16 bit operand from the bytecode fetch unit

ioar Address register of the 10 subsystem

memrda Read address register of the memory subsystem
memwra Write address register of the memory subsystem
memrdd Read data register of the memory subsystem

memwrd Write data register of the memory subsystem

mula, mulb  Operands of the hardware multiplier

mulr Result register of the hardware multiplier

membcr Bytecode address and length register of the membsysiem
bcstart Method start address register in the method cache

Table C.1: JOP hardware registers and memory areas

1The only multicycle instruction isait and depends on the access time of the external memory
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pop
Operation Pop the top operand stack value
Opcode 00000000
Dataflow B—A
stacksp — B
sp—1—sp
JVM equivalent pop

Description

and

Operation
Opcode

Dataflow

JVM equivalent

Description

Pop the top value from the operand stack.

Boolean ANDint
00000001
AAB— A
stacksp — B
sp—1—sp

iand

Build the bitwise AND (conjunction) of the two top elements
of the stack and push back the result onto the operand stack.



C JOP NSTRUCTIONSET

201

or

Operation Boolean ORint

Opcode 00000010

Dataflow AVB— A
stacksp — B
sp—1—sp

JVM equivalent ior

Description Build the bitwise inclusive OR (disjunction) of the two top
elements of the stack and push back the result onto the aperan
stack.

xor

Operation Boolean XORint

Opcode 00000011

Dataflow AZB—A
stacksp — B
sp—1—sp

JVM equivalent dxor

Description Build the bitwise exclusive OR (negation of equivalence) of
the two top elements of the stack and push back the result
onto the operand stack.
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C JOP NSTRUCTIONSET

add

Operation
Opcode

Dataflow

JVM equivalent

Description

sub

Operation
Opcode

Dataflow

JVM equivalent

Description

Add int
00000100

A+B— A
stacksp — B
sp—1—sp
iadd

Add the two top elements from the stack and push back the
result onto the operand stack.

Subtractint
00000101

A—-B—A
stacksp — B
sp—1—sp

isub

Subtract the two top elements from the stack and push back
the result onto the operand stack.
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stioa
Operation Store 10 address
Opcode 00001000
Dataflow A — ioar
B— A
stacksp — B
sp—1—sp
JVM equivalent
Description The top value from the stack is stored in the IO address regis-

ter. This address is used on following redd{od) and write
(stiod) operations.

stiod
Operation Store 10 data
Opcode 00001001
Dataflow A — io device
B—A
stacksp — B
sp—1—sp
JVM equivalent
Description The top value from the stack is stored in the IO device. The

IO device is selected by the previosisioa.
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stmra

Operation
Opcode

Dataflow

JVM equivalent

Description

stmwa

Operation
Opcode

Dataflow

JVM equivalent

Description

Store memory read address
00001010

A — memrda
B—A
stacksp — B
sp—1—sp

The top value from the stack is stored as read address in the
memory subsystem. This operation starts the concurrentmem
ory read. The processor can continue with other operations.
When the datum is neededwait instruction stalls the pro-
cessor till the read access is finished. The value is read with
Tdmrd.

Store memory write address
00001011

A — memwra
B—A
stacksp — B
sp—1—sp

The top value from the stack is stored as write address in the
memory subsystem for a followingtmwd.
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stmwd

Operation
Opcode

Dataflow

JVM equivalent

Description

stmul

Operation
Opcode

Dataflow

JVM equivalent

Description

Store memory write data
00001100

A — memwrd
B—A
stacksp — B
sp—1—sp

The top value from the stack is stored as write data in the mem-
ory subsystem. This operation starts the concurrent memory
write The processor can continue with other operations. The
wait instruction stalls the processor till the write access is fin
ished.

Multiply int
00001101

A — mula

B — mulb
B— A
stacksp — B
sp—1—sp

The top value from the stack is stored as first operand for the
multiplier. The value one below the top of stack is stored as
second operand for the multiplier. This operation starés th
multiplier. The result is read with thedmu1 instruction.
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stberd

Operation
Opcode

Dataflow

JVM equivalent

Description

st<n>

Operation
Opcode

Dataflow

JVM equivalent

Description

Start bytecode read
00001111

A — membcr
B—A
stacksp — B
sp—1—sp

The top value from the stack is stored as address and length
of a method in the memory subsystem. This operation starts
the memory transfer from the main memory to the bytecode
cache (DMA). The processor can continue with other opera-
tions. Thewai t instruction stalls the processor till the transfer
has finished. No other memory accesses are allowed during
the bytecode read.

