
Synchronizing Real-Time Tasks in Time-Aware
Networks: Work-in-Progress

Eleftherios Kyriakakis
DTU Compute

Technical University of Denmark
Kgs. Lyngby, Denmark

Email: elky@dtu.dk

Jens Sparsø
DTU Compute

Technical University of Denmark
Kgs. Lyngby, Denmark

Email: jspa@dtu.dk

Peter Puschner
Inst. of Computer Engineering

TU Wien
Vienna, Austria

Email: peter@vmars.tuwien.ac.at

Martin Schoeberl
DTU Compute

Technical University of Denmark
Kgs. Lyngby, Denmark
Email: masca@dtu.dk

Abstract—Distributed safety-critical systems require both time-
predictable task execution and communication. On the processor,
the execution of the tasks is dictated by a scheduling policy, while
on the network, different industrial communication protocols
can be deployed to guarantee bounded message latency. In this
paper, we investigate the synchronization of the task execution
with the underlying communication schedule, and we propose
an open-source software framework. We implement a cyclic
executive task scheduling policy on a time-predictable platform
and synchronize the task execution with the underlying TTEth-
ernet communication schedule. We evaluate our framework by
developing a simple one-sensor, one-actuator industrial control
example, distributed over three nodes. The presented real-time
system can exchange messages with minimal jitter, and the
distributed tasks synchronize to a precision of ≈ 1.6µs.

Index Terms—Time-triggered communication, network syn-
chronized task execution, clock synchronization, WCET analysis,
cyclic executive.

I. INTRODUCTION

Communication and task execution in distributed cyber-
physical systems are both parts of the critical end-to-end
latency of an application, as computation results contained in
transmitted frames often contain data that need to be consumed
by an actuator at a precise moment in time, in-order and without
missed data [1].

This work follows the time-triggered communication
paradigm and investigates the synchronization of the distributed
real-time task executions with the underlying communication
schedule using TTEthernet [2]. TTEthernet deploys a cyclic
communication schedule called TTE network schedule that is
built offline and defines the exact transmission and reception
points in time. At runtime, end-systems use a fault-tolerant,
network-wide, time-synchronization protocol [3] that allows
for sub-microsecond precision.

Synchronized distributed task execution not only increases
the application’s level of determinism, but it also allows for
precise end-to-end latency calculation, reduced jitter and end-
system buffer requirements [4]. System properties such as

buffer usage can be statically estimated and decreased as the
exact transmission/reception points in times are known during
the development phase.

In this work, we develop and present a complete imple-
mentation of a worst-case execution time (WCET) analyzable
open-source framework that achieves high precision task
synchronization with short end-to-end communication latency,
minimal jitter and buffer usage.

II. TASK MODEL

We define each task τi by the tuple (Ti, Ci, Di, Oi, Ji),
where Ti is the period, Ci is the WCET, Di is the deadline,
Oi is a relative offset, and Ji is the allowed maximum jitter of
each task. We only consider tasks with harmonic periods. The
hyper-period of the schedule is the least-common multiplier
of the periods of the considered tasks: lcm{T1, T2...Tn}. Let
Si,n be the release time of task i at its n-th instance within
a hyper period, then we constraint Si,n to Ti, Di and Oi as
shown in Eq. 1a, 1c & 1b.

Si,n − Si,n−1 ≤ Ti ± Ji Ji ≤ Ti (1a)
Si,n ≥ n× Ti +Oi Oi ≤ Ti (1b)

Si,n + Ci ≤ n× Ti +Di + Ji Di, Ji ≤ Ti (1c)

Subsequently, we test the activation time of each task Si,n to
never coincide within the execution instance of an on-going
task Sj,k within a hyper-period of the schedule using Eq. 2.
We define φ as a constant offset between release times, which
allows us to account for the WCET of the runtime system and
any other possible delays: φ =WCETruntime.

(Si,n ≥ Sj,k + Cj + φ) ∨ (Si,n + Ci + φ ≤ Sj,k) (2)

Where n, k are instances of the tasks i, j respectively in
the range of a hyper-period, ∀i 6= j. Setting Di and Oi to
predefined points in time (PIT), such as the transmission or
the reception window of the TTE network schedule allows to
setting precedence constraints.



Transmission delayWCET τSEND

Activation
τSEND

Expected transmission
by tte-network-

schedule

 reception-window 

Switch scheduled
reception point

t

Fig. 1: Task release point in time relationship to scheduled
transmission-window.

III. DESIGN AND IMPLEMENTATION

Off-the-shelf TTEthernet applications use transmission and
reception mechanisms implemented by proprietary network-
interface cards and drivers. In contrast, we design a bare-
metal cyclic executive runtime system1 that synchronizes
to the underlying time-triggered communication schedule.
We implement the design on the time-predictable processor
Patmos [5].

