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Abstract—In order to guarantee end-to-end latency and min-
imal jitter in distributed real-time systems, it is necessary to
provide tight synchronization between computation and commu-
nication. This requires time-predictable execution of tasks across
all processing nodes, and the use of a network protocol that can
provide a global time base and bounded communication latency.
TTEthernet is one such industrial communication protocol.

This paper investigates the synchronization of the task exe-
cution schedule with the underlying communication schedule,
and we propose an open-source software framework for time-
triggered end-systems. We present the implementation of a static
cyclic task schedule, on a time-predictable platform that is inte-
grated within a TTEthernet network and synchronized with the
communication schedule. We evaluate the presented framework
by developing a simple one-sensor, one-actuator industrial control
example, distributed over three nodes that communicate over a
single TTEthernet switch. The presented real-time system can
exchange messages with minimal jitter as the distributed tasks
are synchronized over the TTEthernet network with about 1.6 us
precision. Due to the tight time synchronization, the system can
operate stably with zero missed frames, using a single receiver
and a single transmitter buffer.

Index Terms—Time-triggered communication, clock synchro-
nization, WCET analysis, cyclic executive.

I. INTRODUCTION

Modern safety-critical systems are often composed of
distributed cyber-physical systems where applications tasks
execute in different sub-systems. In such systems, both the
communication and the task execution time become part of the
critical end-to-end latency of the application, as transmitted
frames often contain computation results that an actuator should
consume at a precise moment in time, in-order and without
missed data [1].

To achieve a high level of determinism, the synchronization
of the task execution with the underlying communication layer
would benefit the application. A typical real-time communica-
tion paradigm in industrial and safety-critical systems is the
time-triggered protocol [2] and its Ethernet-based extension
TTEthernet [3]. TTEthernet deploys a cyclic communication
schedule, called TTE network schedule, that is built offline and
defines the exact transmission and reception points in time.
At runtime, end-systems use a fault-tolerant, network-wide,
time-synchronization protocol that allows for sub-microsecond
precision. TTEthernet is standardized under the aerospace
standard AS6802 [5] and is used in the underdevelopment
NASA Orion spacecraft [7].
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Fig. 1: Classic industrial control example with tasks distributed
over TTEthernet network.

In this work, we follow the time-triggered communication
paradigm and use TTEthernet as the underlying communication
layer. Using a time-triggered communication paradigm does not
only increase the application’s level of determinism, but it also
allows for precise end-to-end latency calculation, reduced jitter
and relaxed end-system buffer requirements. System properties
such as buffer usage can be statically estimated and decreased
as the exact transmission/reception points in time are known
during the development phase [8].

This paper investigates the problem of synchronizing the
execution of real-time tasks with a time-triggered communica-
tion layer. This paradigm’s key points are providing a stable
time synchronization mechanism for the tasks and estimating
the worst-case execution time (WCET) of the complete
software stack. Static deterministic WCET analysis allows
smaller pessimism in the WCET estimate than probabilistic
or measurement-based methods of WCET [9]. Subsequently,
this leads to improved resource utilization and end-to-end
latency. The presented implementation uses the time-predictable
T-CREST platform [10] and its WCET-optimized toolchain,
which allows us to guarantee all timing properties, even in
a distributed system setup. The paper extends the work-in-
progress paper [11] and presents in-detail the design of a WCET
analyzable open-source framework that achieves high precision
task synchronization with short end-to-end communication
latency, minimal jitter and buffer usage. We evaluate the
proposed system by distributing a synthetic control application
example of one-sensor and one-actuator, over three nodes, as
shown in Figure 1.

The main contributions of this work are:



• The integration of a TTEthernet communication system
and open-source time-predictable computing nodes to
an overall highly time-predictable distributed real-time
system for applications that have tight deadlines and
require microsecond end-to-end timing jitter.

• An open-source task scheduler that utilizes information
about task dependencies and the TTEthernet commu-
nication schedule to generate cyclic executives for the
time-predictable nodes that synchronize to the TTEthernet
communication schedule.

• An experimental assessment of the proposed framework
that demonstrates our approach’s successful deployment
using a time-predictable distributed sample application
implemented within a standard TTEthernet network.

