
A Time-predictable Open-Source
TTEthernet End-System

Eleftherios Kyriakakis, Maja Lund, Luca Pezzarossa, Jens Sparsø, and Martin Schoeberl
Department of Applied Mathematics and Computer Science

Technical University of Denmark
Email: elky@dtu.dk, maja lala@hotmail.com, {lpez, jspa, masca}@dtu.dk

Abstract—Cyber-physical systems deployed in areas like au-
tomotive, avionics, or industrial Internet of things are often
distributed systems. The operation of such systems requires
coordinated execution of the individual tasks with bounded
communication network latency to guarantee quality-of-control.
Both the time for computing and communication needs to be
bounded and statically analyzable.

To provide deterministic communication between end-systems,
real-time networks can use a variety of industrial Ethernet stan-
dards typically based on time-division scheduling and enforced by
real-time enabled network switches. For the computation, end-
systems need time-predictable processors where the worst-case
execution time of the application tasks can be analyzed statically.

This paper presents a time-predictable end-system with sup-
port for deterministic communication using the open-source pro-
cessor Patmos. The proposed architecture is deployed in a TTEth-
ernet network, and the protocol software stack is implemented,
and the worst-case execution time is statically analyzed. The
developed end-system is evaluated in an experimental network
setup composed of six TTEthernet nodes that exchange periodic
frames over a TTEthernet switch.

I. INTRODUCTION

Advancements in the field of safety-critical systems for indus-
trial control and avionics/automotive automation have brought
a recent focus on distributed real-time system communication
[45]. This trend is emphasized by the upcoming paradigm
of Industry 4.0 and the recent efforts of the time-sensitive
networking (TSN) group [15] to develop a set of deterministic
Ethernet standards that meets the requirement for system’s
interoperability and real-time communications.

The correct execution of real-time applications depends
both on the functional correctness of the result as well as
the time it takes to produce the result. A typical example that
illustrates this criticality of functional and temporal correctness
is a vehicle collision avoidance system. In this situation, the
processor must correctly detect a possible object, but it is
equally important that communication time, from the camera
to the processor, and processing time, of the image on the
processor, are deterministically bounded to consider the system
as correctly functioning.

To achieve deterministic communication with bounded
latency, real-time systems often employ a time-triggered (TT)
communication schemes such as the well-known time-triggered
protocol [16], which is based on a cooperative schedule
and a network-wide notion of time [36]. This approach
can be implemented on Ethernet communications, such as

TTEthenet [18] and TSN [10], to provide the guaranteed
networking services (latency, bandwidth, and jitter) required by
distributed real-time applications such as avionics, automotive,
and industrial control systems.

In this work, we focus on safety-critical systems and
thus investigate the TTEthernet protocol. TTEthernet uses a
fault-tolerant synchronized communication cycle with strict
guarantees for transmission latency [18]. In addition, the
protocol provides support for rate-constrained traffic and best-
effort traffic classes. TTEthernet has been standardized under
the aerospace standard SAE AS6802 [44] and has been
implemented as a communication bus replacement in both
automotive and aerospace real-time applications [7], [24].

This paper presents a time-predictable TTEthernet end-
system implemented on the open-source processor Patmos [34],
allowing for static WCET analysis of the networking code. This
work enables the Patmos processor to communicate through
a deterministic network protocol, allowing the possibility for
end-to-end bounded latency communication that includes the
software stack. We do so by extending the existing Ethernet
controller driver and implement a TTEthernet software stack.
We test the performance of the controller driver by evaluating
the achieved clock synchronization and correct exchange of
TT frames and perform a static WCET analysis of the software
stack.

The main contributions of this work are:
• A TTEthernet node that combines time-predictable execu-

tion of tasks with time-triggered communication through
TTEthernet

• A WCET analyzable Ethernet software stack, which allows
to statically guarantee that all deadlines and end-to-end
timing requirements are met

• Performing a comparative analysis of the effects of
number of integration cycles against the achieved clock
synchronization

• Implementing a PI controller that improves the achieved
clock synchronization precision

To the best of our knowledge, this is the first WCET
analyzable TTEthernet node that combines time-predictable
communication over Ethernet with time-predictable execution
of tasks. The presented design is available in open source.1

An initial version of this work has been presented in [25].

1see https://github.com/t-crest/patmos

https://github.com/t-crest/patmos

This paper is organized into six sections: Section II presents
related work on TTEthernet. Section III provides a background
on the TTEthernet internals. Section IV describes the design
and implementation of a time-predictable TTEthernet node.
Section V evaluates our design with measurements and static
WCET analysis performed on a system consisting of a switch
and six nodes. Section VI concludes the paper.

II. RELATED WORK

Traditional real-time communication was based on bus
protocols such as CAN and PROFIBUS that can send small
prioritized frames with bounded latency. CAN was later
extended with TT capabilities. This TTCAN bus restricts
nodes to only transmit frames in specific time slots, thus
increasing the determinism of the communication [22]. The
main limitations of both CAN and TTCAN are a maximum
bandwidth of 1 Mbit/s, and limited cable length, which depends
on the bandwidth of the bus [3]. To overcome these obstacles,
FlexRay was introduced to replace CAN discussed in [35].

As the demand for higher bandwidth increases, the industry
has started looking towards Ethernet-based real-time protocols.
Several different standards and protocols, such as EtherCAT,
Ethernet Powerlink, and TTEthernet, were developed, some of
which have been compared in [8].

Another emerging Ethernet protocol for real-time systems is
TSN [10]. TSN emerges from the audio-video bridging (AVB)
protocol with the addition of a time-scheduled mechanism for
real-time communication through the use of a gate control list
on the transmission paths. Worst-case analysis of TSN networks
is presented in [48]. The schedulability of the gate control list
has been investigated by various works such as [12], [29] that
showed that rate-constrained traffic can co-exist with time-
triggered but introduces small jitter. In [6], the authors achieve
zero jitter determinism of TT frames by enforcing time-based
isolation of the traffic flows but reducing the solution space for
TSN networks. The timing synchronization mechanism of TSN
is based on the well known IEEE 1588 Precise Time Protocol
which has been characterized by [19] and experimentally
verified to achieve sub-microsecond precision by various works
such as [13], [20], [23].

Both protocols, TSN and TTEthernet, aim to provide support
for TT communication. They have been directly compared
in [47], and the two protocols focus on different real-time
system requirements and provide different levels of criticality.
TSN offers greater flexibility and bandwidth fairness over
TTEthernet but is only suitable for soft-real time traffic due
to its lack of fault-tolerant clock synchronization and low
granularity scheduling mechanism [5].