A. Communication

The transmission and reception, of critical traffic frames,
is handled by periodic designated tasks, scheduled at each
transmit/receive PIT according to the TTE network schedule.
Transmitted frames must arrive within the receive acceptance
window of the connected switch, and in the correct virtual
link; otherwise, the frame is dropped. Similarly, scheduled
reception tasks are listening for a predefined reception-window
time duration, as illustrated in Figure 1.

B. Synchronization

The runtime system synchronizes to the network time by
scheduling a periodic task that handles incoming protocol
control frames. The task uses the permanence function [2]
to calculate the relative clock offset that is then accessible
through a function call that returns the synchronized time after
applying a PI filter. The synchronized time is used by the cyclic
executive scheduler to query the release time of each task. It is
worth noting that the synchronization task is also responsible
for updating the upcoming release times of each task.

C. Offline Scheduling

The synthesis of the task schedule is based on the commu-
nication schedule and resembles the process described by [6].
We develop a custom SMT offline scheduler2 based on the
task model described in Section II. We generate a cyclic task
schedule according to the task definitions derived by the control
requirements of the application (i.e. the sensor sampling rate,
the max. duty-cycle and period of the motor), the WCET
bounds and the transmission/reception PIT defined by the
TTE network schedule. 3 We use the transmission/reception
PIT defined by the TTE network schedule as inputs to the
release times Si,0 of each related task. Computation tasks are
synchronized to any related communication tasks by mapping
the transmit/receive PIT of the TTE network schedule to their
Oi and Di constraints during scheduling.

1https://github.com/ t-crest/patmos/ tree/master/c/apps/ ttecpsff
2https://github.com/egk696/SimpleSMTSchedulerff
3The network schedule is generated using the TTTech development suite.

Collect MPU 
sensor readings

MPU angle
calculation 

Motor PWM 
generation

Sensor Node (SC) Control node (SC) Actuator node (SC)

TTEthernet end-system (SM) TTEthernet end-system (SM)

TTEthernet 
Switch
(CM)

Fig. 2: Experimental setup of the control application with tasks
distributed over a TTEthernet network.

IV. EVALUATION

To evaluate the presented framework, we develop a simple
distributed control application that reads the input from a
motion processing unit (MPU), determines its orientation and
controls the rotation of a motor using pulse-width modulation
(PWM) signal. The application is composed of three distributed
nodes: a sensor node, a control node, and an actuator node.

The sensor node interfaces with a motion processing unit
sensor MPU-9250 The sensor is sampled by reading alternating
measurements from either the IMU or the gyroscope at
a sampling frequency of 200 Hz. The node transmits the
measurements to the control node. The sampling rates of the
sensors are empirically chosen.

The control node is responsible for converting the received
values from the sensor node to a duty-cycle that is sent to the
actuator node. It calculates the angle of the MPU sensor on the
X-axis by fusing the measurements of the accelerometer and
the gyroscope using a complementary filter [7] and converting
the attitude estimation to a valid duty-cycle range.

The actuator node receives new duty-cycles and drives
a servo motor using pulse-width modulation (PWM) signal
generated in software. The PWM signal must adhere to the
following characteristics; a duty cycle in the range of 1.5%–
10% and a period of 20 ms. This requirement does not only set
a constraint on the task execution but also on the end-to-end
latency, as the new command for the servo motor should arrive
before its next period.

A. System Setup

The application nodes are implemented in three FPGA
Terasic DE2-115 boards operating at 80 MHz and integrated
as synchronization clients (SC) in an existing TTEthernet
network topology, as shown in Figure 2. The network consists
of an industrial TTE Chronos Switch acting as compression
master (CM) and two Linux desktops equipped with TTEthernet
Ethernet cards that act as synchronization masters (SM).

https://github.com/t-crest/patmos/tree/master/c/apps/ttecps
https://github.com/egk696/SimpleSMTScheduler


TABLE I: WCET of runtime system functions of the individual
nodes in clock cycles.

Function Node
Sensor Control Actuator

sort ttetasks 6607 24123 13908
executive loop 12369 14200 11346
get tte aligned time 129

TABLE II: Generated task schedule of the evaluated system.
Asterisks indicate a constraint by the TTE network schedule.

Node Task Period (µs) WCET (µs) Si,∅ (µs) Utilization

se
ns

or τSSY NC 10000 67.175 0
4.30%τSENSE(a/g) 5000 153.412 229.025

τSSEND 5000 28.300 (*) 771.700

co
nt

ro
l τCSY NC 10000 75.063 0

16.43%τCRECV 5000 271.062 (*) 1200.000
τCTRL 5000 485.05 1632.912
τCSEND 5000 28.300 (*) 3571.700

ac
tu

at
or τASY NC 10000 67.175 0

16.44%τARECV 5000 271.062 (*) 4000.000
τPWM 20000 2070.937 5426.432

B. Generated schedule

We perform a static WCET analysis on the significant
functions of the runtime system and the tasks of the example
application using the tool platin [8]. Table I presents the WCET
bounds of the significant functions of the proposed runtime sys-
tem in clock cycles. Both the sorting function sort ttetasks()
and the runtime dispatcher executive loop() depend on the
number of tasks scheduled; thus, the WCET varies depending
on the task set. We use the static WCET bound of the runtime
dispatcher to set the scheduling constraint φ for each node’s
schedule. This bound includes the required 129 clock cycles
WCET to read the hardware clock and apply the PI filter.