The rest of this paper is organized in 8 sections: Section II
discusses the related work on time-triggered communication.
Section III presents the system model of the task and network
schedule. Section IV presents the proposed software framework
and its implementation. Section V presents the synthetic control
application example. Section VI evaluates the proposed design
using the developed application. Section VII discusses the
future improvements and plans. Section VIII concludes the
paper.

II. RELATED WORK

This section reviews recent research related to distributed
time-triggered networks and the challenges of synchronizing
the task execution with an underlying communication schedule.

The benefits of synchronizing task execution with time-
triggered network communication have been described by [8]
where the authors compare an asynchronous, non-blocking
communication interface with the synchronous, time-aware
communication of the tasks of the computing nodes. They
explain that the following two mechanisms must be imple-
mented for time-aware systems : (b) a mechanism for adjusting
the local clock and providing the synchronized global time
to all computing nodes and (a) a real-time task scheduler. In
this paper, we implement, describe and WCET-analyze these
proposed mechanisms in detail. Moreover, we evaluate them
over an experimental control application example.

The feasibility of task synchronization with the network
schedule has been previously presented by [12]. However, the
runtime system TTE-RTS used is proprietary, and thus the
implementation and the WCET analysis were not presented.
In contrast, we propose an open-source runtime system for
synchronizing and communicating with a TTEthernet network.

The challenges of generating schedules with synchronized
tasks and communication have been investigated by [13].
The authors discuss the simultaneous co-generation of static
network and task schedules for distributed systems. Their task
set consists of preemptive time-triggered tasks, prioritized
by earliest deadline first and scheduled using satisfiability
modulo theory (SMT). The authors proceed to optimize various
properties of the system, such as end-to-end latency and buffer
utilization using mixed integer programming solvers. Our work
also uses SMT solvers but, in contrast to the previous work, our

work uses a more straightforward cyclic executive scheduling
policy. We focus on presenting the software framework’s
implementation details for synchronizing an application task
schedule with the TTEthernet network schedule.

Different works have investigated further optimization of
communication schedules. In [14], the authors pack multiple
application messages in different time-triggered frames of
selected order and length. In [15], the authors investigate the
implementation of a basic AI fuzzy particle swarm algorithm
for optimizing scheduling in high load TTEthernet networks.
Such optimization methods are complementary to our work.
Such optimization methods are complementary to our work.

The implementation of TTEthernet end-systems has been
previously presented in the context of automotive real-time
communication use-case for AUTOSAR in [16]. The imple-
mented end-system acts as a synchronization client and the
results show an observed jitter of 32 µs end-to-end latency
jitter. Additionally, the authors provide metrics for the CPU
utilization and the memory overhead of the end-system and
discuss the non-determinism of the transmit and receive
functions. In contrast, the system presented in this work uses
a fully WCET analyzable software stack, and our system can
synchronize the individual distributed tasks among the network
with microseconds precision. The tight task synchronization
bounds the evaluated end-to-end latency jitter

In [17], the authors investigate and develop a measurement
technique for performance analysis of TTEthernet using com-
mercial off-the-shelf tools. However, the related work software
stack used for synchronizing and communicating with the
TTEthernet network is based on proprietary drivers provided
by TTTech. Thus no details on the implementation and its
functionality are presented.

Finally, cyclic executive scheduling is a well-known en-
gineering concept [18] that has also been implemented in
multicore real-time systems [19], but to the knowledge of the
authors, no work has investigated this concept in distributed
systems. In contrast, we focus on implementing a cyclic
executive synchronized with the underlying cyclic network
communication.

III. SYSTEM MODEL

This section describes the model involved in synchronizing
a distributed cyclic task execution with a time-triggered
communication schedule, which is composed of two aspects.

A. Network Model

TTEthernet follows the time-triggered protocol paradigm by
extending it to IEEE 802.3 Ethernet networks to guarantee
bandwidth and end-to-end latency.