Research on TTEthernet communication has been focused
on the following perspectives: (a) timing analysis of the
communication links [49], [50], (b) schedule synthesis for
frame flows [9], [40], [42], and (c) investigating the clock
synchronization [1], [37]. In contrast, this work investigates
the implementation characteristics of a TTEthernet compatible
end-system that supports WCET analysis of the software on the
end-system and its integration within a TTEthernet network.

Latency and jitter through a single TTEthernet switch have
been measured in [2] using off-the-shelf components combined
with a proprietary TTEthernet Linux driver. A performance
validation setup was presented for TTEthernet networks, and the
relation between end-to-end latency, jitter, and frame size was
investigated. A comparison between a commercial off-the-shelf
switch and a TTEthernet switch was presented as a function
of link utilization and end-to-end latency. This emphasized the
benefits of TTEthernet over standard Ethernet switches. The
measured jitter for the system was dependent on frame size,
and the authors observed a jitter of 10 µs for frames smaller
than 128 bytes and 30 µs for larger frames. Furthermore, a
model of analyzing the worst-case latency of TTEthernet in the
existence of rate-constrained traffic load is presented in [50].
The model shows that it is possible to provide safe bounds for
rate-constrained traffic, and it is evaluated over a simulated
network topology of an Airbus A380 aircraft.

Scheduling of TTEthernet communication has been investi-
gated in [40]. It proposes a scheduling approach for TT traffic
that allows the calculation of the transmission and reception
time instants by each connected real-time application. The
synthesis for static scheduling for mixed-criticality systems has
been investigated in [42]. The concept of schedule porosity
was introduced, allowing un-synchronized (best-effort or rate-
constrained) traffic to be mixed with time-triggered traffic
without suffering from starvation. Moreover, in [41], the
authors further optimize TTEthernet schedules for mixed-
criticality applications by presenting a schedule that allocates
more bandwidth to best-effort traffic while still preserving
determinism of TT traffic.

Clock synchronization is an essential part of TTEthernet as
it guarantees the synchronized communication of the network
end-systems according to the global schedule. Depending on the
clock synchronization accuracy requirements of an application,
the minimum number of integration cycles per cycle period
can be calculated [31]. In [46], the authors investigate in a
simulated environment a least-squares algorithm that manages
the compensation of the error. In both cases, accurate measure-
ments of the achieved synchronization accuracy, i.e., standard
deviation and avg/max/min values, are not discussed, and the
methodology is implemented on a simulated environment of a
TTEthernet clock. In our setup, we use the TTEthernet clock
synchronization mechanism but improve the clock error by
adding a PI controller.

In our review of related work, we identified that most
papers focus on analyzing the communication components
of TTEthernet. We found just a single paper that described
the implementation and analysis of a TTEthernet end-system.
A software-based TTEthernet end-system has previously been
developed for AUTOSAR [11], which is a standardized
software architecture for control units in cars. The imple-
mented AUTOSAR system acts as a synchronization client
and uses existing hardware capabilities of Ethernet controllers
to timestamp incoming clock synchronization frames, and the
authors observed a jitter of approximately 32 µs. Regarding
the processing time of the protocol the authors provide CPU

Ethernet type II frame - 64 to 1518 bytes

Destination MAC
6 bytes

Source MAC
6 bytes

Ethertype
2 bytes

MAC header - 14 bytes

Data
46 to 1500 bytes

CRC
4 bytes

CT marker
4 bytes

VL ID
2 bytes

Critical traffic

Fig. 1. Ethernet type II frame. Critical traffic identifies a destination using a
CT marker and VL ID instead of a MAC address.

utilization and memory overhead metrics. Precise end-to-end
latency of the system is unclear due to a non-deterministic
dispatch and receive function. In contrast to our work, the
authors do not provide WCET analysis of these functions, and
although they discuss the importance of these delays in the
calculation of the end-to-end latency, they do not provide
measurements or static timing analysis. We provide static
WCET analysis of all software components of our TTEthernet
stack.

To the best of our knowledge, our paper is the first to present
a WCET analyzable TTEthernet end-system that combines time-
predictable communication over Ethernet with time-predictable
execution of tasks. The presented design is available in open
source.

III. TTETHERNET BACKGROUND

A. Overview

The deterministic communication capabilities offered by
TTEthernet are based on special switches that handle TT traffic
according to a global schedule, as well as end-system equipped
with TTEthernet capable controllers for transmission and
clock synchronization. TTEthernet technology is proprietary.
However, an initial version of the switch architecture is
presented in [39]. The design of the first hardware TTEthernet
controller is presented in [38].

TTEthernet supports best-effort (BE) traffic and two types
of critical traffic (CT): rate-constrained [4], [49] and time-
triggered (TT). TT traffic takes priority over rate-constrained
traffic, which takes priority over best-effort traffic. This paper
focuses on TT traffic.

CT is sent and received using the concept of a virtual link
(VL). A VL is a relation between a sender and one or more
receivers and is identified by a unique ID. Switches know the
VL definitions, and nodes know on which VL they are allowed
to send. CT is formatted as standard Ethernet frames, but it
differs from best-effort traffic by having the destination MAC
address field used for the CT marker and for the VL on which
the frame belongs, as shown in Figure 1. Depending on the
VL, switches can forward the CT frame to the right port.

B. Time-Triggered Traffic

TT traffic is transmitted at pre-defined time slots. Thus, a VL
definition includes a receive window where the switch accepts
frames from the sender, and send windows where the switch
passes frames to the receivers. The switch ignores all frames
received outside of the defined window in order to guarantee

receive window send window

actual receive
time

minimum delay
actual delay

maximum delay

Fig. 2. Switch delay in relation to the receive and send windows.

integration cycle 0 integration cycle 1 integration cycle 0 integration cycle 1

cluster cycle cluster cycle

TTE1 TTE2 TTE2 TTE1 TTE2 TTE2receive

send TTE3 TTE3

Fig. 3. Example of integration and cluster cycles.

bounded end-to-end latency and minimal jitter for other frames.
The latency depends on the delay between the receive and
the send windows in the switch. This latency is called switch
delay. Figure 2 shows the possible minimum and maximum
delays of an outgoing frame in relation to the receive and send
windows.

The latency also depends on the transmission time (frame
size over bandwidth) and the propagation delay (cable distance
over propagation speed). For a system with short wires, the
propagation delay is in the range of nanoseconds. The expected
minimum and maximum latency for a VL in a given TTEthernet
system can be calculated using Equations 1 and 2. 64 and 1518
are the minimum and maximum possible Ethernet frame sizes,
SDmin and SDmax are the minimum and maximum switch delays,
d the network cable length, and s the propagation speed.

