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Abstract—Distributed real-time systems need time-predictable
computation and communication to facilitate static analysis of
timing requirements and deadlines. This paper presents the
implementation of a deterministic network protocol, TTEthernet,
on the time-predictable Patmos processor. The implementation
uses the existing Ethernet controller on the processor and we
tested it with a TTEthernet system provided by TTTech Inc.
Further testing showed that the controller could send time-
triggered messages with bounded latency and a small jitter
of approximately 4.5 us. We also provide worst-case execution
time analysis of the network code, which demonstrates a time-
predictable end-to-end solution. This work enables Patmos to
communicate with other nodes in a deterministic way. Thus,
extending the possible uses of Patmos.

I. INTRODUCTION

Distributed real-time systems consist of a set of independent
real-time computing systems communicating through some
kind of networking fabric. Typical applications can be found
in industrial process control, automotive, and aerospace. This
type of systems needs time-predictable communication and
computation to be able to statically analyze that all end-to-end
deadlines are met. Deterministic networks are typically used
to provide guaranteed communication and are an integral part
of many distributed real-time systems.

A widely used solution is the CAN bus. This is a serial
bus able to send small prioritized messages with bounded
latency [3]. TTCAN is a time-triggered extension of CAN,
restricting nodes to only transmit messages in certain time-slots,
thus increasing the determinism of the bus [12]. FlexRay was
designed to replace the CAN and TTCAN bus. It operates with
a predefined communication cycle consisting of a static segment
for deterministic traffic and a dynamic segment for other
traffic [19]. CAN and FlexRay offer a maximum bandwidth of
1 and 10 Mbit/s respectively, and are characterized by limited
cable length.

As the demand for higher bandwidth and cable length
increases, the industry has started looking towards Ethernet-
based real-time protocols, such as EtherCAT, Ethernet Pow-
erlink, and TTEthernet [5]. A new solution still in the
process of standardization is TSN, which allows for time-
sensitive data transmission over Ethernet networks [9]. In
TSN, determinism is guaranteed by transmitting high priority
messages in predefined time-slots, yet maintaining backward
compatibility with standard Ethernet solutions.

In this paper, we target the TTEthernet standard [10].
TTEthernet is an extension of Ethernet that guarantees an upper
bound on the end-to-end latency and a small and bounded jitter.
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Fig. 1. The test system consisting of our TTE node (Board) and equipment
provided by TTTech Inc. Our TTE-node uses two Ethernet controllers; one
for sending and one for receiving.

It operates at the data link layer of the OSI model and allows
communication between a set of nodes through one or more
proprietary switches. Latency and jitter through a TTEthernet
switch have been measured in [2], where results of 10 µs for
frames smaller than 128 bytes and 30 µs for larger frames are
presented.

A software-based TTEthernet end-system has been developed
for AUTOSAR, which is a standardized software architecture
for control units in cars [7]. For this solution, the precise end-to-
end latency of the system is unclear due to a non-deterministic
receive function and jitter of 32 µs was observed. Compared
to the AUTOSAR solution, we are able to limit the observed
jitter to 3.5 µs

TTEthernet has its own clock synchronization protocol.
However, it is also possible to use the IEEE 1588 clock
synchronization standard on top of TTEthernet [1].

This paper presents a time-predictable TTEthernet node
based on the Patmos time-predictable processor [17] and an
open-source Ethernet controller [13], [14]. Thus, this work
enables the Patmos processor to communicate through the
TTEthernet deterministic network protocol. This is achieved
by extending the open-source Ethernet controller in software
to allow for TTEthernet compatibility. The software is time-
predictable and its worst-case execution time (WCET) can
be statically analyzed. In contrast to the existing solutions
presented above, our solution is fully time-predictable and
does not require expensive proprietary hardware (i.e., custom
Ethernet controllers).

The developed solution is evaluated in a use-case setup,
shown in Figure 1. Our Patmos based TTE node is implemented
on an FPGA board and connected to a test setup provided by
TTTech Inc. consisting of a TTethernet Chronos switch, four
Linux PCs (AS, AC, VS, and VC) with network cards from
TTTech, and a Windows PC for monitoring. Our TTE node



interacts with the system as a synchronization client. For this
setup, we proved correct functionally, measured latency and
jitter, and performed WCET analysis of all network components
and software functions.

In summary, the main contribution of this work is a fully time-
predictable TTEthernet node based on an open-source Ethernet
controller and supported by a WCET-analyzable software
stack. To the best of our knowledge, this is the first WCET
analyzable TTEthernet node that combines time-predictable
communication over Ethernet with time-predictable execution
of tasks. The results show that time-triggered messages can be
sent with bounded latency and a small jitter of approximately
4.5 µs.