Store 32-bit word into local variable
000100nn

A — stackvp+n|
B—A

stacksp — B
sp—1—sp

astore_<n>, istore<n>, fstore.<n>

The value on the top of the operand stack is popped and stored
in the local variable at position.
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Operation
Opcode

Dataflow

JVM equivalent

Description

stvp

Operation
Opcode

Dataflow

JVM equivalent

Description

Store 32-bit word into local variable
00010101

A — stackvp+opd|
B—A

stacksp — B
sp—1—sp

astore, istore, fstore

The value on the top of the operand stack is popped and stored
in the local variable at positionpd. opd is taken from the
bytecode instruction stream.

Store variable pointer
00011000

A—vp
B—A
stacksp — B
sp—1—sp

The value on the top of the operand stack is popped and stored
in the variable pointerp).
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stjpc

Operation
Opcode

Dataflow

JVM equivalent

Description

Stsp

Operation
Opcode

Dataflow

JVM equivalent

Description

Store Java program counter
00011001

A— jpc
B— A
stacksp — B
sp—1—sp

The value on the top of the operand stack is popped and stored
in the Java program countejp(c).

Store stack pointer
00011011
A—sp

B—A
stacksp — B

The value on the top of the operand stack is popped and stored
in the stack pointersp).
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ushr

Operation
Opcode

Dataflow

JVM equivalent

Description

shl

Operation
Opcode

Dataflow

JVM equivalent

Description

Logical shift rigthint
00011100

B>>>A—A
stacksp — B
sp—1—sp

iushr

The values are popped from the operand stack: #nresult
is calculated by shifting the TOS-1 value rigth byosition,
with zero extension, whergis the value of the low 5 bits of
the TOS. The result is pushed onto the operand stack.

Shift left int
00011101

B<<A—A
stacksp — B
sp—1—sp

ishl

The values are popped from the operand stacki #nresult
is calculated by shifting the TOS-1 value left Byposition,
wheresis the value of the low 5 bits of the TOS. The result is
pushed onto the operand stack.



210

C JOP NSTRUCTIONSET

shr

Operation
Opcode

Dataflow

JVM equivalent

Description

Stm

Operation
Opcode

Dataflow

JVM equivalent

Description

Arithmetic shift rigthint
00011110

B>>A—-A
stacksp — B
sp—1—sp

ishr

The values are popped from the operand stack: #nresult
is calculated by shifting the TOS-1 value rigth byosition,
with sign extension, whergis the value of the low 5 bits of
the TOS. The result is pushed onto the operand stack.

Store in local memory
001nnnnn

A — stackn]
B— A
stacksp — B
sp—1—sp

The top value from the operand stack is stored in the local
memory (stack) at position n. These 32 memory destinations
represent microcode local variables.
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bz

Operation
Opcode

Dataflow

JVM equivalent

Description

Branch if value is zero
010nnnnn

if A= 0 thenpc+ of ftbl[nj+2 — pc
B—A

stacksp — B

sp—1—sp

If the top value from the operand stack is zero a microcode
branch is taken. The value is popped from the operand stack.
Due to a pipeline delay, the zero flag is delayed one cycle, i.e
the value from the last but one instruction is taken. Thedhran

is followed by two branch delay slots. The branch offset is
taken from the tablef ftbl indexed byn.
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bnz
Operation Branch if value is not zero
Opcode 01lnnnnn
Dataflow if A% 0 thenpc+of ftbl[n]+2— pc

JVM equivalent

Description

B—A
stacksp — B
sp—1—sp

If the top value from the operand stack is not zero a microcode
branch is taken. The value is popped from the operand stack.
Due to a pipeline delay, the zero flag is delayed one cycle, i.e
the value from the last but one instruction is taken. Thedhran

is followed by two branch delay slots. The branch offset is
taken from the tablef ftbl indexed byn.
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nop

Operation
Opcode
Dataflow

JVM equivalent

Description

wait

Operation
Opcode
Dataflow

JVM equivalent

Description

Do nothing

10000000

nop

The famous no operation instruction.