Lmin = SDmin(s)+
64 bytes ·8 bit

byte

bandwidth(bit
s)

+
dcable(m)

scable(
m
s)

(1)

Lmax = SDmax(s)+
1518 bytes ·8 bit

byte

bandwidth(bit
s)

+
dcable(m)

scable(
m
s)

(2)

C. Clock Synchronization

All nodes and switches need a global notion of time to send
frames at the right moment in time. Clock synchronization is
carried out periodically every integration cycle (typically in
the range of 1 to 10 milliseconds). The schedule for TT traffic
is also periodic and repeats every cluster cycle, which is an
integer multiple of the integration cycle. Figure 3 shows an
example of TT traffic in a system with an integration period
of 10 ms and two integration cycles per cluster cycle. The
schedule defines TT traffic by its period and the offset from
the start of the cluster cycle. For example, TTE3 in Figure 3
has a period of 20 ms and an offset of 10 ms.

Clock synchronization is achieved through the exchange of
protocol control frames (PCF). There are three types of PCFs

in TTEthenet: integration frame, cold-start frame, and cold-start
acknowledge frame. Integration frames are used in the periodic
synchronization, while the last two types of PCF are used
exclusively during start-up. PCFs are used for synchronization
only when they become permanent. This happens at the point
in time when the receiver knows that all related frames that
have been sent to it prior to the send time of this frame have
arrived or will never arrive [17]. The permanence point in
time (PermanencePIT) is calculated by the TTEthernet protocol
as the worst-case delay (Dmax) minus the dynamic delay
(Dactual) that a synchronization frame experiences plus the
reception timestamp as shown in Equation 3. The dynamic
delay (Dactual) is provided by the frames transparent clock
value. This mechanism allows for a receiver to re-establish the
send order of frames, and it used for remote clock reading
during a synchronization operation. Assuming the transparent
clock depicts the transmission time (Dactual) and based on the
statically scheduled receive point in time (ScheduledRXPIT) the
clock difference (ClockDi f f) is calculated as in Equation 4.

PermanencePIT = RXPIT +(Dmax−Dactual) (3)

ClockDi f f = ScheduledRXPIT −PermanencePIT (4)

Switches and nodes are involved in the exchange of PCFs
for synchronization in three different roles: synchronization
masters, synchronization clients, and compression masters.
Typically, the switches act as compression masters, and the
nodes are either synchronization masters or clients. Each
node keeps track of when they believe the integration cycle
has started, which is when synchronization masters send out
integration frames. Compression masters use the permanence
times of these frames to decide on the correct clock and send
integration frames to all synchronization masters and clients.
A returning integration frame is expected to be permanent
2 ·max delay+comp delay after the beginning of the integra-
tion cycle, where comp delay is the time it takes a compression
master to evaluate the frames. An acceptance window around
this expected permanence point defines whether or not the node
should accept the PCF as correct. The acceptance window has
a width of twice the expected precision of the system, defined
as the maximum difference between two correct local clocks. If
the PCF is accepted, the difference between the expected and
actual permanence time is used to correct the clock. Correction
is typically delayed until it is sure that the corrected clock
will not fall back within the acceptance window, as shown in
Figure 4. If more than one compression master is present, the
synchronization masters and clients receive multiple PCF in
the acceptance window. In this case, the clock correction uses
a fault-tolerant average of the differences between expected
and actual permanence time.

IV. DESIGN AND IMPLEMENTATION OF THE TTETHERNET
NODE

In this section, we present the design and implementation
of our TTEthernet node. First, we describe the hardware

2*max_delay+comp_delay

acceptance window

sync master
sends PCF

max_delay

earliest possible
receive time

latest possible
receive time

tte_receive

earliest send tick

Fig. 4. Overview of clock synchronization, adapted from [28].

Patmos

Ethernet controller

EthMac
controller

RX/TX buffer

D
em

ux
/

br
id

ge

PHY
chip

RJ-45

Ethernet
cable

OCP

OCP

WB

WB

MII

Fig. 5. Overview of the Patmos Ethernet controller, adapted from [30]. It
is connected to Patmos through OCP signals, and to a physical PHY chip
through MII.

platform. Then, we explain the functionality of the developed
software stack. Finally, we present the theoretical limits of the
implementation.

We provide a time-predictable end node for a TTEthernet
system, including hardware design and WCET analysis of the
network software. We focus on time-predictable program exe-
cution and traffic transmission. Generating the static schedule
for the time-triggered traffic and allocation of TT frames is
out of the scope of this paper. We rely on available solutions,
e.g., the scheduling tool that is part of the TTEthernet toolset.

A. Hardware

The proposed TTEthernet node is based on the Patmos [34], a
time-predictable processor used in the T-CREST platform [32],
[33], and on an open-source Ethernet controller. The controller
is based on the EthMac block from OpenCores [27], which
was previously ported for Patmos [30].

Figure 5 shows the hardware architecture of the node. The
Patmos processor, as well as the RX/TX buffer, uses a variant of
the OCP interface, while the EthMac block uses the Wishbone
interface. A dedicated multiplexing bridge component manages
the conversion between the two protocols. It allows Patmos
to access the configuration registers in the EthMac controller
and the RX/TX buffer as memory-mapped IO devices. The
EthMac controller connects to the PHY chip through the media-
independent interface (MII).

Receiving and transmitting frames from the EthMac block
is based on buffer descriptors. These are data structures stored
in the EthMac controller and containing the address to an
associated buffer in the RX/TX buffer component, as well as
the length and status of the buffer. The EthMac controller can
receive a new frame only when there is at least one available
receive buffer. Otherwise, the EthMac controller discards the
frame. After receiving a frame, the controller writes the receive

status into the associated buffer descriptor, and the controller
may generate an interrupt (if enabled). The buffer will stay
unavailable until the driver software marks the buffer descriptor
empty again.

To send and receive TT traffic, no changes are required to the
hardware architecture of the existing Ethernet controller [30].
However, the EthMac core was configured in promiscuous
mode to avoid any filtering of frames on MAC addresses.
Additionally, it was configured as full-duplex to avoid sending
and receiving blocking each other. The functionality of the
proposed node entirely lies in software, in the C library tte.c.

We implemented two different versions of the proposed
solution: (1) where the program discovers received frames
through polling, and (2) where the Ethernet controller triggers
an interrupt whenever a frame is received. Using interrupts
for time stamping of an arriving Ethernet frame is not the
best solution since the start of the execution of the interrupt
routine introduces jitter due to cache hits and misses. This
receive jitter is critical in our implementation as it degrades the
timestamp precision and results in lower clock synchronization
quality. The jitter was measured at -26 µs, with the resulting
clock precision varying between -10 µs and 16 µs. Further
results regarding the evaluation of the clock synchronization
are discussed in Section V-B.