This paper is organized in 5 sections: Section II provides
background on TTEthernet. Section III describes the design
and implementation of our time-predictable TTEthernet node.
Section IV evaluates the design with measurements and static
WCET analysis. Section V concludes the paper.

II. TTETHERNET

TTEthernet is a deterministic extension of Ethernet, which
operates at the data link layer of the OSI model [10]. A
TTEthernet system generally consists of a set of nodes
communicating through one or more switches. It allows regular
Ethernet traffic (best-effort traffic) and introduces two classes of
critical traffic: (1) rate constraint traffic and (2) time-triggered
(TT) traffic. As TT traffic uses reserved time slots, it has the
highest priority implicitly. As we are interested in hard-real
systems, we only consider TT traffic in the rest of the paper.

TTEthernet uses the concept of a virtual link (VL). A VL
is a relation between a sender and one or more receivers and
is identified by a unique ID. Switches need to know the VL
definitions, and nodes need to know the definitions of the VL
they can send on. For TT traffic, a VL definition includes a
receive window in which the switch will accept messages from
the sender, and send windows where the switch will pass them
on to the receivers. Packages received outside of the defined
window will be ignored by the switch (and by a receiver). The
switch plays a central role in a TTEthernet system to protect
TTEthernet nodes from other nodes that might violate the TT
schedule.

All nodes and switches need a global notion of time to
send packages at the correct points in time. Periodic clock
synchronization ensures a common notion of time between
the nodes. The time between each synchronization is called
an integration cycle and has a period which is typically in
the range of 1 to 10 milliseconds. The schedule for TT traffic
is periodic as well and repeats every cluster cycle, which is
defined as an integer multiple of integration cycles. An example
of some TT traffic in a system with an integration period of
10 ms and two integration cycles per cluster cycle can be seen
in Figure 2. TT traffic is often defined by its period and the
offset from the start of the cluster cycle. For example, TTE3
in the figure has a period of 20 ms and an offset of 10ms.

Every node in a distributed system has its local clock
generated by an oscillator. These clocks are not perfect and
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Fig. 2. Example of integration and cluster cycles

might have small variations in frequency. Even if all clocks in a
distributed system have been perfectly synchronized they would
eventually drift apart [4]. The difference in value between two
clocks at a certain point in time is called clock skew.

Clock synchronization is achieved through the exchange of
protocol control frames (PCF). Three roles are involved in the
exchange of PCFs: synchronization masters, synchronization
clients, and compression masters. Typically, the switches act
as compression masters, and nodes are either synchronization
masters or clients.

Each node in the synchronization domain keeps track of
when they believe the integration cycle has started, which is
when synchronization masters send out integration frames. An
acceptance window around the expected point in time when
the PCF shall arrive defines whether or not the node should
accept the PCF as correct. The acceptance window has a width
of twice the expected precision of the system, defined as the
maximum difference between two correct local clocks. If the
PCF is accepted, the difference between the expected and actual
time is used to correct the clock.

III. DESIGN AND IMPLEMENTATION

In the following, we present the design and implementation
of our TTE node. At first, we describe the platform. Then, we
explain the functionality of the developed software stack.

A. Platform

The proposed TTEthernet node is based on the Patmos time-
predictable processor [17] used in the T-CREST platform [6],
[16] and on an open-source Ethernet controller. The controller
is based on the EthMac block from OpenCore [13], which was
previously ported for Patmos [14].

The communication between the controller and the processor
is buffer-based using buffer descriptors. These are stored in the
controller itself and contain addresses and status of associated
RX/TX buffers. The controller is able to receive a frame when
there is at least one available receive buffer. Otherwise, the
frame is discarded. This implies that in best-effort traffic, frames
can be lost. After receiving a frame, the receive status is written
to the associated buffer descriptor, and the controller generates
an interrupt (if enabled). The buffer will stay unavailable until
program marks the buffer descriptor empty again. The controller
transmits frames from the buffer as soon as the program marks
the associated buffer descriptor as ready.

We implemented two different versions of the proposed
solution. One where received messages are discovered through
polling, and another where the Ethernet controller triggers an



interrupt whenever a frame is received. Using interrupts for time
stamping of an arriving Ethernet message is not the best solution
since the start of the execution of the interrupt routine will have
some jitter (e.g., due to cache hits and misses). Therefore, the
produced timestamp is contaminated by the jitter. The polling
solution solves this problem by using a periodic task that is
scheduled to be released just before the next synchronization
message arrives. This includes enough time to contain the worst-
case preemption delay and the possible jitter of the PCF itself.
In this case, the processor is ready to listen to the Ethernet
port in a tight loop in to get a better timestamp in software.
Therefore, in the polling solution, the actual polling runs only
for a short time, without wasting processor time. As future
work, we plan to change the Ethernet controller to include
hardware support for time-stamping [11].