Wait for memory completion

10000001

This instruction stalls the processor until a pending mgmor
instruction 6tmra, stmwd or stbcrd) has completed. Two
consecutivavai t instructions are necessary for a correct stall
of the decode and execute stage.
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jbr

Operation
Opcode
Dataflow

JVM equivalent

Description

[dm

Operation
Opcode

Dataflow

JVM equivalent

Description

Conditional bytecode branch and goto

10000010

ifnull, ifnonnull, ifeq, ifne, iflt, ifge,
ifgt, ifle, if.acmpeq, if_.acmpne, if_icmpeq,
if_icmpne, if_icmplt, if_icmpge, if_icmpgt,
if_icmple, goto

Execute a bytecode branch or goto. The branch condition and
offset are calculated in the bytecode fetch unit. Arguments
must be removed witlpop instructions in the following mi-
crocode instructions.

Load from local memory
101nnnnn

stackn] — A
A—B

B — stacKsp+ 1]
sp+1—sp

The value from the local memory (stack) at positions
pushed onto the operand stack. These 32 memory destinations
represent microcode local variables.
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Idi
Operation Load from local memory
Opcode 110nnnnn
Dataflow stackn+32 — A
A—B
B — stacksp+ 1]
sp+1—sp
JVM equivalent
Description The value from the local memory (stack) at positio#s 32 is

pushed onto the operand stack. These 32 memory destinations
represent microcode constants.

|diod
Operation Load IO data
Opcode 11100001
Dataflow io device— A
A—B
B — stacKsp+ 1]
sp+1—sp
JVM equivalent
Description The value from the IO device is pushed onto the operand stack.

The 10 device is selected by the previausioa.



216 C JOP NSTRUCTION SET
Idmrd
Operation Load memory read data
Opcode 11100010
Dataflow memrdd— A
A—B
B — stacKsp+ 1]
sp+1—sp

JVM equivalent

Description

ldmul

Operation
Opcode

Dataflow

JVM equivalent

Description

The value from the memory system after a memory read is
pushed onto the operand stack. This operation is usually pre
ceded by twavai t instructions.

Load multiplier result
11100101

mulr — A
A—B

B — stacKsp+ 1]
sp+1—sp

Gimul)

The result of the multiplier is pushed onto the operand stack
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|dbcstart

Operation
Opcode

Dataflow

JVM equivalent

Description

l[d<n>

Operation
Opcode

Dataflow

JVM equivalent

Description

Load method start
11100111

bcstart— A
A—B

B — stacKsp+ 1]
sp+1—sp

The method start address in the method cache is pushed onto
the operand stack.

Load 32-bit word from local variable
111010nn

stackvp+n] — A
A—B

B — stacKsp+ 1]
sp+1—sp

aload_<n>, iload.<n>, fload.<n>

The local variable at position is pushed onto the operand
stack.
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Id
Operation Load 32-bit word from local variable
Opcode 11101101
Dataflow stackvp+opd — A

JVM equivalent

Description

ldsp

Operation
Opcode

Dataflow

JVM equivalent

Description

A—B
B — stacKsp+ 1]
sp+1—sp

aload, iload, fload

The local variable at positioapd is pushed onto the operand
stack.opdis taken from the bytecode instruction stream.

Load stack pointer
11110000

sp— A

A—B

B — stacKsp+ 1]
sp+1—sp

The stack pointer is pushed onto the operand stack.
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ldvp

Operation
Opcode

Dataflow

JVM equivalent

Description

Idjpc

Operation
Opcode

Dataflow

JVM equivalent

Description

Load variable pointer
11110001

vp— A

A—B

B — stacksp+ 1]
sp+1—sp

The variable pointer is pushed onto the operand stack.

Load Java program counter
11110010

jpc— A

A—B

B — stacksp+ 1]
sp+1—sp

The Java program counter is pushed onto the operand stack.
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|d_opd_8u
Operation Load 8-bit bytecode operand unsigned
Opcode 11110100
Dataflow opd— A
A—B
B — stacKsp+ 1]
sp+1—sp

JVM equivalent

Description

|d_opd_8s

Operation
Opcode

Dataflow

JVM equivalent

Description

A single byte from the bytecode stream is pushedrasonto
the operand stack.

