
Vienna University of Technology
Institute of Computer Engineering

Bachelor’s Thesis

LRBJOP: A Lego Robot Controller PCB
for the Java Optimized Processor

Alexander Dejaco

alexander.dejaco@student.tuwien.ac.at

Peter Hilber

peter.hilber@student.tuwien.ac.at

September 30, 2007

Abstract

Lego Mindstorms is a robotics invention system of the Lego Group. It
was intended for children, but turned out to be a great toy for adults, too.
It combines electric components like sensors and actuators with Lego bricks
and Lego Technic parts, such as gears, wheels and axles, to build robots and
other automated or interactive systems.

The Lego invention systems have a powerful infrastructure which makes
it easy to construct various kinds of mechanical and electric systems, like
robots. However, Lego Mindstorms originally had very limited program ca-
pabilities (e.g. no usage of variables, expressions and function calls in the
RCX code). Therefore, a more powerful processor was desirable.

In this project, we use Lego Mindstorms sensors and actors, but build our
own Printed Circuit Board to use the Java Optimized Processor (JOP) [Sch05b]
as a central processing unit instead of the Lego RCX. The result is a PCB
which provides everything needed to control robots with JOP, and has some
additional features to play with, too.

0All trademarks and registered trademarks are the property of their respective owners.

Contents

1 Introduction 5
1.1 Lego Mindstorms . 6
1.2 Lego Mindstorms Limitations 6
1.3 Goals . 7
1.4 JOP - The Java Optimized Processor 8

2 Related Work 9
2.1 Systronix JCX . 9
2.2 Robots and robot circuit boards 9
2.3 RCX related projects . 10
2.4 Lego part evaluations . 10
2.5 Miscellaneous . 10

3 Lego infrastructure and parts 12
3.1 Lego . 12

3.1.1 How Lego sensors work 12
3.1.2 Lego motors . 12
3.1.3 Lego cables . 13

3.2 Preliminary work . 13

4 Technical documentation 14
4.1 Overview . 14

4.1.1 Board details . 15
4.1.2 Using LRBJOP . 15

4.2 Circuits and Components . 16
4.2.1 Power Supply . 16
4.2.2 Sensors . 17
4.2.3 Microphone and Speaker Circuits 18
4.2.4 LEDs and Buttons . 19
4.2.5 Motor driver . 19
4.2.6 Back-EMF speed measurement 20
4.2.7 PLD Device . 20
4.2.8 Connectors . 21
4.2.9 Solder pad grid . 22

4.3 Extensions to the FPGA design 22
4.3.1 The SimpCon protocol 22
4.3.2 Analog sensors interface 22
4.3.3 Motor interface . 23
4.3.4 Audio playback interface 23

1

4.3.5 Interface to pin extension PLD 23
4.4 A Java library for convenient access 24

4.4.1 An example Java program 24

5 Implementation 27

6 Discussion 29
6.1 Difficulties encountered . 29
6.2 Known issues . 29

6.2.1 Hardware . 29
6.2.2 VHDL design . 29
6.2.3 Not yet tested . 30

6.3 Possible improvements . 30

7 Demo robot 31

8 Conclusion 33
8.1 Personal resume . 33

A Technical details 34
A.1 Printed Circuit Board . 34
A.2 VHDL Design . 34

B File list 35

C Acronyms 36

D Schematics 37

E Installation manuals 43
E.1 FTDI driver installation . 43
E.2 Flashing the EEPROM of the FTDI USB chip 44

F Part list 46

References 48

2

List of Figures

1 The JOP FPGA board. 5
2 RCX sensor evaluation. 12
3 The Printed Circuit Board. 14
4 Power supply schematic. 16
5 Sensor input with ADC schematic. 17
6 Simple sensor input schematic. 18
7 Microphone input schematic. 18
8 Speaker output schematic. 19
9 PLD schematic. 21
10 Our self-made speaker and microphone peripherals. 28
11 Our demonstration robot. 32
12 Sheet 1. 38
13 Sheet 2. 39
14 Sheet 3. 40
15 Sheet 4. 41
16 Sheet 5. 42
17 Part list. 47

3

Acknowledgements

We would like to express our gratitude to the people of the Real Time Systems

department of the Institute of Computer Engineering, for their support and

interest in this project.

We would also like to thank Martin Schöberl for the help provided through-

out the project, since a successful completion would not have been possible

without his guidance.

4

1 Introduction

At the Real Time Systems department of the Vienna University of Tech-

nology, Martin Schöberl has started a project combining Lego Mindstorms

and an FPGA running JOP, the Java Optimized Processor [Sch05b]. This

project interfaces sensors and motors of the Lego Mindstorms series with an

FPGA substituting the Lego RCX1.

The RCX is a programmable, microcontroller-based brick for the Lego

Robotics Invention System 2. The primary goal of this project is to design

and build a Printed Circuit Board which provides access to Lego Mindstorms

sensors and actors, and contains JOP, running on an FPGA, as central pro-

cessing unit.

Figure 1: The JOP FPGA board.

1Robotic Command eXplorer
2In 2006, the Lego Mindstorms NXT Robotics Toolset was introduced (including a new

NXT brick), which is to replace the Lego Robotics Invention System product line, and
provides new sensor interfaces not covered by our project and the resulting board. See
http://mindstorms.lego.com.

5

http://mindstorms.lego.com

1.1 Lego Mindstorms

Lego, or the Lego Group, is a well-known producer of building toys. Lego toys

are typically based on interlocking plastic bricks. Lego Technic is a product

line of Lego which allows to build more complex models with movable parts.

In addition to bricks, pieces such as gears, axles, beams, and pneumatic parts

are also included.

