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The Java Virtual Machine

JVM is a stack machine
All instructions access the stack
40% access local variables
Stack and local variables need caching
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An Efficient Stack Machine

JVM stack is a logical stack
Frame for return information
Local variable area
Operand stack

We could use independent stacks
Argument-passing regulates the layout
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Parameter passing
int val = foo(1, 2);
...
public int foo(int a, int b) {

int c = 1;
return a+b+c;

}

The invocation sequence:
aload_0             // Push the object reference
iconst_1            // and the parameter onto the
iconst_2            // operand stack.
invokevirtual #2  // Invoke method foo:(II)I.
istore_1            // Store the result in val.

public int foo(int,int):
iconst_1            // The constant is stored in a method
istore_3            // local variable (at position 3).
iload_1             // Arguments are accessed as locals
iload_2             // and pushed onto the operand stack.
iadd // Operation on the operand stack.
iload_3             // Push c onto the operand stack.
iadd
ireturn // Return value is on top of stack.
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Stack Layout
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Stack Content

Operand stack
TOS and TOS-1

Local variable area
Former op stack
At a deeper position

Saved context
Between locals and 
operand stack

A = B + C * D
Stack JVM
push B iload_1
push C iload_2
push D iload_3
* imul
+ iadd
pop A istore_0
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Stack access

Stack operation
Read TOS and TOS-1
Execute
Write back TOS

Variable load
Read from deeper stack location
Write into TOS

Variable store
Read TOS
Write into deeper stack location
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Three Port Stack Memory

Single cycle execution
Two read ports for

TOS and TOS-1 or
Local variable

One write port for
TOS or
Local variable
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Register File Stack Cache

Register file as circular 
buffer - small
Automatic spill/fill
Five access ports
picoJava, aJile

Instruction fetch
Instruction decode
RF read and execute
RF write back
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On-chip Memory Stack Cache

Large cache
Three-port memory
Additional pipeline stage
Komodo, FemtoJava

Instruction fetch
Instruction decode
Memory read
Execute
Memory write back
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JVM Stack Access Revised
ALU operation
A <- A op B
B <- sm[p]
p <- p -1

Variable load (Push)
A <- sm[v+n]
B <- A
sm[p+1] <- B
p <- p +1

Variable store (Pop)
sm[v+n] <- A
A <- B
B <- sm[p]
p <- p -1

A is TOS
B is TOS-1
sm is stack array
p points to TOS-2
v points to local area
n is the local offset
op is a two operand stack 
operation
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Do we need a 3-port memory?

Stack operation:
Dual read from TOS and TOS-1
Write to TOS

Variable load/store:
One read port
One write port

TOS and TOS-1 as register
Deeper locations as on-chip memory
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Two-Level Stack Cache

Dual read only from TOS and 
TOS-1
Two register (A/B)
Dual-port memory
Simpler Pipeline
No forwarding logic

Instruction fetch
Instruction decode
Execute, load or store
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Stack Caches Compared

Design Cache fmax Size

(LC) (bit) (MHz) (word)

ALU - - 237 -

16 register 707 0 110 16

RAM 111 8192 153 128

Two-level 112 4096 213 130
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Summary

The JVM is a stack machine
Stack and local variables need caching
Two-level cache

Two top levels as register
Rest as on-chip memory (two ports)
Small design
Short pipeline
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Further Information

JOP Thesis: p 78-93
Martin Schoeberl, Design and 
Implementation of an Efficient Stack 
Machine, In Proceedings of the 12th 
IEEE Reconfigurable Architecture 
Workshop, RAW 2005, Denver, 
Colorado, USA, April 2005.
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