Load 8-bit bytecode operand signed
11110101

opd— A

A—B

B — stacKsp+ 1]
sp+1—sp

(bipush)

A single byte from the bytecode stream is sign-extended to an
int and pushed onto the operand stack.
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|d_opd_16u

Operation
Opcode

Dataflow

JVM equivalent

Description

|d_opd_16s

Operation
Opcode

Dataflow

JVM equivalent

Description

Load 16-bit bytecode operand unsigned
11110110

opd16— A
A—B

B — stacKsp+ 1]
sp+1—sp

A 16-bit word from the bytecode stream is pushed@sonto
the operand stack.

Load 16-bit bytecode operand signed
11110111

opd16— A
A—B

B — stacKsp+ 1]
sp+1—sp

(sipush)

A 16-bit word from the bytecode stream is sign-extended to
anint and pushed onto the operand stack.
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dup
Operation Duplicate the top operand stack value
Opcode 11111000
Dataflow A—B
B — stacksp+ 1]
sp+1—sp

JVM equivalent dup

Description Duplicate the top value on the operand stack and push it onto
the operand stack.
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Table D.1 lists the bytecodes of the JVM with their opcodegmanics, the imple-
mentation type and the execution time on JOP. In the impléatien columnhw
means that this bytecode has a microcode equivalerimeans that a microcode se-
guence implements the bytecodayvameans the bytecode is implemented in Java,
and a ‘-’ indicates that this bytecode is not yet implementédr bytecodes with a
variable execution time the minimum and maximum values a@ng

Opcode Instruction Implementation Cycles
0 nop hw 1
1 aconstull hw 1
2 iconstml hw 1
3 iconst0 hw 1
4 iconstl hw 1
5 iconst2 hw 1
6 iconst3 hw 1
7 iconst4 hw 1
8 iconst5 hw 1
9 IconstO mc 2

10 Iconstl mc 2
11 fconstO -

12 fconstl -

13 fconst2 -

14 dconstO -

15 dconstl -

16 bipush mc 2
17 sipush mc 3
18 Idc mc 3+r
19 Idcw mc A+r
20 ldc2w?° mc 8+2*r
21 iload mc 2
22 lload mc 11

Table D.1: Implemented bytecodes and execution time in cycles
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Opcode Instruction Implementation Cycles
23 fload mc 2
24 dload mc 11
25 aload mc 2
26 iloadO hw 1
27 iload1l hw 1
28 iload2 hw 1
29 iload3 hw 1
30 lloadO mc 2
31 lload1l mc 2
32 lload2 mc 2
33 lload3 mc 11
34 floadO hw 1
35 floadl hw 1
36 fload2 hw 1
37 fload3 hw 1
38 dload0 mc 2
39 dloadl mc 2
40 dload2 mc 2
41 dload3 mc 11
42 aloadO hw 1
43 aloadl hw 1
44 aload2 hw 1
45 aload3 hw 1
46 iaload® mc 19+2%
47 laload -

48 faload® mc 19+2%
49 daload -

50 aaloatf mc 19+2*r
51 baload® mc 19+2%
52 caload® mc 19+2*r
53 saloaff mc 19+2%
54 istore mc 2
55 Istore mc 11
56 fstore mc 2
57 dstore mc 11
58 astore mc 2

Table D.1: Implemented bytecodes and execution time in cycles
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Opcode Instruction Implementation Cycles
59 istore0 hw 1
60 istorel hw 1
61 istore2 hw 1
62 istore3 hw 1
63 Istore0 mc 2
64 Istorel mc 2
65 Istore2 mc 2
66 |Istore3 mc 11
67 fstoreO hw 1
68 fstorel hw 1
69 fstore2 hw 1
70 fstore3 hw 1
71 dstore0 mc 2
72 dstorel mc 2
73 dstore2 mc 2
74 dstore3 mc 11
75 astore0 hw 1
76 astorel hw 1
77 astore2 hw 1
78 astore3 hw 1
79 iastoré® mc 22+r+w
80 lastore -