The polling solution solves this problem by using a periodic
task that is scheduled to be released just before the next
synchronization frame arrives. The release time needs to include
enough time to contain the worst-case preemption delay and
the possible jitter of the PCF itself. In this case, the processor
is ready to listen to the Ethernet port in a tight loop in order
to get a better timestamp in software. Therefore, in the polling
solution, the actual polling runs only for a short time, without
wasting processor time. As future work, we plan to change
the Ethernet controller to include hardware support for time-
stamping [21].

B. Software

Our node only acts as a synchronization client and only
connects to a single switch. The developed software stack
offers three main functionalities: initialization, receiving, and
sending.

Figure 6 shows the intended flow of programs using the
developed system. At first, the program initializes the controller
with static information regarding the system, information on
VLs, and the schedule. After initialization, the periodic task
starts. It contains a call to the application code, which the
programmer needs to organize as a cyclic executive, and then
polling the Ethernet controller when a new frame is expected
to arrive.

It is necessary to ensure that the receive time of integration
frames is recorded as precisely as possible to enable correct
clock synchronization. The received frame is then passed
through the tte receive function, which will synchronize
the local clock in case of an integration frame, or otherwise
return a value indicating the frame type. The rest of the body
depends on the purpose of the program itself.

initialization

receive msg

call tte receive
function

tte message

reply=2

succesfull clock
sync message

reply=1
other ethernet

message
reply=3failed clock sync

message
reply=0

Fig. 6. The intended flow of user programs. The controller is first initialized
with all constants of the system. The regular operation is performed by a
loop where the program continually waits until a frame is received, calls the
tte receive function, and then reacts to the reply.

Outgoing TT frames can be scheduled anywhere in the
program body and will be sent according to the system schedule
through timer interrupts. To avoid fluctuations in the clock
synchronization, the system schedule, and the WCET of the
program body should follow the limits described in Section
IV-C.

1) Initialization: The system needs to be initialized before
a program loop can start. The initialization data includes: the
integration cycle, the cluster cycle, how many VLs the node
can send on, the maximum transmission delay, the compression
delay of the switch, and the system precision. Furthermore,
the permitted send time for each VL needs to be known, so
each VL gets initialized with an ID, an offset, and a period.
The TTEthernet switch ensures that only relevant and correctly
timed TT frames are passed on to the network. As soon as the
TTEthernet receive function receives the first PCF, it starts the
timer for the sending function.

During initialization, RX buffers are also set up (by config-
uring buffer descriptors). Multiple buffers are needed to ensure
that frames are not lost while the latest frame is still in use.
The precise number of buffers depends on the system and
schedule.

2) Receiving and Clock Synchronization: Frame reception
is performed periodically based on the scheduled receive
point in time. At each reception cycle, a function starts
continuously polling the interrupt source register for a specified
timeout duration, until the bit signifying that a frame has
been received is set. This is done with a function called
tte wait for frame, which is also responsible for recording
the receive time by reading the current cycle count. After a
frame has been received and the receive time has been stored,
we mark the buffer as empty and clear the interrupt source
(implemented in the function tte clear free rx buffer).
Afterwards, the tte receive function (described below) is
called.

The tte receive function initially checks the type of the
frame. If it is a PCF type, the integration frame is used to
synchronize the local clock to the master clock. If the received

frame is not a PCF type, the function returns the received
frame to the application.

For clock synchronization, the permanence point is calculated
by adding the maximum delay and subtracting the transparent
clock. For keeping track of when the controller expects
synchronization masters to have sent the PCF, a variable called
start time is used. On receiving the very first PCF, this
is set to permanence time− (2 ·max delay + comp delay).
start time is used to calculate the scheduled receive point,
which is used to calculate the acceptance window. If the
permanence point is outside the acceptance window, the
start time is reset to zero, and the function returns zero.
In this way, the user program can immediately see that an error
has occurred, and the controller returns to regular operation
when it receives a correctly timed PCF once again.

If the permanence point is within the acceptance window, the
difference between permanence point and scheduled receive
point is added to the start time, synchronizing the local
clock to the master clock. The controller does not need to
wait until after the acceptance window to synchronize, because
the implementation only assumes one switch in the network,
and thus only one PCF per integration cycle. Therefore, it is
irrelevant whether or not the local clock goes back within the
acceptance window.

3) Sending: Frames must be sent according to a predefined
schedule, which requires some queuing mechanism, as the
program should not be expected to calculate the exact send
times itself. The ethlib send function expects outgoing frames
to be stored in the RX/TX buffer and requires the specific
address and size of the frame. One send queue is created per
VL during initialization and is allowed to hold the maximum
amount of frames that the VL can send in one cluster cycle,
calculated as clustercycle

V Lperiod . The send queues hold addresses and
sizes of frames scheduled for sending. Each queue operates
in a FIFO manner, keeping track of the head and tail through
two variables.

The programmer has the responsibility to create frames in
the RX/TX buffer according to its intended use by mean of
the function tte prepare header to create the header of a
TTEthernet frame. Frames are scheduled through the function
tte schedule send, which takes the address and size of the
frame and which VL it should be scheduled. The function then
checks the queue of the VL and, if not full, schedules the
frame for sending. The programmer shall not overwrite the
buffer before the software stack sends the frame.

4) Generating the send schedule: An end-system should
know the TTEthernet schedule running on the switch. By
knowing the maximum frame size of a VL, the period, and
the offset, it is the possible send times for each VL can be
computed by repeatedly adding the period to the offset. A
small algorithm is then used to combine these into a single
schedule, generated on the fly at the startup time of the the
end-system. This is explained through the example presented in
Figure 7. To simplify the scheduling of the next timer interrupt,
each entry in the schedule represents the time until the next
interrupt. We represent time in tenths of ms.

startTick 0 1 2 3 4 5

26 66 66 106 106

30 70

26 66

10 30 50 70 90

i

VL0

VL1

startTick 0 1 2 3 4 5

10 30-26
4

50-30
20

70-66
4

90-70
20

1 1

26-10
16

66-50
16

0 1 0 1

i

time

VL

4.0ms

1.0ms 2.0ms

2.6msVL0

VL1

offset period VL.current

generated schedule

Fig. 7. Example of schedule generation. Two VLs with the offset and period
shown in the top left will generate the schedule in the bottom right when the
cluster cycle is 8 ms. The top right shows the next send time of each VL at
different steps in the algorithm.

The first event for each VL is at their offset, thus the very first
event in the schedule can be found by finding the smallest offset.
The starting offset is stored in a global variable startTick and
the VL it belongs to in the first place in the schedule. For all
VLs, a temporary variable named current is set to the offset
of the VL. The VL that had the starting offset, adds its period
to this value, which is the V L.current value when i is 0 in
Figure 7. We calculate the schedule time when i = 0 as the
difference between the minimum current value (here 26) and
the last current value (here 10). We store the VL with the
smallest current value in the next place in the schedule (when
i = 1), and we increment its current value by its period. We
repeat these steps until the smallest current value is larger than
the cluster-cycle (8 ms in this example).