Lego is very popular and known around the world. Its story begins in

the Thirties, when Ole Kirk Christiansen started a small business in Den-

mark, which among other things, created wooden toys, from which the to-

day’s LEGO products derive. The name Lego derives from the Danish words

”LEg GOdt”, meaning ”play well”.

The Lego Technic product line, featuring advanced models with movable

parts, was introduced in 1977.

Lego Mindstorms is a robotics build framework. The Lego Mindstorms

RCX product line was introduced in 1998. In 2006, it was replaced by the

NXT product line, which features various improvements2. Lego Mindstorms

combines Lego bricks, and Lego Technic parts, and electric components. The

system is built up around a microcontroller brick, called RCX brick, respec-

tive NXT brick. Electric components include motors and various sensors.

These can be connected to the RCX/NXT using cables with interlocking

bricks at their end.

Lego Mindstorms is, interestingly, also popular among adults.

1.2 Lego Mindstorms Limitations

While Lego Mindstorms allows easy construction of robots, its hardware and

software capabilities are somewhat limited.

The RCX contains an Hitachi H8 microcontroller with 32K external

RAM [Hit], providing three actuator output-, and three sensor input-ports.

Programs for the RCX could initially only be developed in a graphical

programming environment. No use of variables, complex expressions, and

function calls were possible therein.

6

However, successful reverse engineering allowed third parties to replace

the firmware. Many programming languages have been made available for

the Lego Mindstorms microcontroller. An example is leJOS 3, a Java Virtual

Machine for the RCX, which is used to introduce students into programming.

The goal of our project was not to replace the firmware, but to replace

the RCX microcontroller by an FPGA running JOP. The RCX brick does,

however, not only contain the microcontroller, but e.g. H-bridges, buttons,

and an LCD display too. The RCX should therefore be replaced by a Printed

Circuit Board.

1.3 Goals

The first goal of our project was to create a PCB layout, with interfaces to

Lego sensors, Lego motors and possibly other devices, such as a microphone,

a camera, etc.4

The power consumption of the board should be low, and its size not too

big for integrating the board into a robot. Simple and robust solutions to

attach the board to a robot consisting of Lego bricks and to connect multiple

Lego sensors and actors to the board, needed to be found. On the FPGA

side, a suitable API for the JOP processor was desired. Real-time enabled

Java, as provided by JOP, could then be used to program Lego robots.5

The resulting PCB should be suitable for use in university courses about

embedded real-time systems and the Java Virtual Machine in hardware.

The second goal was to build a sample Lego robot using the board and

the JOP processor, to proof the concept. This robot should also be suitable

for demonstration purposes of JOP.

3See http://lejos.sourceforge.net/
4The Lego Mindstorms sensor interface had already been analyzed by Schöberl

[Sch05a], and others.
5It remains of course possible to use other processor designs, or only a hardware de-

scription language, with the board.

7

http://lejos.sourceforge.net/

1.4 JOP - The Java Optimized Processor

JOP is an implementation of the Java Virtual Machine in hardware [Sch05b].

It is being developed by Martin Schöberl at the Vienna University of Tech-

nology.6

JOP is a simple and small processor, which can be implemented in a low

cost FPGA. It features predictable execution time for embedded real-time

systems. JOP is open-source and free for education, research and personal

use.

6See http://www.jopdesign.com/

8

http://www.jopdesign.com/

2 Related Work

2.1 Systronix JCX

The Systronix Java Control System JCX7 is a very similar project by a

commercial vendor. Multiple boards replace the Lego Mindstorms RCX and

may be combined according to the users needs. Interestingly, the CPU used

is the aJile Java processor [Har06], which is also a JVM in hardware. The

JCX targets schools and universities, among other interest groups.

2.2 Robots and robot circuit boards

There is a very large community of robot builders, and therefore a lot of

robot circuit boards can be found. For instance, very popular boards used

to build all kinds of robots are available at robotikhardware.de8. A nice

source for robot kits, components, motors, and even solar-powered robots is

solarbotics.com9. As for comparable, non-Lego-based robots, there is a lot

of scientific work available. For example, there is a very nice robot built

by David P. Anderson at Southern Methodist University Dallas, Texas. It

is named nBot, and is a two-wheeled balancing robot 10. Similar work has

been done by Rich Chi Ooi at the University of Western Australia, where he

examined the suitability of different controller schemes to guarantee stability

of a balancing robot. Originally, the demonstration robot was aimed to be

another two-wheeled balancing robot (see section 7).

Another project we took interest in, is [PBN03]. It is an effective educa-

tional robot with indoor/outdoor capability, back-EMF speed control and a

Java programming interface. For the idea of the Inverted Pendulum Robot,

we related to [Mig99], a diploma thesis, which shows real-time feedback

control programming for balancing an inverted pendulum.

7See http://jcx.systronix.com/
8See http://www.robotikhardware.de/
9See http://www.solarbotics.com/

10See http://www.geology.smu.edu/~dpa-www/robo/nbot/

9

http://jcx.systronix.com/
http://www.robotikhardware.de/
http://www.solarbotics.com/
http://www.geology.smu.edu/~dpa-www/robo/nbot/

2.3 RCX related projects

Regarding the Lego-robot community, there also exist a lot of projects of

reverse engineering or substituting the RCX, and a lot of robots of course. An

example for scientific work regarding reverse engineering the RCX, is [Pro98].

A lecture for a seminar at Stanford, where the capabilities and limitations,

including details about RCX’s internal architecture, are discussed.

An interesting replacement firmware for the RCX is LejOS. It is a Java

based alternative (and more powerful) operating system which can be used

in the RCX to control Lego robots 11. A similar project exists for a C and

C++ programming environment, it is an open source operating system for

the Lego RCX, named BrickOS 12.

2.4 Lego part evaluations

An important source of information regarding the Lego components, espe-

cially about the Lego motors internals, are the evaluations and comparisons

done by Philippe E. Hurbain13.