81 fastoré® mc 22+r+w

82 dastore -

83 aastor® mc 22+r+w

84 bastor® mc 22+r+w

85 castor® mc 22+r+w

86 sastor® mc 22+r+w

87 pop hw 1
88 pop2 mc 2
89 dup hw 1
90 dupxl mc 5

91 dupx2 -

92 dup2 mc 6
93 dup2x1l -

94 dup2x2 -

Table D.1: Implemented bytecodes and execution time in cycles
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Opcode Instruction Implementation Cycles
95 swap -
96 iadd hw 1
97 ladd Java
98 fadd Java
99 dadd -
100 isub hw 1
101 Isub Java
102 fsub Java
103 dsub -
104 imul mc 35
105 Imul -
106 fmul -
107 dmul -
108 idiv Java
109 Idiv -
110 fdiv -
111 ddiv -
112 irem Java
113 Irem -
114 frem -
115 drem -
116 ineg mc 4
117 Ineg Java
118 fneg -
119 dneg -
120 ishl hw 1
121 Ishl -
122 ishr hw 1
123 Ishr -
124  iushr hw 1
125 lushr Java
126 iand hw 1
127 land -
128 ior hw 1
129 lor -
130 ixor hw 1
Table D.1: Implemented bytecodes and execution time in cycles
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Opcode Instruction Implementation Cycles
131 Ixor Java
132 iinc mc 11
133 i2l Java
134 i2f -
135 i2d -
136 12i mc 3
137 12f -
138 I2d -
139 f2i -
140 f2l -
141 f2d -
142 da2i -
143 d2l -
144 d2f -
145 i2b -
146 i2c mc 2
147 i2s -
148 lcmp Java
149 fcmpl -
150 fcmpg -
151 dcmpl -
152 dcmpg -
153 ifeq mc 4
154 ifne mc 4
155 iflt mc 4
156 ifge mc 4
157 ifgt mc 4
158 ifle mc 4
159 ifiicmpeq mc 4
160 if.iicmpne mc 4
161 ifiicmplt mc 4
162 if.iicmpge mc 4
163 ifiicmpgt mc 4
164 ifiicmple mc 4
165 if.acmpeq mc 4
166 if.acmpne mc 4

Table D.1: Implemented bytecodes and execution time in cycles
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Opcode Instruction Implementation Cycles
167 goto mc 4
168 jsr -
169 ret -
170 tableswitch© Java
171 lookupswitch’*  Java
172 ireturd’? mc 15+r+b
173 Ireturd’® mc 17+r+b
174 freturit’? mc 15+r+b
175 dreturh’3 mc 17+r+b
176 areturh’® mc 15+r+b
177 returd’’ mc 13+r+b
178 getstatic mc 4+2*r
179 putstatic mc 5+r+w
180 getfield mc 10+2%r
181 putfield mc 13+r+w
182 invokevirtuat®? mc 78+4*r+b
183 invokespeciaf® mc 58+3*r+b
184 invokestatit33 mc 58+3*r+b
185 invokeinterfack® mc 84+6*r+b
186 unusetbha -
187 new?’ Java
188 newarralf® mc 124w
189 anewarray Java
190 arraylength mc 2+r
191 athrow -
192 checkcast -
193 instanceof -
194 monitorenter hw 9
195 monitorexit hw 10/11
196 wide -
197 multianewarray -
198 ifnull hw 4
199 ifnonnull hw 4
200 gotaw -
201 jstw -
202 breakpoint -

Table D.1: Implemented bytecodes and execution time in cycles
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Opcode Instruction Implementation Cycles

203 reserved -
204 reserved -
205 reserved -
206 reserved -
207 reserved -
208 reserved -

209 jopsysrd mc 3
210 jopsyswr mc 3
211 jopsysrdmem mc r
212 jopsyswrmem mc w+1
213 jopsysrdint mc 8
214  jopsyswrint mc 8
215 jopsysgetsp mc 3
216 jopsyssetsp mc 4
217 jopsysgetvp hw 1
218 jopsyssetvp mc 2
219 jopsysint2ext® mc 12+n*(19+w)
220 jopsysext2inf?® mc 12+n*(19+w)
221 jopsyshop mc 1

222 reserved -
223 reserved -
224 reserved -
225 reserved -
226 reserved -
227 reserved -
228 reserved -
229 reserved -
230 reserved -
231 reserved -
232 reserved -
233 reserved -
234 reserved -
235 reserved -
236 reserved -
237 reserved -
238 reserved -