C. Theoretical Limits of the Implementation

Because of the single-threaded nature of the implementation,
the controller is characterized by certain limits, which we
describe in the following three subsections.

1) Earliest outgoing TT frame: In the start of every cluster
cycle, the transmission of frames is scheduled by the PCF
handle function right after the clock has been corrected. Since
the start of the cycle is defined as the point were the PCF
frame is sent by the synchronization masters, scheduling a
VL to send at 0 ms would cause the function to schedule a
timer-tick in the past.

We do not know the exact receive times of PCFs at compile
time, but we can assume that a PCF is permanent within the
acceptance window, the latest possible receive time would be
the same as the latest possible permanence time. Since the
acceptance window is twice as wide as the precision, the latest
receive time can be calculated with Equation 5.

reclatest = 2 ·max delay+ comp delay+ precision (5)

To ensure that the first outgoing TT frame is never scheduled
too soon, it should be scheduled no earlier than the latest
possible receive time plus the WCET of the tte receive
function. Figure 8 illustrates this timing relationship.

2) Maximum execution time after a TT frame: If the program
has a long execution time, the reception of PCF might be
delayed, negatively impacting the clock synchronization. Part

expect returned
PCF to be
permanent

2*max_delay+comp_delay

acceptance window

sync master
sends PCF

max_delay

earliest possible
receive time

latest possible
receive time

tte_receive

earliest send tick

Fig. 8. The earliest possible receive time is max delay before the start of
the acceptance window. The latest possible receive time is at the end of the
acceptance window. The first TT frame should be scheduled no earlier than
the WCET of tte receive after the latest possible receive time.

earliest pcf
receive timelatest TT

receive time
syncmaster
sends pcf

maximum execution timesend_window

max_delay + comp_delay
 - precision

Fig. 9. The code executed after receiving a TT frame should take no longer
than from the latest TT receive time until the earliest receive time of the next
PCF.

of this could arise from the code executed after receiving a TT
frame. The maximum allowed execution time after a TT frame
depends on the TT frame scheduled with the smallest gap to
the next integration frame. In our switch implementation, the
send window defined in the switch dictates the latest possible
receive time in the node.

The earliest possible receive time of a PCF (assuming it
is on schedule) would be if the actual transmission time was
0 and the frame was permanent as early as possible in the
acceptance window. This is equivalent to max delay before
the acceptance window, as seen in Figure 8. All in all, the
maximum execution time of the code executed on receiving a
TT frame can be calculated with Equation 6, as illustrated in
Figure 9.

maxtt =start time− ttreclatest +max delay

+ comp delay− precision
(6)

3) Maximum execution time during integration cycle: Even
if code executed upon receiving TT frames follow the limits
described above, the reception of a PCF could still be delayed
if the combined execution times of everything executed during
an integration cycle exceeds the integration period. This limit
can be expressed with Equation 7, where inctt is the number
of received TT frames.

period >WCETint + inctt ·WCETtt + send ticks ·WCETsend
(7)

D. Source Access

The TTEthernet controller and the relevant software are
in open source and are available at https://github.com/t-crest/
patmos. The software can be found at https://github.com/t-crest/
patmos/tree/master/c/apps/tte-node.

Switch

AS AC VS VC

Board Monitor

VL 1001 VL 2001 VL 3001 VL4001
 VL4002

Fig. 10. Illustration of components and VLs in the system. Red nodes are
synchronization masters; purple nodes are synchronization clients. This is also
the physical setup used for tests presented in Section V.

V. EVALUATION

A. System Setup

For implementation and testing, we used the star network
configuration shown in Figure 10. It consists of a TTEthernet
Chronos switch from TTTech Inc., four Linux end nodes (AS,
AC, VS, and VC), a MS Windows node used for configuration
and monitoring, and our TTEthernet node. Three of the Linux
end nodes (AS, AC, and VC) act as synchronization masters.
The fourth Linux node (VS) as well as our TTEthernet node
act as synchronization clients.

The TTTech Chronos switch has 24 ports: six supporting Gi-
gabit Ethernet and 18 supporting fast Ethernet (10/100 Mbit/s).
We use 100 Mbits/s. The four Linix nodes are Dell precision
T1700 PCs running Ubuntu. They are all equipped with a
TTEthernet PCIe network card. The network card has two
small form-factor pluggable ports that support connections
with 100/1000 Mbit/s. The PCs execute a TTEthernet driver
and API, as well as various test programs. The Windows PC
does not contain any TTEthernet specific hardware. It runs the
TTEthernet tools from TTTech Inc. that is used for configuring
the TTEthernet system. In addition, the Windows PC is used to
monitor the traffic on all VLs using Wireshark. The final node
is our TTEthernet node, which is implemented on an Altera
DE2-115 FPGA board using two Ethernet controllers: one for
sending and one for receiving. All implemented hardware and
software is open-source.

The TTEthernet tools are a TTTech development suite for
configuring TTEthernet systems [43]. The tools include a
GUI editor based on Eclipse [43]. The typical process for
generating configuration files for all devices in a TTEthernet
system can be seen in Figure 11. The first step is to create a
network description file. It contains information about: senders,
receivers, physical links, virtual links, and synchronization
domain. The TTE-Plan tool uses this file to generate a network
configuration file including the schedule for the entire network.
For a specific schedule, we can also manually edit the network
configuration file. From the network description and the
network configuration files the tool TTE-Build generates the
device-specific binary images that is loaded into the switch
and the end nodes at initialization time.

https://github.com/t-crest/patmos
https://github.com/t-crest/patmos
https://github.com/t-crest/patmos/tree/master/c/apps/tte-node
https://github.com/t-crest/patmos/tree/master/c/apps/tte-node

TTEPlan TTEBuild

Network
description

XML

Network
configuration

XML

Binary
configuration

images

Fig. 11. Typical process using TTEthernet tools.

We have experimented with different schedules all imple-
menting the same set of VLs, as shown in Figure 10. We
tested the network at different integration periods and cluster
cycles, but most experiments have used an integration period
of 10 ms and a cluster cycle of 20 ms. The maximum possible
transmission delay of any frame in the system was calculated
with the TTEthernet tools and configured as 135600 ns. The
compression delay of 10500 ns was used for collecting the
results in Section V. We calculated the precision with the
provided TTEthernet tools, and configured it as 10375 ns.