2.5 Miscellaneous

In the process of research for the requirements of constructing an inverted

pendulum- or a two wheeled balancing robot, we came across an analy-

sis of the control behavior of a two-stage inverted pendulum by Weijing

Zhang [Zha96], using a fuzzy controller. Other notable related sites/projects

are roboternetz.de14, which is a german robotics and electronics community-

site with a lot of interesting discussions and projects, the popular german

electronics forum elektronik-projekt.de15, and the Toy Robots Initiative 16,

which operates at the Robotics Institute at Carnegie Mellon University Pitts-

11See http://lejos.sourceforge.net/
12See http://brickos.sourceforge.net/
13See http://www.philohome.com/motors/motorcomp.htm
14See http://www.roboternetz.de
15See http://www.elektronik-projekt.de/
16See http://www.cs.cmu.edu/~illah/EDUTOY/

10

http://lejos.sourceforge.net/
http://brickos.sourceforge.net/
http://www.philohome.com/motors/motorcomp.htm
http://www.roboternetz.de
http://www.elektronik-projekt.de/
http://www.cs.cmu.edu/~illah/EDUTOY/

burgh, which aims to commercialization of robot technologies used in educa-

tion, entertainment and art, are also useful resources.

11

3 Lego infrastructure and parts

3.1 Lego

The Lego infrastructure is well thought through, and very easy to use. Nev-

ertheless, very much can be achieved with the Lego Technic parts in combi-

nation with Lego Mindstorms. To interface the Lego systems with another

controller than the standard RCX, it was necessary to evaluate the sensors

and actuators at the electronical level.

3.1.1 How Lego sensors work

The Lego sensors need a supply-voltage, which is switched off periodically,

with period T, for the off-time t. T is 3ms in the RCX and t is approximately

0.2ms. So, the power is switched off for about 200 us. During this time, the

resulting current sink provides the output signal.

Figure 2: RCX sensor evaluation.

3.1.2 Lego motors

The Lego motors are simple 9V brushed direct current motors. They are

suitable for voltages up to 12V and contain a protection diode, which serves

two functions. Firstly, to prevent that a motor can be driven with a voltage

higher than 15V, and secondly, to ensure, that no, by the motor generated

current flow, can be applied to a possibly attached circuit. Since Lego motors

12

are normal DC-motors, they can act as generators, which can be used for

back-EMF reading.

3.1.3 Lego cables

The Lego cables are a robust way to connect all electronic Lego components

in a simple and foolproof way. They are constructed in such a way, that

regardless how a component or another cable is connected, there can never

occur a short circuit just by connecting in the wrong orientation.

3.2 Preliminary work

The work done in this Bachelor’s thesis consisted mainly in the design of the

PCB, and the related software. The Lego Mindstorms sensor interface had

already been analyzed by Martin Schöberl [Sch05a], among others. He also

realized a sigma-Delta analog/digital converter for Lego Mindstorms sensors.

This and other circuits diagrams were taken from previous projects17.

Using a prototyping board, a simple Line-Follower robot had also already

been constructed18.

17The circuit we used for the microphone input was designed by Jens Kristian Rasmussen
and Mikael Lundsgaard under supervision of Martin Schöberl.

18See http://www.jopdesign.com/board.jsp#simpexp.

13

http://www.jopdesign.com/board.jsp#simpexp

4 Technical documentation

4.1 Overview

On the one hand, LRBJOP was designed to use low power and to interface

with Lego hardware to be used as a robot controller. On the other hand,

LRBJOP has a lot of features and a big prototyping area, so that it can also

be used for evaluations and prototyping.

The complete schematics can be found in section D.

Figure 3: The Printed Circuit Board.

14

4.1.1 Board details

• Dimensions of the board: 140 mm x 116 mm.

• Layers: 2, top and bottom layer.

4.1.2 Using LRBJOP

There are a few important things to know before using our board.

Using our pre-built board:

We suggest using USB to upload the FPGA design and the JAVA pro-

gram. The board supply must be connected prior to attaching the USB

connector.

Constructing your own board:

The board design for the LRBJOP is open-source and can be found at

our site19, as well as a complete part list with ordering information. The part

list can also be found in the attachment (See F).

When the production of the circuit board is complete, and you have soldered

all the components, the FPGA board should not be connected, yet. It is

recommended to program the EEPROM of the FTDI USB Chip and the

PLD, before.

The PLD is used to provide additional pins, it should be programmed

before the FPGA board is inserted to prevent that output pins might be

connected to output pins. To program it, the Quartus project pld.qpf should

be used to compile and upload the design.

To program the EEPROM, it has to be flashed via USB using a programming-

tool. The tools, the needed drivers, as well as a detailed description how to

install them, are available at our site19. The installation manuals can also be

found in section E.

19See http://stud3.tuwien.ac.at/~e0327019/lego/

15

http://stud3.tuwien.ac.at/~e0327019/lego/

Finally, the FPGA board can be connected, and the board is ready for

usage.

4.2 Circuits and Components

A complete part list is available at http: // stud3. tuwien. ac. at/ ~ e0327019/

lego/ and in section F.

4.2.1 Power Supply

Figure 4: Power supply schematic.

The voltage regulator which is used is a MAXIM 1626 High-Efficiency,

Step-Down DC-DC controller. The output voltage of the MAX1626 is preset

at 5V or 3.3V. In our case VCC is set to 3.3V. The MAX1626 switching

controller provides efficiency greater than 90% between 3 to 2000mA.

The input voltage can be up to 16.5V, although this counts only for the

DC-controller. There are some components which are connected directly to

the unregulated input voltage. This means, the connected voltage should not

exceed 12V.