For implementation and testing, we used the star network
configuration shown in Figure 1. We implemented the presented
TTE node on an Altera DE2-115 FPGA board. AS, AC, and
VC act as synchronization masters and VS and our TTE node
are synchronization clients. The monitor is used to monitor all
VL with Wireshark.

We used the TTE tools from TTTech for configuring the
TTEthernet system [18]. This consist of the generation of
the schedule for the entire network based on the provided
information about senders, receivers, physical links, virtual
links, synchronization domain, and other network information.

B. Functionality

To limit complexity, our node only acts as a synchronization
client and only connects to a single switch. The developed
software stack offers three main functionalities: initialization,
receiving, and sending, which are described in the following.

Figure 3 shows the intended flow of programs using the
developed system. At first, the program initializes the controller
with static information regarding the system, information on
VLs, and the schedule. After initialization, the processor
continuously polls the Ethernet controller to see if any new
messages have arrived. It is necessary to ensure that the receive
time of integration frames is recorded as precisely as possible
to enable correct clock synchronization. The received message
is then passed through the tte receive function, which will
synchronize the local clock in case of an integration frame,
or otherwise return a value indicating the message type. The
rest of the body depends on the purpose of the program itself.
Outgoing TT messages can be scheduled anywhere in the
program body and will be sent according to the system schedule
through timer interrupts.

1) Initialization: The system needs initialization before the
program loop can start. The initialization consists of initializing
the integration cycle, the cluster cycle, how many VLs the node
can send on, maximum transmission delay, the compression
delay of the switch, and the system precision. Furthermore,
the permitted send time for each VL needs to be known, so
each VL gets initialized with an ID, an offset, and a period.
The TTEthernet switch will ensure that only relevant and
correctly timed TT messages are passed on to the network.
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Fig. 3. The intended flow of user programs. The controller is first initialized
with all constants of the system. Remaining functionality happens in a loop
where the program continually waits until a frame is received, calls the
tte receive function, and then reacts to the reply

Our TTE node receives messages like standard Ethernet ones.
Initialization also includes the generation of the send schedule
and the registration of the timer interrupt function. The timer
is started when the first PCF is received.

2) Receiving and Clock Synchronization: Message reception
is performed by continuously polling the interrupt source
register until the bit signifying that a frame has been received
is set. This is done by the function tte wait for message,
which is also responsible for recording the receive time by
reading the current clock cycle count. After a message has been
received and the receive time is stored, the next buffer should
be marked as empty, and the interrupt source register cleared.
This can be done by calling tte clear free rx buffer.
Afterward, the tte receive function is called with the address
of the received frame and the recorded receive time. The
tte receive function initially checks the type of the message.
If it is a PCF type, the integration frame is used to synchronize
the local clock to the master clock. Thus, the local clock is
immediately adjusted to the new value. If the received frame
is not a PCF type, the function returns and the received frame
can be used according to the program.

3) Sending: Time-triggered messages must be sent according
to a predefined schedule. Thus, the sending requires some
queuing mechanism, as the program should not be expected
to calculate the exact send times itself. A send FIFO queue is
created for each VL during initialization and is allowed to hold
the maximum amount of frames that the VL can send in one
cluster cycle, calculated as clustercycle

V Lperiod . Therefore, the maximum
delay of a scheduled frame is one cluster cycle. Frames are
scheduled through a specific function, tte schedule send,
which takes the address and size of the frame and which VL it
should be scheduled for. The function then checks the queue
of the VL and returns zero if it is full, and one if the frame
was successfully scheduled. It is up to the program to ensure
that it does overwrite the buffer before the frame has been
sent.
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Fig. 4. Clock error, regular implementation, no additional sending or receiving

IV. EVALUATION

The evaluation of the proposed solution uses the setup
illustrated in Figure 1 and already described in the previous
sections. For this setup, we evaluate clock synchronization,
latency, and jitter. In addition, we performed the WCET analysis
of the developed software functions. We tested the network
at different integration periods and cluster cycles, although
mostly with an integration period of 10 ms and a cluster cycle
of 20 ms.

A. Clock Synchronization

The clock error was measured as the difference between the
scheduled receive point in time and the actual point in time
at each received integration frame. Figure 4 shows 500 of the
2000 captured data points obtained using an integration period
of 10 ms and no additional sending or receiving of frames other
than the integration frames. The clock error ranges between
2787 ns and 3225 ns, and averages at 2990 ns. In terms of
clock drift, this corresponds to approximately 300 ppm. Typical
values are between 10 and 100 ppm, so the error is higher
than expected.