Each network device (i.e., switches and end-systems) defines
a critical traffic domain using a critical traffic (CT) marker for
the frames and specifies communication flows called virtual
links (VL). TTEthernet uses a cyclic communication schedule
(called TTE network schedule) of the defined VLs, to transmit
time-triggered frames within a scheduled transmission window.
Subsequently, the reception of any CT frames is only accepted



VL3VL1 VL2

1

Virtual link 3

4

32

Virtual link 1

Virtual link 2

Link 1

Link 3

Link 2

VL1 VL2PCF PCF VL3VL1 VL2VL1 VL2PCF PCF

integration 
cycle 0

integration 
cycle 1

integration 
cycle 2

integration 
cycle 3

cluster 
cycle 0

cluster 
cycle 1

Fig. 2: Example three end-system TTEthernet network with
three VLs. Communication cluster cycle comprising of two
integration cycles.

within the network devices’ scheduled reception window.
Any frames that arrive outside the reception window are not
forwarded. This way, collision-free and temporally isolated
communication can be guaranteed. The cyclic transmission
pattern in a TTE network schedule is repeated in hyper-periods
called cluster cycles, as illustrated in Figure 2.

TTEthernet employs a global fault-tolerant clock synchro-
nization algorithm [5] to align the transmission window and
the reception window of the network’s distributed end-systems.
The synchronization protocol works periodically on iterations
called integration cycles and a cluster cycle defining several
integration cycles. At the start of each integration cycle,
the TTEthernet end-systems exchange synchronization frames
called protocol control frames (PCF). A PCF contains the
accumulated time information of the transmission from a sender
to a receiver. Synchronization masters transmit PCFs at fixed
points in time to the connected switch. A TTEthernet switch
with the role of compression master uses this information to
calculate the global network time using a compression function,
as described and analyzed in [20]. The switch transmits a
compressed PCF at the beginning of each integration cycle that
can be used by synchronization masters/clients to align their
time with the network time, as shown in [21]. The number
of integration cycles per cluster cycle controls the network’s
clock synchronization precision, and thus by configuring these
parameters, the network can be configured to the desired clock
precision as shown in [22].

B. Task Model

In TTEthernet end-systems, applications use transmission
and reception mechanisms implemented by proprietary network-
interface hardware cards and drivers. In this work, we investi-
gate and implement these mechanisms, in software, on an open-
source end-system platform. Although we do not implement
a real-time operating system, we develop a cyclic executive

runtime system that executes tasks according to their scheduled
release time and period. The system takes into consideration the
clock offset calculated by the TTEthernet clock synchronization
protocol to search for the next scheduled task to activate. The
presented runtime system does not support task preemption as
this facilitates the WCET analysis of the presented platform.
Section IV discusses the runtime system implementation in
detail.

In our task model, each task τi is defined by the tuple
(Ti, Ci, Di, Oi, Ji), where Ti is the period, Ci is the WCET, Di

is the deadline of the task, Oi is a relative offset to the release
time and Ji is the maximum allowed jitter. We only consider
tasks with harmonic periods, i.e., all periods of the tasks are
an integer multiple of a shorter period. This allows scheduling
tasks for zero allowed jitter Ji = 0 and is not a limitation of the
proposed system rather than a design decision. The schedule’s
hyper-period is the least-common multiplier of the periods of
the considered tasks: lcm{T1, T2...Tn}. Let Si,n be the release
time of task i at its n-th instance within a hyper period. First,
we constrain the release time to the period, deadline and relative
offset as shown in Eq. 1c & 1b. Setting these constraints to
predefined points in time, such as the transmission or the
reception window of the TTE network schedule allows to set
precedence constraints on the task execution and order the task
release times accordingly.

Si,n − Si,n−1 ≤ Ti ± Ji Ji ≤ Ti (1a)
Si,n ≥ n× Ti +Oi Oi ≤ Ti (1b)

Si,n + Ci ≤ n× Ti +Di + Ji Di, Ji ≤ Ti (1c)

Subsequently, we test each task’s release time instance Si,n to
never coincide within the execution instance of an on-going
task Sj,k using Eq. 2. This is considered within a hyper-period
of the schedule. Additionally, we define φ as a constant offset
between release time, which allows us to account for the
WCET of the runtime system or any other possible delays:
φ = WCETruntime.

(Si,n ≥ Sj,k + Cj + φ) ∨ (Si,n + Ci + φ ≤ Sj,k) (2)

Where n, k are instances of the tasks i, j respectively in the
range of a hyper-period, ∀i 6= j.