The DC-controller is able to generate VCC (3.3V) until the input voltage

drops below 3,7V. The high-voltage components however, need at least 5V

to function correctly. This mainly concerns the amplification component for

the speaker output.

In addition, some Lego sensors require even higher voltage. For instance,

the Lego acceleration and tilt sensor needs 9V supply, and works well only

with an external supply, or a fully charged battery pack.

16

http://stud3.tuwien.ac.at/~e0327019/lego/
http://stud3.tuwien.ac.at/~e0327019/lego/

Circuit protection is supplied by a Schottky barrier diode, providing re-

verse voltage protection up to 30V.

We suggest to use either a regulated power supply providing 9V, or a

powerful rechargeable battery pack, since the circuits are designed for 9V

supply, the current drain is supposed to be minimal at this voltage.

4.2.2 Sensors

Sensor inputs with ADC:

Figure 5: Sensor input with ADC schematic.

On basis of the original schematics from the prototype, we implemented

three sensor inputs with ADC, which can be used to either connect Lego sen-

sors, or, for instance, a potentiometer. Each circuit consists of two parts, one

contains two transistors (a PNP and a NPN transistor) which are switched

by the FPGA to power the connected sensor with the unregulated voltage

V+, and some resistors. The second part is the integrator, formed by a com-

parator, two resistors and a capacitor.20

Simple sensor inputs:

Also based on the original schematics, we implemented three simple in-

puts which for instance could be used to connect switches or buttons, like

20See [Sch05a] for the original evaluations.

17

Figure 6: Simple sensor input schematic.

the Lego push buttons. Each input is composed of two solder pads, one con-

nected to ground, the other one is driven at VCC through a 10k resistor, two

capacitors to ground and one 100k resistor which leads to an input pin on the

PLD. Therefore the simple inputs are low-active, meaning that if there is no

connection between the two pads, the digital input signal recognized by the

PLD will be high, and otherwise low. The passive low-pass filter consisting of

the 100k resistor and a 100pF capacitor reduces response to high frequency

inputs.

4.2.3 Microphone and Speaker Circuits

Figure 7: Microphone input schematic.

The microphone circuit is based on the work done by Jens Kristian Ras-

mussen and Mikael Lundsgaard under supervision of Marin Schöberl. It

amplifies the microphone input and then passes the signal to an integrator,

18

which works exactly like the other sensor inputs.

Figure 8: Speaker output schematic.

For the speaker output we used the LM386, a low voltage Audio Power

Amplifier. Its an amplifier with low quiescent current drain, designed for

battery operation. At the input we connected a 10k potentiometer to be

able to regulate the volume. The amplification factor is 20x. It could be

increased to 200x by adding a 10uF capacitor between pins one and eight of

the amplifier, but this should not be necessary if the supply voltage is high

enough. The LM386 can operate at a supply voltage between 4 and 12V. In

our case it is powered by the unregulated input voltage V+.

4.2.4 LEDs and Buttons

We added a power LED, which shows if the board is powered. If this LED

is not shining although the board is connected, you might want to check the

polarity of the input voltage.

There are also four free programmable LEDs, which are switched by the

FPGA through the PLD.

For manual inputs, there are four free programmable buttons, which are also

connected to the FPGA through the PLD.

4.2.5 Motor driver

There are three HIP 4020 MOS power output H-drivers (Full-Bridge) on

our board [Int]. These components show a low standby current drain, have

19

over-current limit and over-temperature shutdown protection. They feature

direction, braking and PWM control. They are operational at a supply range

of 3V to 12V. The circuit on the board is designed such that each motor

connected to a H-bridge can be steered with three signals: enable, direction

and break.

4.2.6 Back-EMF speed measurement

The principle behind back-EMF reading is the Lorentz-force. Whenever a

conductor is being moved in a magnetic field, the Lorentz-force inducts a

current flow in it, by applying a directed force to the electrons. This is what

happens in DC-motors. When such a motor is spinning, the Lorentz-force

inducts a current-flow in the connected conductor, when the connections are

left floating by the circuit.

That effect is used to measure the rotation speed of DC-motors, by dis-

connected them from the driving circuit periodically, leaving the pins float-

ing, and in that time, reading the voltage which is generated because of the

current-flow in the circuit. The analogue voltage level is converted to a digi-

tal value by a sigma-delta ADC. The measured voltage level is proportional

to the rotating speed.

In our case, there are back-EMF reading circuits for two of the three

possible motor drivers. There are two sigma-delta ADCs for each motor,

since we wanted it to be possible to identify the direction in which the motors

are rotating. Each one of the converters samples a specific direction.

4.2.7 PLD Device

The Programmable Logic Device is a EPM3064 which connects the buttons,

LEDs, SPI signals and unused wires for future use to the JOP processor.

The PLD extends the range of available input pins so that all the features

can be implemented.

What the PLD does, is basically shifting the bits received by the FPGA

over the data line, out to the appropriate pins (e.g. LEDs), and the same

20

Figure 9: PLD schematic.

in the other direction: it also uses the single data line to communicate the

state of the inputs (e.g. buttons) to the FPGA, by driving the appropriate

serial bit sequences.

4.2.8 Connectors

There are various connectors fit on the board. First of all, the main connector,

which is recommended to upload the FPGA design and the Java program,

is the USB interface. It consists of the USB plug, which is connected to

the processor through a FT2232C FTDI chip. Secondly, there is a 9 pol

serial connector, which is wired also to the FPGA. It is the default choice for

uploading the Java program, if using USB is not possible or not desired. In

that case, the FPGA design has to be uploaded through a ByteBlaster cable

at the FPGA board, directly. The connector used for that matter is X7.

Furthermore, there is a SD-Card slot, a grid of solder pads intended for any

future usage. Some pads are wired to ground, some to VCC, and some to

the PLD which routes the signals to the processor. The detailed assignment

can be picked out from the Eagle design files.