B. Latency and Jitter

With reference to Figure 1, our node uses two Ethernet ports
and sets up a schedule with a VL from one port to the other.
Both ports are considered to be independent devices by the
schedule and are both synchronization clients. A single VL
with a period of 10 ms and an offset of 8.2 ms was used. This
simplifies the test program since a single message can be sent
and received each integration cycle.

The test program follows the form described in Figure 3
with the first controller receiving messages in the overall loop.
After a successful synchronization message, a TT message is
scheduled and the program waits until the message is received
by the second controller before proceeding. This allows to
collect both the schedule and receive points of messages as
the current clock cycle count. Both receive and send window
in the switch are 263 µs wide.

Figure 5 shows the latency measured as the average differ-
ence in send and receive time over 2000 measurements for 3
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Fig. 5. Latency for various frame sizes as a function of minimum switch delay.
The correlation is strong and well within expected minimum and maximum
values

different frame sizes. The figure also includes the expected
minimum and maximum latencies Lmin and Lmax. It is possible
to observe that all measured values are within these values.

The expected transmission times for frames of the measured
sizes are 5.12 µs, 32 µs, and 121.12 µs respectively. Judging by
the trend-lines, the actual switch delay for these experiments
must be approximately 200 µs higher than the minimum. This
indicates that the switch receives the messages approximately
63 µs into the receive window in these tests. The jitter, measured
as the smallest latency subtracted from the highest, stayed
between 4.5 µs and 4.6 µs throughout all experiments.

C. Worst-Case Execution Time

WCET analysis has been performed on significant functions
of the software stack using the platin WCET tool [8]. The
results are presented in Table I, where all functions are part of
the implemented library, except for the final two, which are
part of the tested demo program. To analyze the timer interrupt
function, this had to be explicitly called.

The functions tte clear free rx buffer

and tte receive are used for reception.
tte receive log is the receive function with
logging enabled. handle integration frame and
handle integration frame log are called by the
tte receive function if the message is an integration
frame. tte prepare test data creates a TT message where
the data part repeats a specified byte until the message
has a certain length. tte schedule send is the sending
function. tte clock tick and tte clock tick log are
the timer interrupt functions with and without logging
and call tte send data when actually sending a message.
tte code int is executed after each successfully received
integration frame, and tte code tt is executed after each
received TT message.

The example schedule executed by our TTE node has a
maximum of 3 incoming TT messages in a single integration
cycle. One of the VLs can send a maximum of 3 outgoing
TT messages, and the other a maximum of 5. An integration
period is 10 ms, which is equivalent to 800,000 clock cycles.



TABLE I
WORST CASE EXECUTION TIME IN CLOCK CYCLES OF DIFFERENT

FUNCTIONS.

Function WCET (in clock cycles)

tte clear free rx buffer 10
tte receive 3028
tte receive log 3216
handle integration frame 2573
handle integration frame log 2732
tte prepare test data 39138
tte schedule send 244
tte send data 289
tte clock tick 1641
tte clock tick log 1824
tte code int 392419
tte code tt 40156

Based on: (a) information about the schedule and the
integration period, (b) the delays in the network and the switch,
and (c) the WCET figures listed in Table I, it is now possible
to verify that everything fits within the 800,000 clock cycle
integration cycle. The details of the analysis are beyond the
scope of this short paper. Here we limit to observing that the
result of the analysis is 527,479 clock cycles, which is well
below the available 800,000 clock cycles.

Being able to provide WCET bounds for basic Ethernet
functions is an important step towards a time-predictable
node for a distributed real-time system. We plan to use this
TTEthernet solution with our time-predictable TCP/IP stack
tpIP [15].

D. Source Access

The TTEthernet controller and the relevant software are in
open source and can be found at https://github.com/t-crest/
patmos/tree/master/c/apps/tte-node.

V. CONCLUSION

This paper presented a time-predictable TTEthernet node.
The TTEthernet node is built on top of the time-predictable
Patmos processor for which we have written a fully-analyzable
software stack. The solution was evaluated in an environment
consisting of one TTEthernet switch and six TTEhernet nodes.
We found that the end-to-end latency of transmitted time-
triggered messages is predictable and well within the expected
maximum latency. The measured jitter was small (around
4.5 µs) and did not vary significantly in the tested scenarios.
WCET analysis was carried out for all the main functions
of the developed software. Overall, this project provides a
solution for deterministic communication with TTEthernet and
WCET-analyzable tasks for the Patmos processor. To the best
of our knowledge, this is the first TTEthernet node with a
WCET-analyzable network stack.
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