IV. DESIGN AND IMPLEMENTATION

This section presents the fundamental components of the
proposed open-source framework, the hardware platform, the
schedule generation and the design of the runtime system.
It presents the methodology for generating the synchronized
cyclic executive task schedule and the mechanisms involved
in synchronizing the task execution with the underlying
communication schedule.

A. Hardware Platform

The presented system is implemented on the open-source
research platform T-CREST with a few modifications. The
platform features a time-predictable processor, Patmos [23]. Pat-
mos is a dual-issue RISC processor that uses WCET-optimized



caches along with private scratchpad memories. A complete
toolchain supports it with an LLVM-based compiler [24] and
a static deterministic WCET analysis tool platin [25]. The
platform also features a hardware-assisted timestamping unit
[26] that measures the the arrival time and transmit time of
Ethernet frames. The hardware timestamp unit, built to identify
PTP frames, is modified to parse and identify the PCF frame
format of the AS6802 [5] standard presented in Figure 3 and
timestamp it at the start-of-frame (SOF) byte.

B. Offline Scheduling

The synthesis of the task schedule based on the commu-
nication schedule resembles the process proposed by [12].
Figure 4 presents the general design flow of the proposed
framework’s fundamental blocks (in blue). It illustrates how
the individual node task sets are defined using information
from the application requirements, the network schedule and
the WCET bounds of the task implementation.

First, the task set is defined, and the periods Ti are
constrained to the application’s control requirements.

Second, the code of the application is developed. The WCET
bounds of the implemented tasks and the runtime system’s
significant functions are calculated using the WCET analysis
tool platin [25]. The WCET bounds are used as input to
execution times Ci in the task set definition.

Third, a network description is created according to the
application’s requirements using the TTTech development suite
for configuring TTEthernet systems [27]. In this step, properties
such as the synchronization domain, virtual links, maximum
frame size and communication periods are defined. The network
configuration is then generated using the TTE-Plan tool, which
contains the TTE network schedule. The network configuration
is then compiled to the individual configuration files for TTTech
built end-systems and switches using the TTE-Build tool.

Finally, the cyclic task schedule is generated based on
the task definition, the WCET analysis bounds and uses
the transmission and reception points defined in the TTE
network schedule as precedence constraints to the equations
presented in Section III. More specifically, the WCET is
used as input to each task’s execution time Ci and the
transmission/reception time slots, defined by the TTE network
schedule, are used as input to the activation times Si,n of each
related task. To synchronize any computation tasks relative to
the transmission/reception tasks, the receive and transmit time
slots defined in the TTE network schedule are mapped to the
offset Oi and the deadline Di of the computation task. The total
utilization of the defined task set is tested before scheduling

according to
n∑
i=1

Ci

Ti
≤ 1. A custom SMT Python script is

developed to generate a cyclic executive schedule synchronized
to the TTE network schedule using the Z3 Theorem Prover
(SMT solver) [28].

C. Transmission and Reception

A transmission task encapsulates the data message in a
TTEthernet compatible link-layer protocol frame format that

Listing 1: Time-triggered task type definition.
t y p e d e f s t r u c t
{

u n s i g n e d long long p e r i o d ;
u n s i g n e d long long * r e l e a s e s ;
u n s i g n e d long a c t i n s t ;
u n s i g n e d long n r r e l e a s e s ;
u n s i g n e d long long l a s t t i m e ;
u n s i g n e d long long d e l t a s u m ;
u n s i g n e d long e x e c c o u n t ;
g e n e r i c t a s k f p t a s k f p ;

} SimpleTTETask ;

specifies the correct CT marker and VL. The frame is then
transmitted using a non-blocking call to the Ethernet controller
that returns a success boolean. The frame must arrive within
the receive acceptance window of the connected switch, and in
the correct VL; otherwise, the frame is dropped. The start of
the sending task is set to a bit earlier than the start of the frame
transmission, offset by its WCET, as illustrated in Figure 5.

The reception of CT frames on each VL is handled by
respective tasks scheduled periodically at each receive point in
time defined by the TTE network schedule. Each reception task
is listening for a predefined reception-window time duration.
During this time window, the receive function polls the Ethernet
controller for any received frames that match the expected frame
Ethernet type. The polling is active for a predefined duration of
time. The reception window time duration is specified during
the generation of the TTE network schedule.