B. Clock Synchronization
The clock error is calculated as the difference between the

scheduled receive point in time, and the actual permanence
point in time at each received integration frame as specified
by the TTEthernet standard SAE AS6802 [44]. To remove
any interference of the printf() function, the error was first
stored in an array and after a pre-specified amount of collected
samples the clock error values were printed over a serial port.
The clock error was measured in two different setups using
different integration periods (synchronization cycles), a 10 ms
period and a 100 ms period. Figure 12 presents a comparison
of the measured clock error for the two integration periods. For
an integration period of 100 ms the clock error ranges between
2875 ns and 3225 ns with a mean of 3055 ns, while for an
integration period of 10 ms the clock error ranges between
2812 ns and 3112 ns with a mean of 2948 ns.

To reduce the measured error, we implemented a propor-
tional/integral (PI) controller. The controller was manually
tuned by first increasing the proportional part until there was
a steady oscillation and then increasing the integral part until
the systematic error was removed, this procedure led to the
coefficient values Ki = 0.3 and Kp = 0.7. The results of the
PI controller implementation are presented in Figure 13 and
compared between the two different integration periods. When
the control loop stabilizes, the clock error is just a few clock
cycles with a mean of 126 ns for the integration period of
100 ms and a mean of 16.23 ns for the integration period
of 10 ms. This is the best that can be achieved by taking
timestamps in software in a tight loop. Similar methods for
compensating the clock error have been investigated in [26].
The authors presented in simulation the use of a Least Squares
Algorithm that managed to achieve 2000 ns offset. By applying
a simple PI controller not only we reduce the complexity but
we also measured significant increase in accuracy.

C. Latency and Jitter
To precisely measure latency and jitter of TT frames from

the implemented controller, we used a physical setup similar
to the one described in [2] and shown in Figure 10.

To perform the measurement, the test uses the two available
Ethernet ports on the Altera board and sets up a schedule with a
VL from one port to the other. Both ports are considered to be
their own device by the schedule and are both synchronization
clients. The second controller is accessed like the first, but uses
a different address in local memory. This was not supported
by the original ethlib, and was accommodated by duplicating
several ethlib IO functions. A single VL with a period of
10 ms and an offset of 8.2 ms was used. This simplifies the
test program, since one frame can be sent and received each
integration cycle.

The test program follows the form described in Figure 6 with
the first controller receiving frames in the overall loop. After a
successful synchronization frame, a TT frame is scheduled, and
the program waits until the frame is received by the second
controller before proceeding. This enables the program to
collect both the schedule and receive points of frames as the
current clock cycle count. A slightly modified version of the
sending interrupt function was used to measure the send point
as current clock cycle count, making it possible to calculate
latency and jitter. Both receive and send window in the switch
where 263 µs wide.

Figure 14 shows latency measured as the average difference
in send and receive time over 2000 measurements for 3
different frame sizes with various minimum switch delays.
Lmin and Lmax have been calculated using Equations 1 and
2, disregarding propagation delay, and plotted alongside the
values. All measured values are inside the expected minimum
and maximum values.

The expected transmission times for frames of the measured
sizes are 5.12 µs, 32 µs and 121.12 µs respectively, which
means that the actual switch delay for these experiments must
be approximately 200 µs higher than the minimum, judging
by the trend-lines. This indicates that the switch receives the
frames approximately 63 µs into the receive window in these
tests. The jitter, measured as the smallest latency subtracted
from the highest, did not vary significantly as a function of
switch delay, but stayed between 4.5 us and 4.6 us throughout
all experiments.

D. Worst-Case Execution Time

To enable the WCET analysis of the software, all loops need
to be bounded. Therefore, we needed to perform some small
modifications of our code. The function which converts the
transparent clock from the format used in PCF to clock cycles
initially performed division on an unsigned long. According to
the analysis tool, the division function contains an unbounded
loop. We replaced the division by an almost equivalent series of
multiplication and bit-shifting to make the function analyzable.
Additionally, we added pragmas containing loop bounds to all
loops in the code, in order to aid the analysis tool.

We performed WCET analysis on significant parts of the
controller using the platin WCET tool [14]. For the analysis,
the board configuration was assumed to be the default for
DE2-115.

0 500 1000 1500 2000 2500 3000
2800

2850

2900

2950

3000

3050

3100

3150

3200

Time (ms)

C
lo

c
k
 o
ff

s
e
t

(n
s
)

Integration period 100 ms
Integration period 10 ms

Fig. 12. Clock error comparison between two different integration periods.

0 500 1000 1500 2000 2500 3000
-2000

-1000

0

1000

2000

3000

4000

C
lo

c
k
 o
ff

s
e
t

(n
s
)

Time (ms)

Integration period 100 ms
Integration period 10 ms

Fig. 13. Clock error with two different integration periods using a PI controller.

0

100

200

300

400

500

600

700

0 50 100 150 200 250

La
te

nc
y

(µ
s)

Minimum switch delay (µs)

64bytes 400bytes 1518bytes Lmin Lmax WCET

Fig. 14. Latency for various frame sizes as a function of minimum switch
delay. The correlation is very strong, and well within expected minimum and
maximum values.

We run the WCET analysis on a program resembling
the demo program used with the regular implementation in

Section V-B. In order to verify that the program and schedule
satisfies the limits presented in Section IV-C, parts of the
program have been moved into separate functions. Additionally,
in order to analyze the timer interrupt function, it had to be
explicitly called.

The tool requires that analyzed functions have the attribute
noinline to prevent inlining. This makes the analysis slightly
more pessimistic than necessary. The results can be seen in
Table I, where all functions are part of the implemented
tte.c library, except the final two, which are part of the
tested demo program. The parentheses indicate WCET with
PI implementation.
tte clear free rx buffer and tte receive are

mentioned in Section IV-B2. tte receive log is
the TTEthernet receive function with logging enabled.
handle integration frame and
handle integration frame log are called by the
tte receive function if the frame is an integration
frame. tte prepare test data creates a TT frame where
the data part repeats a specified byte until the frame has a

TABLE I
WORST CASE EXECUTION TIME OF TTETHERNET SOFTWARE STACK

FUNCTIONS.

Function WCET (in clock cycles)

tte clear free rx buffer 10
tte receive 3018 (3424)
tte receive log 3154 (3561)
handle integration frame 1454 (1860)
hande integration frame log 1590 (1997)
tte prepare test data 63149
tte schedule send 244
tte send data 306
tte clock tick 1721
tte code int 392419
tte code tt 40156

certain length. tte schedule send is described in section
IV-B3. tte clock tick and tte clock tick log are
the timer interrupt functions with and without logging,
and call tte send data when actually sending a frame.
tte code int is executed after each successfully received
integration frame, and tte code tt is executed after
each received TT frame. Addition of logging adds about
150 clock cycles to the WCET. It is worth noting that the PI
implementation adds an additional 400 clock cycles while
using fixed point calculations.