Table D.1: Implemented bytecodes and execution time in cycles
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Opcode Instruction Implementation Cycles

239 reserved -
240 sysint Java
241 reserved -
242 reserved -
243 reserved -
244 reserved -
245 reserved -
246 reserved -
247 reserved -
248 reserved -
249 reserved -
250 reserved -
251 reserved -
252 reserved -
253 reserved -
254 reserved -
255 reserved -

Table D.1: Implemented bytecodes and execution time in cycles
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The bytecodes that access memory are indicated by@ra memory read and an
w for a memory write at the cycles column. The cycles for the mgnaccess have
to be added to the execution time. These two values are ingpirtion dependent
(clock frequency versus RAM access time, data bus widtim)the Cyclone EP1C6
board with 15ns SRAMs and 100MHz clock frequency these gaduie both 6 cycles
(3 cycles for the memory access and 3 cycles due to pipelilzggje The memory
access time for the bytecode loads 3 clock cycles for this board.

For some bytecodes, part of the memory latency can be hidgexdzuting mi-
crocode during the memory access. However, these cyclesrdgrbe subtracted
when the memory access timedr w) is longer than 4 cycles. The exact execution
time with the subtraction of the saved cycles is given in triote.

On a method invoke or return the bytecode has to be loadedtlirtocache on a

. - >
20The exact value is & r + { ' i : : - g
. -2 i r>
46The exact value is 181 +4 i : : - g
79 . r-2 : r>6
The exact value is 22 4 r<6 +w

170apleswitch execution time depends to a great extent on the caching cbtinesponding Java method
or the memory transfer time for the method.

Iookupswitch execution time depends to a great extent on the caching ofdtresponding Java
method or the memory transfer time for the methiodkupswitch also depends on the argument as
it performs a linear search in the jump table.

17 - r-3 : r>7 b-8 b>8
2The exact value is: 15 4 <7 T 0 bes
17 . r-3 @ r>7 b—9 : b>9
3The exact value is: 15{ 4 o7t 0 beo
177 .- r-3 : r>7 b— b>7
The exact value is: 13{ 4 r<7 + 0 : be7
182The exact value is: 7$2r+{ r_i , :i; +{ r—i ; :ig b_3g Eigg
18 - r-3 @ r>7 r-2 :r>6 b—-39 : b>39
SThe exact value is: 58 + 4 =7 T 4 - re6 T 0 : be39
-3 > -2 > — - b>

185Theexactvalueis:8«44r+{ ' j : :2; { ' i : ;zg { b 38 ; Ezgg

187hew execution time depends to a great extent on the caching afdiresponding Java method or

the memory transfer time for the methadkw also depends on the size of the created object as the
memory for the object is filled with zeros.
188The time to clear the array is not included.

. -8 : w> .
219The exact value is 12 n(19+{ w-8 w212 ). nis the number of words transferred.

4 1 w<l12
. - Cow> .
220The exact value is 12 n(19+ { W 12 , xz 12 ). nis the number of words transferred.
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cache miss. The load tinteis:

b 2+ (n+1)a : cache miss
N 0 : cachhit

with n as the length of the method in number of 32-bit words. Fortsim@thods
the load time of the method on a cache miss, or part of it, iddridoy microcode
execution. The exact value is given in the footnote.



E Benchmark Results

JOP [eJOS TINI  Komodo JStamp

Frequency [MHZz] 100 16 40 33 73.728
iload iadd 49,344,000 19,140 50,724 4,111,569 1,934,642
iinc 9,078,000 37,925 103,044 8,318,030 1,789,378
Idc 10,010,000 11,941 35,463 825,446 1,101,445
if _icmplt taken 16,644,000 9,941 31,629 1,372,264 1,747,626
if _icmplt not taken 16,710,000 10,529 33,032 1,375,754 11338,
getfield 4,002,000 8,515 16,684 687,877 518,071
getstatic 5,874,000 9,547 8,962 412,723 723,155
iaload 3,328,000 14,787 25,924 1,180,501 992,969
invoke 781,935 3,362 6,159 85,874 211,406
invoke static 989,222 4,129 6,815 48,510 271,933
invoke interface 684,896 3,141 5,885 20402 138,847
Sieve 4,286 7 15 627 564
Kil 14,222 25 64 924 2,221
UDP/IP 6,050 13 29 520 1,004
geom. Mean App 9,276 18 43 693 1,493
geom. Mean App/MHz 79 1 1 21 20