D. Runtime System

In the proposed runtime system, tasks are defined as a simple
C structure shown in Listing 1. Each task has the following
functional properties: a period, an array of release times, the
current release time index, the number of releases and a function
pointer. Additionally, each task keeps track of the following
properties for quality control: the last time it was executed,
the sum of delta times (the difference between the current
and the last time the task executed) and the number of times
it was executed. The task set is defined globally as an array
of SimpleTTETask type variables, as presented in the example
shown in Listing 2. The release times of each task are initialized
according to the generated offline schedule.

The cyclic execution dispatcher of the task set is defined
as a loop function illustrated in Listing 3. This function is
called after the program has initialized fully, i.e., configured
the Ethernet controller, initialized the task set according to
the scheduled release times and allocated the communication
message buffers. The function takes as argument a pointer to
the initialized task set.

The dispatcher searches through the task set for an upcoming
release time using the TTEthernet synchronized time. When
a task is found, the system proceeds to execute activated
task’s function call and subsequently update its release time
by adding the schedule hyper-period. The rest of the fields are
updated accordingly. It is worth noting that before executing
the executive loop, the task set is ordered according to the
initial release time values. This eliminates unnecessary search
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queries since after a task has been activated, the loop can safely
break and take a new time reading to begin a new search.

E. Clock and Task Synchronization

The presented system acts as a synchronization client to
the TTEthernet network. It synchronizes with the network
time by scheduling a periodic task responsible for handling
incoming PCFs. The task is scheduled to execute at specific
points in time according to the TTE network schedule and
is responsible for calculating the clock offset according to
the permanence function [5]. According to the permanence
function, the clock offset is calculated as the difference between
the scheduled receive point in time and the actual reception
timestamp of the incoming PCF, plus the difference between
a maximum transparent clock value and the transparent clock
information found in the PCF [21]. The calculated clock

Listing 2: Example task set definition of actuator node.
s t a t i c SimpleTTETask sched [NR TASKS] = {
{

. p e r i o d = 10000000 ,

. r e l e a s e s = {0} ,

. a c t i n s t = 0 ,

. n r r e l e a s e s = 2 ,

. l a s t t i m e = 0 ,

. d e l t a s u m = 0 ,

. e x e c c o u n t = 0 ,

. t a s k f p = ( g e n e r i c t a s k f p ) t a s k s y n c
} ,
{

. p e r i o d = 5000000 ,

. r e l e a s e s = {1200000 , 6200000} ,

. a c t i n s t = 0 ,

. n r r e l e a s e s = 1 ,

. l a s t t i m e = 0 ,

. d e l t a s u m = 0 ,

. e x e c c o u n t = 0 ,

. t a s k f p = ( g e n e r i c t a s k f p ) t a s k r e c v
} ,
{

. p e r i o d = 5000000 ,

. r e l e a s e s = {1471107 , 6471107} ,

. a c t i n s t = 0 ,

. n r r e l e a s e s = 2 ,

. l a s t t i m e = 0 ,

. d e l t a s u m = 0 ,

. e x e c c o u n t = 0 ,

. t a s k f p = ( g e n e r i c t a s k f p ) t a s k c t r l
} ,
{

. p e r i o d = 5000000 ,

. r e l e a s e s = {3571700 , 8571700} ,

. a c t i n s t = 0 ,

. n r r e l e a s e s = 2 ,

. l a s t t i m e = 0 ,

. d e l t a s u m = 0 ,

. e x e c c o u n t = 0 ,

. t a s k f p = ( g e n e r i c t a s k f p ) t a s k s e n d
}

} ;

offset is not used directly to modify the hardware clock.
Instead, the value is stored and used by calling the function
get tte aligned time(), which accepts a time value and
returns the synchronized time after applying a proportional-
integral filter similar to [29], [30].