Finally, there are also connectors for the ByteBlaster, used to program

the PLD and the FPGA. X4 is the one wired to the PLD, X7 is wired to

the USB chip, and is connected though a external cable to the FPGA board,

21

when using USB.

4.2.9 Solder pad grid

The grid of solder pads can be used to add new components in the future.

There are unused signals from the PLD connected to some pads for commu-

nication. In addition, there are also wires for up to three SPI devices.

4.3 Extensions to the FPGA design

This section deals with how the board components are connected to the JOP

softcore processor running on the FPGA.

4.3.1 The SimpCon protocol

The customized interface to the board is written, like JOP itself, in VHDL. It

is connected to the JOP processor, in the same style as other components, as a

single SimpCon slave (with no pipelining). SimpCon is a simple standard for

system-on-chip interconnect [Sch07] and used to connect other components

such as a UART or a FPU to JOP.

4.3.2 Analog sensors interface

Similar sigma-delta analog/digital converters are used to read Lego Mind-

storms sensors (see 3.1.1), a microphone, and to do back-EMF measurement

of the motor rotation (see 4.2.6).

The major part of a sigma-delta ADC is realized in hardware (see 4.2.2),

but a part of the feedback, and the integrating part is calculated inside

the FPGA. The software part is rather simple. The digital input is filtered

through a majority vote of the last 3 observed values. The inverted value is

then fed back to the hardware part. Integration is done by a counter. The

Lego Mindstorms ADC software part has an additional power switch, since

these sensors are supplied with current most of the time and are only read

every few ms.

22

4.3.3 Motor interface

The VHDL component lego motor is used to steer an H-bridge with a hard-

ware PWM signal, and measure the rotation of a connected motor through

its back-EMF motion feedback. Two sigma-delta ADCs are used to measure

the back-EMF (see 4.2.6). An introduction to back-EMF measurement can

be found at [Inc06].

4.3.4 Audio playback interface

A speaker (see 4.2.3) can be connected to LRBJOP. A corresponding (simple)

VHDL module does sound synthesis of PCM audio data using an 8 bit PWM

channel. Every sample, the duty cycle is simply set to the audio amplitude

from a Java program.

JOP running on the FPGA is fast enough to support a sampling rate of

44.1 kHz21 by changing the duty cycle at appropriate times through a Java

program22.

4.3.5 Interface to pin extension PLD

The Cycore FPGA board for Altera’s Cyclone EP1C12Q240 has 49 pins

(power supply pins not counted). This pin count was not enough for the

features we wanted to include on the board. A small PLD, the Altera

EPM3064A, was therefore added to provide 23 more pins. Three pins - clock

line, strobe line (for synchronization) and a bidirectional data line - suffice

for a simple serial interface between the FPGA and the PLD providing the

additional pins.

Depending on whether the pins are configured as input or output, one pin

state is transmitted in the corresponding direction, each cycle. The signals

routed through the PLD are digital signals where a variable delay of less than

25 cycles can be tolerated, such as those for LEDs and buttons.

21A sampling rate of 44.1 kHz is widely used for uncompressed audio data.
22When real-time scheduling is used, the scheduling overhead only allows a slightly

slower sampling rate. A more advanced VHDL sound synthesis module could support
real-time scheduling by reading more than one PCM value at a time from the processor.

23

4.4 A Java library for convenient access

The VHDL code that makes the board available to the processor is writ-

ten as a SimpCon slave (see 4.3.1). A SimpCon slave can be accessed in

Java by calling the Native.wr() and Native.rd() methods, located in

the com.jopdesign.sys package, with special address parameters23. Ac-

cess to the raw interface of the sc lego SimpCon slave requires the user to do

some bit arithmetic24, and other calculations. Direct communication through

SimpCon access methods is therefore tedious and error-prone.

The Java package lego.lib enables easy and nearly foolproof access from a

Java application, hiding the implementation details. All standard LRBJOP

features, such as buttons and motors (connected to the board’s H-bridges),

are represented by specialized classes - lego.lib.Buttons and lego.lib.Motor,

in this case.

These classes contain many convenience methods, which should allow intu-

itive programming of a robot. E.g. the Motor class has a method for setting

the PWM duty cycle of the H-bridge as a percentage value.

There is extensive Javadoc documentation on the library25. Along with the

lego.lib package, some example programs making use of the package are

included in the JOP source26.

4.4.1 An example Java program

The example program is a simple line-follower robot, making use of JOP’s

real time threads, and lego.lib. The value of an infrared sensor is read,

and compared to a hard-coded value to determine if the robot is currently

on the line or not. Based on the outcome of the comparison, the motors are

driven.

23These method calls are ultimately translated to special bytecodes.
24One of the reasons for this is that the address space for a single SimpCon slave is only

4 bits. Therefore, multiple values are made accessible together through a single address.
25Javadoc documentation is available online at http://stud3.tuwien.ac.at/

~e0327019/downloads/documentation/.
26The JOP source is available at http://www.jopdesign.com/.

