OP Design Flow

10 bus
Wishbone
ACEX

Spartan
Cyclone




i The Project

= 4/5 programming languages
= VHDL, Java, Microcode, C, (Verilog)
= 267 directories, 1403 files

= 68k LOC
= find . —name *.vhd — print | xargs wc
= Java: 30565
= VHDL: 23080
= Microcode (.asm): 10089
= C: 4141

= 4 FPGA types, 6 target boards

AK: JVMHW JOP Design Flow



i Don‘t Panic

= This complexity is not unusual
= Linux kernel: 6M LOC!

s There i1s a master Makefile
= A single target can be built
= Calls batch files

O Help
= Some documentation is available (pdf and web)

= e-mail to Schoeberl
= Yahoo! Groups : java-processor

AK: JVMHW JOP Design Flow


http://groups.yahoo.com/group/java-processor

i Directories

= vhdl
= The hardware description of JOP

m ASIM
= The JVM in microcode
= jJava
= System sources (JVM, JDK)
= Target applications
= 100IS

AK: JVMHW JOP Design Flow



i Directories cont.

= quartus
= Project files for Altera FPGA boards

= Each board and variation in its own
directory

= Xilinx
= Project files for Xilinx FPGA boards

AK: JVMHW JOP Design Flow



i File Types

m Source
= .asm, .vhd, .java

= Generated
« JVM assembly: .vhd, .mif, .dat
= Quartus: .sof, ...
= JOPizer: .jop
= Configuration
= Project. Makefile, .bat
= Quartus: .gsf, .cdf

AK: JVMHW JOP Design Flow



Application
Hello.java

JVM

core.vhd

javac
e
Synthesize !
Quartus .
classes.zip

A 4

FPGA config.
jop.sof

Configure

Hello.jop




i JOP Startup

= FPGA configuration
= ByteBlaster download cable
= USB

= Flash on power up
= Watchdog -> PLD configures FPGA

= Java application

= Serial line
= USB
= Flash

AK: JVMHW JOP Design Flow



i Startup Configuration

= FPGA configuration
= PLD (MAX7064)
= ByteBlaster: cyc_conf_init.pof
= Flash: cyc_conf.pof

= Java application

= JVM (Jvm.asm) on startup
= Loads the application (.jop)
=« Defines download type
=« Constants: FLASH, USB, SIMULATION

AK: JVMHW JOP Design Flow



i Targets

= Top level defines FPGA type
= jopcyc.vhd
= jopcycl2.vhd
= Jopacx.vhd

= |0 top level defines board type
= SCi0O_min.vhd
= Scio_baseio.vhd
= SCio_dspio.vhd

AK: JVMHW JOP Design Flow

10



i JVM + Library

= JVM

= Microcode (jvm.asm)
=« Java (JVM.java, Startup.java, GC.java)

= Library
= JOP specific: util, ejip, joprt
» JDK: System, String,...

AK: JVMHW JOP Design Flow

11



i Native Functions

= Bridge between Java and the HW
= Memory, 10 access

= Register, stack cache

Special bytecode

Implemented in microcode
Translated in JOPizer

Define In:

= jJvm.asm

= com.jopdesign.sys.Native.java

= com.jopdesign.tools.Joplinstr.java

AK: JVMHW JOP Design Flow

12



i Simulation

= VHDL with ModelSim

= HW related changes

= Testbench reads the memory content
= High level with JopSim

= System debugging (e.g. GC)

= Reads .jop files

= AJVM In Java

s Board simulation

AK: JVMHW JOP Design Flow

13



i Summary

= Modules
= JOP — VHDL files
= JVM — Microcode + Java
= Application — Java

= Build

= Jopa, Quartus -> FPGA configuration file (.sof)
= Javac, JOPizer -> Java application file (.jop)
= Makefile + Batchfiles

AK: JVMHW JOP Design Flow

14



i More Information

= An Introduction to the Design Flow for

JOP

AK: JVMHW JOP Design Flow

15


http://www.jopdesign.com/doc/build.pdf
http://www.jopdesign.com/doc/build.pdf

	JOP Design Flow
	The Project
	Don‘t Panic
	Directories
	Directories cont.
	File Types
	JOP Startup
	Startup Configuration
	Targets
	JVM + Library
	Native Functions
	Simulation
	Summary
	More Information