The synchronization task accepts a parameter pointer to the
defined task set and is responsible for updating the release times
based on the calculated clock offset. This is necessary because
after executing a synchronization task, the next dispatch loop
will use the newly aligned time to query any upcoming task
activations. If the task release times are not updated accordingly,
it can cause an activation point to be considered in the past or



Listing 3: Code excerpt from runtime cyclic execution loop.
vo id e x e c u t i v e l o o p ( SimpleTTETask * sched )
{

u i n t 6 4 t s t a r t t i m e = g e t r t c n a n o s ( ) ;
w h i l e ( 1 ) {

u i n t 6 4 t s c h e d t i m e = g e t t t e a l i g n e d t i m e (
g e t r t c n a n o s ( ) - s t a r t t i m e ) ;

f o r ( i n t i = 0 ; i < NR TASKS ; i ++ ) {
i f ( s c h e d t i m e >= sched [ i ] . a c t i v a t e )
{

sched [ i ] . t a s k f p ( / * arguments * / )
s ched [ t a s k ] . r e l e a s e s [ sched [ t a s k ] . a c t i n s t ] +=

HYPERPERIOD ;
sched [ t a s k ] . a c t i n s t =

( sched [ t a s k ] . a c t i n s t + 1 ) %
sched [ t a s k ] . n r r e l e a s e s ;

sched [ i ] . d e l t a s u m += s c h e d t i m e -
g e t t t e a l i g n e d t i m e (

sched [ i ] . l a s t t i m e ) ;
sched [ i ] . l a s t t i m e = s c h e d t i m e ;
sched [ i ] . e x e c c o u n t += 1 ;
b r e a k ;

}
}

}
}

the present and thus violate the task period. This miss-alignment
is demonstrated in Figure 6.

V. EXAMPLE APPLICATION

To evaluate the presented framework, we define and imple-
ment a simple control application that reads the input from a
motion processing unit to determine its attitude/orientation and
control servo motor’s rotation. The application comprises one
sensor and one actuator distributed over three nodes: a sensor
node, a control node and an actuator node. Similar multi-
periodic control systems can be found in various safety-critical
applications including flight controllers [?].

The sensor node interfaces with a motion processing unit
sensor MPU-9250 [31], which features an inertia measurement
unit (IMU), a gyroscope and magnetometer. The sensor is
sampled by reading alternating measurements from either the
IMU or the gyroscope at a sampling frequency of 100 Hz. The
values are transmitted to the control node. The sampling rates
of the sensors are empirically chosen.

The control node is responsible for converting the received
values from the sensor node to a duty-cycle sent to the actuator
node. The control node calculates the motion processing unit
sensor’s angle on the X-axis by fusing the accelerometer’s and
the gyroscope’s measurements of the using a complimentary
filter (see Equation 3a) [32]. The angle is then converted to a
valid duty-cycle range according to Equation 3b.

θx = 0.93 ∗ (θx + gyrox ∗ dt) + 0.07 ∗ atan2 (accely, accelz)

(3a)

duty cycle =
θx ∗ (0.1− 0.015)

180
+ 0.015

(3b)

The actuator node drives a servo motor using pulse-width
modulation (PWM) signal. The PWM signal must adhere to

the following characteristics; a duty cycle in the range of 1.5%–
10% and a period of 20 ms. This requirement does not only sets
a constraint on the task execution but also on the end-to-end
latency, as the new command for the servo motor should arrive
before its next period.

A. Task set

The following task set is derived based on the presented
application’s description and requirements. The sensor node
executes three tasks:

1) τSSY NC synchronizes with the TTEthernet network time
2) τSENSE(a/g) collects alternating measurements from

either the IMU sensor (a) or the connected gyroscope
sensor (g)

3) τSSEND transmits the sensor values to the control node
The control node executes four tasks:

1) τCSY NC synchronizes with the TTEthernet network time
2) τCRECV receives the read sensor measurement
3) τCTRL calculates the angle of the MPU-9250 sensor and

computes a valid duty-cycle value
4) τCSEND transmits the computed duty-cycle result

The actuator node executes four tasks:
1) τASY NC synchronizes with the TTEthernet network time
2) τARECV receives the control instructions computed from

the control node
3) τPWM produces the pulse-width modulation to move the

interfaced actuator

B. Source Access

All the components of the presented framework are open-
source. The SMT scheduler for the task generation is hosted
at https://github.com/egk696/SimpleSMTScheduler The im-
plemented runtime system is integrated with the T-CREST
platform and the developed application is hosted at https:
//github.com/ t-crest/patmos/ tree/master/c/apps/ ttecps

