
An Efficient Stack Machine

Martin Schöberl



JOP Stack Architecture 2

Overview

JVM stack machine
Parameter passing
Stack access patterns
Common stack caches
Two-level stack cache
Results



JOP Stack Architecture 3

The Java Virtual Machine

JVM is a stack machine
All instructions access the stack
40% access local variables
Stack and local variables need caching



JOP Stack Architecture 4

An Efficient Stack Machine

JVM stack is a logical stack
Frame for return information
Local variable area
Operand stack

We could use independent stacks
Argument-passing regulates the layout



JOP Stack Architecture 5

Parameter passing
int val = foo(1, 2);
...
public int foo(int a, int b) {

int c = 1;
return a+b+c;

}

The invocation sequence:
aload_0             // Push the object reference
iconst_1            // and the parameter onto the
iconst_2            // operand stack.
invokevirtual #2  // Invoke method foo:(II)I.
istore_1            // Store the result in val.

public int foo(int,int):
iconst_1            // The constant is stored in a method
istore_3            // local variable (at position 3).
iload_1             // Arguments are accessed as locals
iload_2             // and pushed onto the operand stack.
iadd // Operation on the operand stack.
iload_3             // Push c onto the operand stack.
iadd
ireturn // Return value is on top of stack.



JOP Stack Architecture 6

Stack Layout



JOP Stack Architecture 7

Stack Content

Operand stack
TOS and TOS-1

Local variable area
Former op stack
At a deeper position

Saved context
Between locals and 
operand stack

A = B + C * D
Stack JVM
push B iload_1
push C iload_2
push D iload_3
* imul
+ iadd
pop A istore_0



JOP Stack Architecture 8

Stack access

Stack operation
Read TOS and TOS-1
Execute
Write back TOS

Variable load
Read from deeper stack location
Write into TOS

Variable store
Read TOS
Write into deeper stack location



JOP Stack Architecture 9

Three Port Stack Memory

Single cycle execution
Two read ports for

TOS and TOS-1 or
Local variable

One write port for
TOS or
Local variable



JOP Stack Architecture 10

Register File Stack Cache

Register file as circular 
buffer - small
Automatic spill/fill
Five access ports
picoJava, aJile

Instruction fetch
Instruction decode
RF read and execute
RF write back



JOP Stack Architecture 11

On-chip Memory Stack Cache

Large cache
Three-port memory
Additional pipeline stage
Komodo, FemtoJava

Instruction fetch
Instruction decode
Memory read
Execute
Memory write back



JOP Stack Architecture 12

JVM Stack Access Revised
ALU operation
A <- A op B
B <- sm[p]
p <- p -1

Variable load (Push)
A <- sm[v+n]
B <- A
sm[p+1] <- B
p <- p +1

Variable store (Pop)
sm[v+n] <- A
A <- B
B <- sm[p]
p <- p -1

A is TOS
B is TOS-1
sm is stack array
p points to TOS-2
v points to local area
n is the local offset
op is a two operand stack 
operation



JOP Stack Architecture 13

Do we need a 3-port memory?

Stack operation:
Dual read from TOS and TOS-1
Write to TOS

Variable load/store:
One read port
One write port

TOS and TOS-1 as register
Deeper locations as on-chip memory



JOP Stack Architecture 14

Two-Level Stack Cache

Dual read only from TOS and 
TOS-1
Two register (A/B)
Dual-port memory
Simpler Pipeline
No forwarding logic

Instruction fetch
Instruction decode
Execute, load or store



JOP Stack Architecture 15

Stack Caches Compared

Design Cache fmax Size

(LC) (bit) (MHz) (word)

ALU - - 237 -

16 register 707 0 110 16

RAM 111 8192 153 128

Two-level 112 4096 213 130



JOP Stack Architecture 16

Summary

The JVM is a stack machine
Stack and local variables need caching
Two-level cache

Two top levels as register
Rest as on-chip memory (two ports)
Small design
Short pipeline



JOP Stack Architecture 17

Further Information

JOP Thesis: p 78-93
Martin Schoeberl, Design and 
Implementation of an Efficient Stack 
Machine, In Proceedings of the 12th 
IEEE Reconfigurable Architecture 
Workshop, RAW 2005, Denver, 
Colorado, USA, April 2005.


	An Efficient Stack Machine
	Overview
	The Java Virtual Machine
	An Efficient Stack Machine
	Parameter passing
	Stack Layout
	Stack Content
	Stack access
	Three Port Stack Memory
	Register File Stack Cache
	On-chip Memory Stack Cache
	JVM Stack Access Revised
	Do we need a 3-port memory?
	Two-Level Stack Cache
	Stack Caches Compared
	Summary
	Further Information