24

http://stud3.tuwien.ac.at/~e0327019/downloads/documentation/
http://stud3.tuwien.ac.at/~e0327019/downloads/documentation/
http://www.jopdesign.com/

An example program using lego.lib:

import l e go . l i b . ∗ ;

import j o p r t . RtThread ;

public class LineFol lower {
stat ic f ina l int IR SENSOR = 2 ; // IR sensor index

stat ic Motor l e f t , r i g h t ;

public stat ic void c y c l e () {
int va l = Sensors . readSensor (IR SENSOR) ;

boolean black = va l > 285 ; // b l a c k or whi te ?

i f (b lack) { // s t e e r to the l e f t

r i g h t . s e t S t a t e (Motor .STATE FORWARD) ;

l e f t . s e t S t a t e (Motor .STATE BRAKE) ;

} else { // s t e e r to the r i g h t

l e f t . s e t S t a t e (Motor .STATE FORWARD) ;

r i g h t . s e t S t a t e (Motor .STATE BRAKE) ;

}
}

public stat ic void main (St r ing [] a rgs) {
l e f t = new Motor (0) ;

r i g h t = new Motor (1) ;

l e f t . setDutyCyclePercentage (7 5) ;

r i g h t . setDutyCyclePercentage (7 5) ;

// i n v o k e s c y c l e () every 20 ms

new RtThread (10 , 20∗1000) {
public void run () {

for (; ;) {
c y c l e () ;

waitForNextPeriod () ;

}

25

}
} ;

RtThread . s t a r t M i s s i o n () ; // s t a r t s the thread

}
}

26

5 Implementation

At first, we had to define the capabilities the new board should have. After

that, the circuits needed to be designed in Eagle. This was done based on the

original schematics of the prototype board and other earlier works provided

by Martin Schöberl. Subsequent to that, there was to do a lot of testing of

the components and circuits, either on the Simpexp expansion board, or on a

prototyping solderless breadboard. This took a lot of time, as our experience

with electronic components and circuits was limited. When we finally had

decided on which components to use, and all circuits had been tested, we

came to the next step: the installation of additional sensors and actuators

into Lego bricks, and testing them. For that we had to search our attics for

childhood toys. The results were a very nice led array, a microphone and

a speaker fitted into Lego bricks (see Figure 10), for easy attachment onto

Lego robots.

In parallel, the existing rudimentary sc lego VHDL interface to the motors

and sensors was extended (e.g. hardware PWM for motors, communication

with a PLD which provides some more pins), and tested on the Simpexp

prototyping board. As a next step, we created the lego.lib package, which

provides convenient access to the sensors and actors available through the

extended VHDL interface.

With time we felt it necessary to make adjustments to the circuits and

add other components, such as the LM386 amplifier for the speaker out-

put, or the EPM3064 programmable logic device. Some of the components

used on the original board were replace by more efficient and adequate ones

(e.g. the H-bridges and the voltage regulator), and some new components

introduced. When the schematics were completed, we started the placing of

the components, routing of the wires, and finally the production of the first

version of the PCB.

In parallel, the VHDL design, which originally ran on the Simpexp pro-

totyping board, was adjusted to run on the PCB. E.g., support for download

by USB was added.

When the first prototype board was ready, we had to solder the compo-

27

nents and connectors to the board, and mount the board onto Lego bricks.

Then we did extensive testing of the PCB-parts, correction of wiring and

soldering-errors, and replacement of inappropriate components. Optimiza-

tions of the placement and routing, which resulted in a much smaller board,

were also necessary. After that, we gave the second version of the PCB

into production. When it was ready, we soldered all the components and

connectors on the new board, retested it, and optimized the VHDL Design.

Finally, we created a Lego robot and some example Java programs for

JOP to control the robot, such as a crash avoider, a fall avoider, and a

audio playback program. The last steps were to hold a presentation of the

project and the robot at the Real Time Systems Department, and write the

documentation and this paper.

Figure 10: Our self-made speaker and microphone peripherals.

28

6 Discussion

6.1 Difficulties encountered

Using a ≤ comparison for PWM output generation in VHDL caused crashes

on Java program startup under some configurations. Using ≡ comparisons

instead, which result in similar semantics, made these problems go away.

We found out (thanks to Martin Schoeberl at this point, for his assistance

in this matter) that the problem occurred due to wrong ram timing. The

code was changed to satisfy the timing constraints of the memory pins, and

as a result the problem was gone.

Minor hardware problems were encountered due to wrong wirings and

soldering mistakes. Finally, we were able to correct all detected problems.

This resulted in a fully functional board with a working interface to the Java

Optimized Processor.

6.2 Known issues

There are a few minor issues when using the LRBJOP PCB, detailed in this

section.

We also had some trouble with the PLD-communication. The most issues

were solved, but there might still be some bit errors now and then. The

reason is not fully determined, yet.

6.2.1 Hardware

When downloading the design using USB, the current supply must be con-

nected before the USB cable. Otherwise, JOP will crash after the download.

Re-downloading after the crash may also fix the problem.

6.2.2 VHDL design

The motor PWM does not scale to the frequency the design is compiled to

run on. The PWM frequency is suitable for 80 MHz, and similar frequencies.

29

6.2.3 Not yet tested

The full range of functions of LRBJOP, and of its VHDL and Java software,

was not tested during this project. For the functionality of LRBJOP which

was not used, no corresponding VHDL and Java software is provided, yet.

In particular, the SD-Card interface, and the SPI interface were not

tested. Both consist only of wirings, however.

6.3 Possible improvements

Auto-negotiation of the direction for pins on the pin extension PLD would

be feasible. As of now, the direction is set through the lego pld pack VHDL

package shared by the PLD and the JOP design.

A better protection of the fronts side of the PCB (when part of a Lego

robot) is also desirable. This could be attained by attaching a superstructure.

30

7 Demo robot

While the primary goal of the project was to design the PCB and the related

software, a secondary goal was to build an example robot as a proof of concept

and for demonstration purposes.

In early stages of the project, the intention was to build a two-wheel

balancing robot. This seemed an impossible mission, given the relatively

feeble Lego motors. Therefore the goal was altered to build a similar, but

less challenging inverted pendulum balancing robot. By moving forth and

back, the robot should be able to balance a long pole. The bottom of the

pole is attached through an axle on the robot.