VI. EVALUATION

A. System Setup

The cyclic executive’s proposed synchronization with the
communication schedule is evaluated and tested experimentally
using a synthetic control application example of one-sensor,
one controller, and one-actuator distributed over three nodes.
The nodes are integrated, as synchronization clients (SC), in
an existing TTEthernet network star topology and assume the
different roles described in Section V by executing the proposed
runtime system. The hardware platform is synthesized on three
FPGA Terasic DE2-115 boards [33] and operates at a frequency
of 80 MHz. The network consists of a single industrial TTE
Chronos 18/6 Rugged Switch acting as a compression master
(CM) and two Linux desktops equipped with TTEthernet
capable PCI Ethernet cards acting as synchronization masters
(SM). Figure 7 presents the network setup of the evaluated
control application example. A similar network setup has been
described in [34].

https://github.com/egk696/SimpleSMTScheduler
https://github.com/t-crest/patmos/tree/master/c/apps/ttecps
https://github.com/t-crest/patmos/tree/master/c/apps/ttecps
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Fig. 6: Erroneous task execution example, due to a miss-alignment between the time-base of the dispatcher schedule time and
the upcoming task release times.
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Fig. 7: Experimental network setup of the evaluated control
application example.

B. WCET Analysis and Schedule Generation

It is necessary to perform a static WCET analysis on the
runtime system’s significant functions and the task set to reveal
possible jitter sources and accurately schedule and synchronize
the task execution. We analyze the developed software using
the tool platin and present the results for implementing and
evaluating the experimental setup.

Table I presents the significant functions of the proposed
runtime system in clock cycles. It is worth noting that the
sorting function, sort ttetasks(), depends on the number
of tasks scheduled; thus, the WCET varies depending on the
task set. The static WCET bound of the runtime dispatcher
executive loop() is used to set the Φi = 44.737 µs constant,
which is used in the scheduling constraints (see Section III).

Table II presents the combined generated task set using the

TABLE I: WCET of runtime system functions of the individual
nodes in clock cycles.

Function Node
Sensor Control Actuator

sort ttetasks 6607 24123 13908
get tte aligned time 129
executive loop 3579

presented SMT scheduler of the three nodes’ distributed tasks.
As discussed in Section IV, the receive and transmit points are
generated using the TTEtools and provided to the scheduler
as constraints for the respective tasks initial activation point
Si,∅ (indicated by an asterisk). The activation times of the
transmission functions are offset by the WCET bounds of the
respective tasks. The reception- and transmission-window of
the TTE network schedule is configured at 20 µs, and this is
added to the WCET of the related tasks: τSSY NC , τCSY NC ,
τASY NC , τCRECV and τARECV . It is worth noting that the
WCET of the synchronization tasks varies in each node as
it depends on the number of task release times that it has to
update. According to the specification of the generated PWM
for the servo motor, the total execution time of task τPWM

can vary. In the presented analysis, it is considered that task
τPWM generates the maximum duty-cycle duration of 2 ms
(0.1%), which is added in the WCET of the task τPWM .

The processor utilization of the three task sets for the sensor
node, the control node and the actuator node is 4.5%, 16.7%
and 16.6% respectively. The developed SMT scheduler is
executed on an Intel Core i7-7700HQ CPU (2.80 GHz) and
requires 17.47 ms, 20.04 ms and 10.07 ms to find a solution
for each of the three nodes task sets: sensor node, control node
and actuator node respectively.



TABLE II: Generated task set of the three end-systems. The
asterisks indicate a constrain by the TTE network schedule.

Node Task Period (µs) WCET (µs) Si,∅ (µs)
se

ns
or τSSY NC 10000 90.550 0

τSENSE(a/g) 5000 153.412 67.220
τSSEND 5000 23.200 (*) 771.700

co
nt

ro
l τCSY NC 10000 90.550 0

τCRECV 5000 285.450 (*) 1200.000
τCTRL 5000 485.05 1471.107
τCSEND 5000 23.200 (*) 3571.700

ac
tu

at
or τASY NC 10000 90.550 0

τARECV 5000 285.450 (*) 4000.000
τPWM 20000 2005.462 4271.107

C. Communication and Clock Synchronization

To evaluate the correctness of the presented runtime system
as well as to emphasize the precision of the synchronization,
each node’s Ethernet controller is configured with a single
transmit and a receive buffer. This way any packets that are not
captured in-time within the reception-window are overwritten
and dropped. The system was tested for a timespan of 24-hours
and with zero missed frames recorded.