Table E.1: Raw data of all benchmarks in [iterations/s] I.
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Sale EJC acj Xint
Frequency [MHz] 103 74 266 266
iload iadd 12,710,000 72,315,000 248,551,0005,368,000
iinc 9,320,000 36,002,000 296,941,000 88,069,000 1220PP8
Idc 11,275,000 23,967,000 132,626,000 8,719,000
if _icmplt taken 5,652,000 35,925,000 128,561,000 86,480,0007,449,000
if _icmplt not taken 7,281,000 71,697,000 246,723,000 890040, 7,206,000
getfield 4,433,000 7,212,000 122,016,000 @863
getstatic 6,786,000 17,962,000 241,398,000 700/)00
iaload 7,854,000 5,966,000 23,967,000 8,002,0
invoke 894,689 1,703,000 20,092,000 1,458,381
invoke static 1,084,359 309,132 270,600,000 7,898,000 201663
invoke interface 674,759 1,598,000 5,588,000 ,3811523
Sieve 3,972 9,475 39,432 6,601
Kl 14,148 9,893 139,884 17,310
UDP/IP 6,415 2,822 38,460 8,747
geom. Mean App 9,527 5,284 73,348 12,305
App/MHz 92 71 276 46

Table E.2: Raw data of all benchmarks in [iterations/s] Il.



E BENCHMARK RESULTS

235

Memory access time

Type Size MBIB MTIB SRAM SDRAM DDR
Prefetch buffer 8B 1.37 0.342 1.02 2.05 1.71
Single method cache 1KB 232 0.021 1.18 0.69 0.39
Two block cache 2KB 1.21 0.013 0.62 0.37 0.21
Four block cache 4KB 0.90 0.010 0.46 0.27 0.16
Direct-mapped 8 bytes 1KB 0.28 0.035 0.18 0.25 0.19
Direct-mapped 16 bytes 1KB 0.38 0.024 0.22 0.22 0.16
Direct-mapped 32 bytes 1KB 058 0.018 0.31 0.24 0.15
Direct-mapped 8 bytes 2KB 0.17 0.022 0.11 0.15 0.12
Direct-mapped 16 bytes 2KB 0.25 0.015 0.14 0.14 0.10
Direct-mapped 32 bytes 2KB 0.41 0.013 0.22 0.17 0.11
Direct-mapped 8 bytes 4KB 0.00 0.001 0.00 0.00 0.00
Direct-mapped 16 bytes 4KB 0.01 0.000 0.00 0.00 0.00
Direct-mapped 32 bytes 4KB 0.01 0.000 0.00 0.00 0.00
Variable block cache 8 blocks 1KB 0.80 0.009 0.41 0.24 0.14
Variable block cache 16 blocks 1KB 0.71 0.008 0.36 0.22 0.12
Variable block cache 32 blocks 1KB 0.70 0.008 0.36 0.21 0.12
Variable block cache 64 blocks 1KB 0.70 0.008 0.36 0.21 0.12
Variable block cache 8 blocks 2KB  0.73 0.008 0.37 0.22 0.13
Variable block cache 16 blocks 2 KB 0.37 0.004 0.19 0.11 0.06
Variable block cache 32 blocks 2KB 0.24 0.003 0.12 0.08 0.04
Variable block cache 64 blocks 2KB 0.12 0.001 0.06 0.04 0.02
Variable block cache 8 blocks 4KB 0.73  0.008 0.37 0.22 0.13
Variable block cache 16 blocks 4KB 0.25 0.003 0.13 0.08 0.05
Variable block cache 32 blocks 4KB 0.01 0.000 0.00 0.00 0.00
Variable block cache 64 blocks 4KB 0.00 0.000 0.00 0.00 0.00

Table E.3: Cache performance in MBIB and MTIB of all variations of the threl
cache and a conventional direct-mapped cache. Average merocess
time per instruction byte for three different main memorghieologies.
Memory access times are in clock cycles.
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Figure F.4: Schematic of the Cyclone FPGA board, page 3
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