Many variations of both a PID controller and a Fuzzy logic control system,

and of the robot itself, were tried. Only Lego and Lego Mindstorms parts

where used. The deflection of the pendulum was measured using a tilt sensor

and a potentiometer coupled to a moving axle to which the pole was attached.

Ultimately, no control system was able to balance a deflected pendulum

for prolonged periods of time. We believe it is rather difficult to build such

a pendulum balancing robot combining Lego parts, the feeble Lego motors

and the, for this purpose, perhaps overly big LRBJOP board.

As a makeshift, a simpler robot was devised which uses Lego sensors to

navigate through unknown surroundings (See Figure 11. Using a pressure

sensor mounted to a ski on the front side, it can detect a sheer. Using an

infrared sensor, it can detect obstacles. Back-EMF measurement allows the

robot to detect when it is stalled and making no progress, so detecting that

it should turn back.

As a proof of concept, the sample robot shows that LRBJOP allows robot

steering through a simple Java application.

31

Figure 11: Our demonstration robot.

32

8 Conclusion

We have shown that the Java Optimized Processor is suitable as a robot con-

troller, and that LRBJOP, the Printed Circuit Board designed during this

project, is a working interface between JOP - or other softcores - and mis-

cellaneous sensors and actuators, usable to build all kinds of Lego - or other

- robots. The board has many features, and worked fine during extensive

testing. A disadvantage resulting from its many features is that it is too big

for constructing very small robots.

The project hardware and software built, has been used with success

on multiple occasions. For instance, LRBJOP has been used in a lecture

at the Vienna University of Technology about the Java Virtual Machine in

hardware, to demonstrate the capabilities of JOP. It has also been used at

the KinderuniWien 200727, Vienna Children’s University.

8.1 Personal resume

Working on this project has been a great exercise for us. On the one hand

we had to design, implement, and debug electrical circuits, and on the other

hand we had to write and test the VHDL and Java interface, which happened

to be more difficult than expected. We had the opportunity to do a project

which encompassed many different levels of abstraction, and their interaction:

from designing and building the hardware, to interfacing it with the FPGA

running VHDL code, to writing high-level Java applications running on the

hardware. This was a great experience.

27See http://www.kinderuni.at

33

http://www.kinderuni.at

A Technical details

A.1 Printed Circuit Board

Dimensions [mm] Height Width Depth

140 116 2

Electrical Specifications Min Typ Max

Operating Voltage [V] 4 9 12

Idle Supply Current, with FPGA [mA] 70 75 120

Idle Supply Current, test program running [mA] 100 150 200

Supply Current, running motors [mA] 150 250 500

Reverse Current Protection [V] 30

Note: These values were taken under test conditions, with a Cyclone EP1C12Q240C8N

and additional peripherals attached (i.e. microphone, speaker, IR-sensor, tilt-

sensor, IR-remote-module, LED-array and switches).

A.2 VHDL Design

The design was tested on a Altera Cyclone FPGA Board for JOP [Sch06].

The processor was a Altera Cyclone EP1C12Q240C8N FPGA. The design

was tested at speeds up to 80 MHz. Although Quartus 6.0 reported some

timing violations, and suggested a maximum speed of ~67 MHz, we observed

no timing problems.

34

B File list

File/folder description Path Location

FPGA Quartus project quartus/lego/jop.qpf JOP source

PLD Quartus project quartus/lego/pld.qpf JOP source

Example programs java/target/src/app/lego JOP source

SimpCon configuration vhdl/scio/scio lego.vhd JOP source

SimpCon slave providing

interface to board
vhdl/scio/sc lego.vhd JOP source

Components for accessing

actors and sensors
vhdl/scio/lego/* JOP source

Java library to access

board features
java/target/src/app/lego/lib JOP source

Javadoc documentation - Project homepage

Board schematics - Project homepage

The JOP source is available at http://www.jopdesign.com/.

The LRBJOP project homepage is at http://stud3.tuwien.ac.at/

~e0327019/lego/.

35

http://www.jopdesign.com/
http://stud3.tuwien.ac.at/~e0327019/lego/
http://stud3.tuwien.ac.at/~e0327019/lego/

C Acronyms

EMF Electromotive force

FPGA Field-programmable gate array

GC Garbage collection

JOP Java Optimized Processor

JVM Java Virtual Machine

PCB Printed circuit board

PID controller Proportional Integral Derivative controller

PLD Programmable Logic Device

PWM Pulse-width modulation

RCX Robotic Command Explorer

SPI Serial Peripheral Interface Bus

VHDL Very High Speed Integrated Circuit (VHSIC)

Hardware Description Language

36

D Schematics

37

Figure 12: Sheet 1.

38

Figure 13: Sheet 2.

39

Figure 14: Sheet 3.

40

Figure 15: Sheet 4.

41

Figure 16: Sheet 5.

42

E Installation manuals

E.1 FTDI driver installation

a) How to remove all the previously installed FTDI drivers (for example if

you had to flash the EEPROM previously).

b) How to install the appropriate drivers to use the FTDI Chip to commu-

nicate with LRBJOP.

If you are using a pre-built board, where the EEPROM had already been

programmed, than you can skip part a).

But if you have previously flashed the EEPROM by yourself, you need to

remove all the installed FTDI drivers prior to the driver installation.

a)

If you have already installed some FTDI drivers, you need to remove them

before proceeding with part b).