The clock synchronization precision of the presented dis-
tributed system, is evaluated by generating an I/O pulse dur-
ing the synchronization tasks’ execution (τSSY NC , τCSY NC ,
τASY NC ) and measuring the relative time offset of the pulses
using a digital logic analyzer. Both the clock synchronization
relative to the TTEthernet switch and the synchronized schedule
execution between the nodes were evaluated. The maximum
measured relative time offset between the three nodes’ task
I/O pulses was ≈1.6 µs while the individual synchronization
accuracy of each node relative to the TTEthernet switch was
measured at ≈136 µs.

Finally, we consider the end-to-end latency of the presented
distributed system as the time difference between when the
system measures the physical world on the sensor node to
when the new duty-cycle is consumed by the τPWM on the
actuation node shown in Equation 4.

Le2e = SτPWM ,∅ − (SτSENSE ,∅ +WCETτSENSE(a/g)
) (4)

The end-to-end latency is statically calculated at 4.05 ms. We
verify the calculated bound experimentally by comparing a
time-difference of the timestamps between the sensor readout
and the value’s extraction by the PWM generation task. We
measure this time-difference at ≈ 4.034 ms. The task τPWM

consumes the new duty-cycle well within the required deadline
for the PWM period of the servo motor.

The presented evaluation emphasized that tight synchroniza-
tion of transmission/reception tasks with the communication
schedule is essential to software-based TTEthernet end-system’s
operation. Moreover, although the synchronization of compu-
tation tasks to the communication is not functionally required,
it is beneficial to the overall end-to-end latency of a real-time
distributed system. Using the evaluated control application
as an example, we calculate and measure that if the sensor

reading task τSENSE(a/g) were not synchronized with the
transmission task τSSEND, the worst-case end-to-end latency
would be increased by half the period the next scheduled
transmission slot. In some hard real-time distributed systems,
the end-to-end latency requirements are in the range of a few
milliseconds [7], and thus an increase of ≈ 2.5 ms could be
intolerable.

VII. FUTURE WORK

To relax the restrictions of a cyclic executive on a single
core, we plan to extend the presented framework to a multicore
version that will allow us to dedicate a single core to handle the
TTEthernet traffic. Inter-core communication can be handled
using time-division multiplexing (TDM) network-on-chip such
as [35], [36], [37]. TDM-based network-on-chip use cyclic
schedules similar to TTEthernet but with different resolutions.
An interesting research challenge arises regarding the synchro-
nization of these schedules that theoretically can improve the
end-to-end latency and jitter of messages transmitted via both
communication channels [38].

The presented framework and runtime system is not depen-
dent on a specific communication protocol. Thus we plan to
investigate its implementation within time-sensitive networks
(TSN), which have shown promising results in supporting
mixed-criticality industrial applications together with time-
triggered communication [39], [40].

VIII. CONCLUSION

This paper investigated the concept of synchronizing the
task execution in a real-time distributed system with the time-
triggered communication schedule in a time-aware network
and presented an open-source and WCET analyzable software
framework.

First, the problem was explored by describing the system
model comprising the network and the task model. Sub-
sequently, an open-source SMT scheduler was developed
that utilizes information regarding task dependencies and the
communication schedule to generate a cyclic executive for a
time-predictable node. An open-source runtime system was
developed and integrated with a time-predictable open-source
research platform, and the overall design process was presented
in detail.

The developed framework was evaluated by developing
and successfully deploying a synthetic distributed control
application of one sensor, one controller, and one actuator over
a TTEthernet network with three nodes. The task schedule
synchronization with the communication schedule was empha-
sized by configuring the nodes to use only one receive, and one
transmit buffer. A full static WCET analysis was performed on
the tasks as well as the significant parts of the runtime system.
The individual cyclic executives of the nodes were synchronized
relative to each to a measured precision of ≈ 1.6 µs and the
end-to-end latency was bounded at ≈ 4.05 ms.

Overall, we demonstrated the feasibility of precise task
synchronization with time-triggered communication using a
COTS open-source TTEthernet framework and presented a
synthetic distributed control application example.
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