E. Verifying Theoretical Limits of the Demo Program

With this example program and schedule, it is possible to
verify that it satisfies the theoretical limits. The earliest outgoing
TT frame in this example has an offset of 0.8 ms. Equation 8
presents the calculation of the earliest allowed transmission
of a TT frame. It accounts for the equations presented in
Section IV-C1, the system constants and the the WCET of the
tte receive function (the log version) as WCETtte rx. Since
332.3 µs is approximately 0.33 ms, the example follows this
limit.

ttout = 2 ·max delay+ comp delay+ precision+WCETtte rx

= 2 ·135.6µs+10.5µs+10.4µs+3216cycles ·
12.5 ns

cycle

1000 ns
µs

= 332.3µs
(8)

The TT frame which arrives closest to a PCF in this example
arrives between 18.6 ms and 18.863 ms. Using this information,
Equation 6 and the system constants, the maximum allowed
execution time after TT frames is calculated with Equation 9.
The WCET of tte code tt in this example can be seen in
Table I. Since it is less than the 101,816 calculated cycles, the
example program follows this limit.

maxtt = sched send− ttreclatest +max delay

+ comp delay− precision

= 20,000µs−18,863µs+135.6µs+10.5µs−10.4µs

= 1272.7µs
(9)

maxcc = 1272.7µs ·
1000 ns

µs

12.5 ns
cycle

= 101,816cycles

(10)

The example schedule has a maximum of 3 incoming TT
frames in a single integration cycle. One of the VL can send a
maximum of 3 outgoing TT frames, and the other a maximum
of 5. An integration period of 10 ms is assumed, which is
equivalent to 800,000 clock cycles. This information, Equation
7 and the WCET in Table I are used to verify the final limit
in Equation 11 (in clock cycles (cc)).

int period >WCETint + inctt ·WCETtt + send ticks ·WCETsend

800,000cc > 392,419cc+3 ·40,156cc+8 ·1824cc

800,000cc > 527,479cc
(11)

F. Future Work

The presented time-predictable TTEthernet controller is a
good basis for future work. We plan to re-implement the whole
TCP/IP stack in a time-predictable version. We will avoid the
blocking calls to read and write, as the usual implementation
of sockets. We will use non-blocking functions that can be
called from periodic tasks.

Furthermore, we are working on coordinating scheduling
of tasks with scheduling of TTEthernet frames. With a
tight coupling of time-triggered execution and time-triggered
communication the end-to-end latency can be reduced.

Furthermore, we plan to add support of TSN to our node.
Then we can directly compare TTEthernet with TSN.

VI. CONCLUSION

This paper presented a time-predictable TTEthernet end-
system, built on top of the time-predictable Patmos processor.
To the best of our knowledge this solution is the first TTEthernet
end-system that can be analyzed for the worst-case execution
time.

We evaluated the TTEthernet node in a test environment
with one TTEthernet switch and six TTEthernet nodes that
exchanged frames in various periods. The presented end-system
is able to synchronize to the network clock with nanosecond
precision by using a PI controller that significantly improved
the synchronization error measured in previous work.

We performed WCET analysis of the main functions of the
network code. This allowed to statically estimate the end-to-
end latency of transmitted time-triggered frames and verify
the expected maximum latency. Overall, this paper provides
a solution for deterministic communication with TTEthernet
and WCET analyzable tasks and network code on the Patmos
platform. To the best of our knowledge, this is the first open-
source TTEthernet node with a WCET analyzable network
stack.

ACKNOWLEDGEMENT

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Skłodowska-Curie grant agreement No. 764785,
FORA—Fog Computing for Robotics and Industrial Automa-
tion

REFERENCES

[1] Astrit Ademaj and Hermann Kopetz. Time-triggered ethernet and ieee
1588 clock synchronization. In 2007 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication, pages 41–43. IEEE, 2007.

[2] Florian Bartols, Till Steinbach, Franz Korf, and Thomas C. Schmidt.
Performance analysis of time-triggered ether-networks using off-the-shelf-
components. Proceedings - 2011 14th Ieee International Symposium
on Object/component/service-oriented Real-time Distributed Computing
Workshops, Isorcw 2011, pages 49–56, 2011.

[3] William Buchanan. CAN bus. Computer Busses, pages 333–343, 2000.
[4] R Courtney. Aircarft data network, part 7-avionics full duplex switched

ethernet (afdx) network, 2004.
[5] Silviu S Craciunas, Ramon Serna Oliver, and TC AG. An overview

of scheduling mechanisms for time-sensitive networks. Proceedings of
the Real-time summer school LÉcole dÉté Temps Réel (ETR), pages
1551–3203, 2017.

[6] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelı́k, and Wilfried
Steiner. Scheduling real-time communication in ieee 802.1 qbv time
sensitive networks. In Proceedings of the 24th International Conference
on Real-Time Networks and Systems, pages 183–192. ACM, 2016.

[7] Rodney Cummings, Kai Richter, Rolf Ernst, Jonas Diemer, and Arkadeb
Ghosal. Exploring use of ethernet for in-vehicle control applications:
Afdx, ttethernet, ethercat, and avb. SAE International Journal of
Passenger Cars-Electronic and Electrical Systems, 5(2012-01-0196):72–
88, 2012.

[8] Peter Danielis, Jan Skodzik, Vlado Altmann, Eike Bjoern Schweissguth,
Frank Golatowski, Dirk Timmermann, and Joerg Schacht. Survey on real-
time communication via ethernet in industrial automation environments.
19th Ieee International Conference on Emerging Technologies and
Factory Automation, Etfa 2014, 2014.

[9] Sascha Einspieler, Benjamin Steinwender, and Wilfried Elmenreich.
Integrating time-triggered and event-triggered traffic in a hard real-time
system. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS), pages
122–128. IEEE, 2018.

[10] Janos Farkas, Lucia Lo Bello, and Craig Gunther. Time-sensitive
networking standards. IEEE Communications Standards Magazine,
2(2):20–21, 2018.

[11] Thomas Fruhwirth, Wilfried Steiner, and Bernhard Stangl. TTEthernet
sw-based end system for AUTOSAR. 2015 10th Ieee International
Symposium on Industrial Embedded Systems, Sies 2015 - Proceedings,
pages 21–28, 2015.

[12] Voica Gavriluţ, Luxi Zhao, Michael L Raagaard, and Paul Pop. Avb-
aware routing and scheduling of time-triggered traffic for tsn. Ieee Access,
6:75229–75243, 2018.