To do that please follow these steps:

1. Download ftdi.zip from the downloads section28

2. Disconnect the PC from the internet

3. Run ftdi/FTClean/FTClean.exe

4. Click on ”‘Clean System”’

5. Proceed how you are told by the driver removal tool

b)

To install the drivers required for communication with LRBJOP, please follow

these steps:

1. Download ftdi.zip from the downloads section28

28http://stud3.tuwien.ac.at/~e0327019/lego/

43

http://stud3.tuwien.ac.at/~e0327019/lego/

2. Disconnect the PC form the internet

3. Remove all previously installed drivers with the FTClean tool (if you

haven’t done that yet)

4. Plug in the board

5. When asked for drivers, select driver installation from a specific path

6. For the first device use path ftdi/d2xx

7. For the second device use path ftdi/vcom

8. For the third device use path ftdi/vcom

9. If it worked, you should now have two new USB devices and a new

Serial Port installed

10. Go to your Windows hardware manager and look which COM port has

been assigned to your Serial Device

11. The appropriate COM port needs to be stated in the Makefile to be

able to upload the FPGA design and the Java program

E.2 Flashing the EEPROM of the FTDI USB chip

a) How to install the appropriate drivers to flash the EEPROM.

b) How to flash the EEPROM.

a)

To be able to flash the EEPROM with the appropriate information needed

for the communication between a Windows machine and the LBRJOP, its

required to install D2XX functionality for both FTDI channels on the chip.

To do that please follow these steps:

1. Download ftdi.zip from the downloads section29

29http://stud3.tuwien.ac.at/~e0327019/lego/

44

http://stud3.tuwien.ac.at/~e0327019/lego/

2. Disconnect the PC from the internet

3. Install the MProg EEPROM programming tool from ftdi/MProg2.8 Setup.exe

4. Plug in the board

5. When asked for drivers, select driver installation from a specific path

6. For the first device use path ftdi/d2xx

7. For the second device use path ftdi/d2xx

8. If it worked, you should find the two devices of the FTDI chip installed

as ”‘FT2232C Channel A”’ and ”‘FT2232C Channel B”’

b)

Now that the appropriate drivers are installed, you are ready to flash the

EEPROM.

To do that please follow these steps:

1. Run MProg

2. Now push Ctrl+C to scan the device. If it works you should get a

message that a blank device has been found

3. Now push Ctrl+O and select ftdi/eeprom.ept which contains the device

information needed to flash the EEPROM to our wishes

4. There is no need to change anything of the settings which are now

displayed. Just push Ctrl+P to program the chip, and that’s it

45

F Part list

A part list with ordering information is also available at our site30.

30http://stud3.tuwien.ac.at/ e0327019/lego

46

Figure 17: Part list.

47

References

[BDW95] Billur Barshan and Hugh F. Durrant-Whyte. Inertial navigation

systems for mobile robots. IEEE Transaction on Robotics and

Automation VOL. 11, 1995.

[Har06] David S. Hardin. ajile systems: Low-power direct-execution java

microprocessors for real-time and networked embedded applica-

tions, 05 2006.

[Hit] Hitachi. Hitachi single-chip microcomputer h8/3297 series. Hard-

ware Manual.

[Inc06] Acroname Inc. Back-emf motion feedback, 2006.

[Int] Intersil. Hip4020 half amp full bridge power driver for small 3v,

5v and 12v dc motors. Hardware Manual.

[Mig99] Tobias Migge. Diplomarbeit inverses pendel. FH Wedel University

of Applied Sciences Hamburg, 1999.

[Ooi03] Rich Chi Ooi. Balancing a two-wheeled autonomous robot. Uni-

versity of Western Australia, 2003.

[PBN03] T. Hsiu S. Richards A. Bhave A. Perez-Bergquist and I. Nour-

bakhsh. Designing a low-cost, expressive educational robot.

Carnegie Mellon University Pittsburgh, 2003.

[Pro98] Kekoa Proudfoot. Reverse engineering the lego rcx. Standford

University, 1998.

[Sch05a] Martin Schoeberl. An fpga for lego mindstorms roboter. Vienna

University of Technology, 2005. http://www.jopdesign.com/lego/.

[Sch05b] Martin Schoeberl. JOP: A Java Optimized Processor for Embedded

Real-Time Systems. PhD thesis, Vienna University of Technology,

2005. http://www.jopdesign.com/thesis/thesis.pdf.

48

[Sch06] Martin Schoeberl. Cyclone fpga board. Vienna University of Tech-

nology, 2006. http://jopdesign.com/cyclone/.

[Sch07] Martin Schoeberl. SimpCon - a simple and efficient SoC intercon-

nect. In Proceedings of the 15th Austrian Workhop on Microelec-

tronics, Austrochip 2007, Graz, Austria, October 2007.

[Zha96] Weijing Zhang. Two stage inverted pendulum. Aptronix Incorpo-

rated Santa Clara, 1996.

49

	Introduction
	Lego Mindstorms
	Lego Mindstorms Limitations
	Goals
	JOP - The Java Optimized Processor

	Related Work
	Systronix JCX
	Robots and robot circuit boards
	RCX related projects
	Lego part evaluations
	Miscellaneous

	Lego infrastructure and parts
	Lego
	How Lego sensors work
	Lego motors
	Lego cables

	Preliminary work

	Technical documentation
	Overview
	Board details
	Using LRBJOP

	Circuits and Components
	Power Supply
	Sensors
	Microphone and Speaker Circuits
	LEDs and Buttons
	Motor driver
	Back-EMF speed measurement
	PLD Device
	Connectors
	Solder pad grid

	Extensions to the FPGA design
	The SimpCon protocol
	Analog sensors interface
	Motor interface
	Audio playback interface
	Interface to pin extension PLD

	A Java library for convenient access
	An example Java program

	Implementation
	Discussion
	Difficulties encountered
	Known issues
	Hardware
	VHDL design
	Not yet tested

	Possible improvements

	Demo robot
	Conclusion
	Personal resume

	Technical details
	Printed Circuit Board
	VHDL Design

	File list
	Acronyms
	Schematics
	Installation manuals
	FTDI driver installation
	Flashing the EEPROM of the FTDI USB chip

	Part list
	References