Table II presents the generated initial release times Si,∅
of the evaluated application’s task set using the presented
offline scheduler. It is worth noting that the WCET of the
τSY NC function varies depending on the number of upcoming
releases per task that it has to synchronize. We configure the
communication schedule to use max frame-size of 64 bytes.

C. Task synchronization and communication

To evaluate the task synchronization precision, we use
an I/O pulse generated by the synchronization tasks on
each node and measure the relative time offset. Preliminary
results show that the tasks are synchronized to a precision of
≈1.6µs. The system’s end-to-end latency can be defined as
the time difference between the sensor node readout and the
consumption of a new duty-cycle (τPWM ) by the actuator
node: Le2e = SPWM,∅ − SSENSE∅. We calculate the end-
to-end latency as 5.4 ms, which is well within the deadline
constrain of the motor PWM.

D. Interoperability

Although the presented design was implemented on the
Patmos processor, the framework itself does not depend on

the underlying hardware architecture. It can be implemented
on any PRET-like platform [9], that can guarantee statically
bounded WCET and provides an interface to the underlying
network. Moreover, the presented methodology and framework
do not depend on TTEthernet, and with few modifications to
the synchronization task, the runtime system could integrate
with other industrial Ethernet protocols such as time-sensitive
networks (TSN) [10].

V. CONCLUSION AND FUTURE WORK

The presented work investigated the concept of synchronizing
the task execution with the time-triggered communication
schedule and presented an open-source WCET analyzable
software framework. The design was evaluated using a simple
distributed control application that achieved low end-to-end
latency and precise task synchronization.

In the future we plan to extend our framework and evaluation
in the following ways: (a) perform a comparative analysis of
the proposed network synchronized task execution versus asyn-
chronous, (b) design a multicore extension of the framework
and (c) perform an extended scalability evaluation by creating
and distributing synthetic workloads (i.e. using ROSACE [11]).

ACKNOWLEDGMENT

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 764785.

REFERENCES

[1] R. Zurawski, Industrial communication technology handbook, second
edition. CRC Press, 2017.

[2] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, “Time-triggered ethernet,”
in Time-Triggered Communication. CRC Press, 2018, ch. 8, pp. 209–248.

[3] W. Steiner and B. Dutertre, “Automated formal verification of the
ttethernet synchronization quality,” in NASA Formal Methods Symposium.
Springer, 2011, pp. 375–390.

[4] P. Puschner and R. Kirner, “Asynchronous vs. synchronous interfacing to
time-triggered communication systems,” Journal of Systems Architecture,
vol. 103, p. 101690, 2020.

[5] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and D. Prokesch, “Patmos:
A time-predictable microprocessor,” Real-Time Systems, vol. 54(2), pp.
389–423, Apr 2018.

[6] S. S. Craciunas, R. S. Oliver, and V. Ecker, “Optimal static scheduling
of real-time tasks on distributed time-triggered networked systems,”
in Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA). IEEE, 2014, pp. 1–8.

[7] P. Gui, L. Tang, and S. Mukhopadhyay, “Mems based imu for tilting
measurement: Comparison of complementary and kalman filter based
data fusion,” in 2015 IEEE 10th conference on Industrial Electronics
and Applications (ICIEA). IEEE, 2015, pp. 2004–2009.

[8] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P. Puschner, “The platin
tool kit - the T-CREST approach for compiler and WCET integration,”
in Proceedings 18th Kolloquium Programmiersprachen und Grundlagen
der Programmierung, KPS 2015, Pörtschach, Austria, October 5-7, 2015,
2015.

[9] S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in DAC ’07: Proceedings of the 44th annual conference on
Design automation. New York, NY, USA: ACM, 2007, pp. 264–265.

[10] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling fog
computing for industrial automation through time-sensitive networking
(tsn),” IEEE Communications Standards Magazine, vol. 2, no. 2, pp.
55–61, 2018.

[11] C. Pagetti, J. Forget, H. Falk, D. Oehlert, and A. Luppold, “Automated
generation of time-predictable executables on multicore,” in Proceedings
of the 26th International Conference on Real-Time Networks and Systems,
2018, pp. 104–113.


	Introduction
	Task Model
	Design and Implementation
	Communication
	Synchronization
	Offline Scheduling

	Evaluation
	System Setup
	Generated schedule
	Task synchronization and communication
	Interoperability

	Conclusion and Future Work
	References