[13] Shiying He, Liansheng Huang, Jun Shen, Ge Gao, Guanghong Wang,
Xiaojiao Chen, and Lili Zhu. Time synchronization network for east
poloidal field power supply control system based on ieee 1588. IEEE
Transactions on Plasma Science, 46(7):2680–2684, 2018.

[14] Stefan Hepp, Benedikt Huber, Jens Knoop, Daniel Prokesch, and
Peter P. Puschner. The platin tool kit - the T-CREST approach for
compiler and WCET integration. In Proceedings 18th Kolloquium
Programmiersprachen und Grundlagen der Programmierung, KPS 2015,
Pörtschach, Austria, October 5-7, 2015, 2015.

[15] IEEE. Time-Sensitive Networking (TSN) Task Group.
[16] H. Kopetz and G. Grünsteidl. TTP - A time-triggered protocol for fault-

tolerant real-time systems. In Jean-Claude Laprie, editor, Proceedings of
the 23rd Annual International Symposium on Fault-Tolerant Computing
(FTCS ’93), pages 524–533, Toulouse, France, June 1993. IEEE Computer
Society Press.

[17] Hermann Kopetz. Temporal relations. In Real-Time Systems, pages
111–133. Springer, 2011.

[18] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinhammer.
The time-triggered ethernet (TTE) design. In ISORC ’05: Proceedings of
the Eighth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’05), pages 22–33, Washington, DC, USA,
2005. IEEE Computer Society.

[19] Tamás Kovácsházy. Towards a quantization based accuracy and
precision characterization of packet-based time synchronization. In 2016
IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS), pages 1–6. IEEE,
2016.

[20] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. Hardware
assisted clock synchronization with the ieee 1588-2008 precision time
protocol. In Proceedings of the 26th International Conference on Real-
Time Networks and Systems, RTNS ’18, pages 51–60. ACM, 2018.

[21] Eleftherios Kyriakakis, Jens Sparsø, and Martin Schoeberl. Hardware
assisted clock synchronization with the ieee 1588-2008 precision time
protocol. In Proceedings of the 26th International Conference on Real-
Time Networks and Systems, pages 51–60. ACM, 2018.

[22] G Leen and D Heffernan. TTCAN: A New Time-Triggered Controller
Area Network. Microprocessors and Microsystems, 26(2):77–94, 2002.

[23] Maciej Lipiński, Tomasz Włostowski, Javier Serrano, and Pablo Alvarez.
White rabbit: A ptp application for robust sub-nanosecond synchroniza-
tion. In Proceedings of the International IEEE Symposium on Precision
Clock Synchronization for Measurement Control and Communication
(ISPCS), pages 25–30. IEEE, 2011.

[24] Andrew T Loveless. On ttethernet for integrated fault-tolerant spacecraft
networks. In AIAA SPACE 2015 Conference and Exposition, page 4526,
2015.

[25] Maja Lund, Luca Pezzarossa, Jens Sparsø, and Martin Schoeberl. A time-
predictable ttethernet node. In 2019 IEEE 22nd International Symposium
on Real-Time Computing (ISORC), pages 229–233, May 2019.

[26] D Macii, D Fontanelli, and D Petri. A master-slave synchronization
model for enhanced servo clock design. In 2009 International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication, pages 1–6. IEEE, 2009.

[27] Igor Mohor. Ethernet ip core design document, 2002.
[28] Roman Obermaisser. time-triggered communication. CRC press, 2012.
[29] Maryam Pahlevan, Nadra Tabassam, and Roman Obermaisser. Heuristic

list scheduler for time triggered traffic in time sensitive networks. ACM
Sigbed Review, 16(1):15–20, 2019.

[30] Luca Pezzarossa, Jakob Kenn Toft, Jesper Lønbæk, and Russell Barnes.
Implementation of an ethernet-based communication channel for the
patmos processor, 2015.

[31] Miladin Sandić, Ivan Velikić, and Aleksandar Jakovljević. Calculation
of number of integration cycles for systems synchronized using the
as6802 standard. In 2017 Zooming Innovation in Consumer Electronics
International Conference (ZINC), pages 54–55. IEEE, 2017.

[32] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley,
Raffaele Capasso, Jamie Garside, Kees Goossens, Sven Goossens, Scott
Hansen, Reinhold Heckmann, Stefan Hepp, Benedikt Huber, Alexander
Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel Prokesch,
Wolfgang Puffitsch, Peter Puschner, André Rocha, Cláudio Silva, Jens
Sparsø, and Alessandro Tocchi. T-CREST: Time-predictable multi-core
architecture for embedded systems. Journal of Systems Architecture,
61(9):449–471, 2015.

[33] Martin Schoeberl, Luca Pezzarossa, and Jens Sparsø. A multicore
processor for time-critical applications. IEEE Design Test, 35:38–47,
2018.

[34] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and
Daniel Prokesch. Patmos: A time-predictable microprocessor. Real-Time
Systems, 54(2):389–423, Apr 2018.

[35] F Sethna, FH Ali, and E Stipidis. What lessons can controller area
networks learn from flexray. In 2006 IEEE Vehicle Power and Propulsion
Conference, pages 1–4. IEEE, 2006.

[36] Wilfried Steiner. Advancements in dependable time-triggered commu-
nication. In Roman Obermaisser, Yunmook Nah, Peter Puschner, and
Franz J. Rammig, editors, Software Technologies for Embedded and
Ubiquitous Systems, pages 57–66, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[37] Wilfried Steiner and Bruno Dutertre. The ttethernet synchronisation
protocols and their formal verification. International Journal of Critical
Computer-Based Systems 17, 4(3):280–300, 2013.

[38] Klaus Steinhammer and Astrit Ademaj. Hardware implementation of
the time-triggered ethernet controller. In Achim Rettberg, Mauro Cesar

Zanella, Rainer Dömer, Andreas Gerstlauer, and Franz-Josef Rammig,
editors, Embedded System Design: Topics, Techniques and Trends, IFIP
TC10 Working Conference: International Embedded Systems Symposium
(IESS), May 30 - June 1, 2007, Irvine, CA, USA, volume 231 of IFIP
Advances in Information and Communication Technology, pages 325–338.
Springer, 2007.

[39] Klaus Steinhammer, Petr Grillinger, Astrit Ademaj, and Hermann Kopetz.
A time-triggered ethernet (TTE) switch. In DATE ’06: Proceedings
of the conference on Design, automation and test in Europe, pages
794–799, 3001 Leuven, Belgium, Belgium, 2006. European Design and
Automation Association.

[40] Ekarin Suethanuwong. Scheduling time-triggered traffic in ttethernet
systems. In Proceedings of 2012 IEEE 17th International Conference
on Emerging Technologies & Factory Automation (ETFA 2012), pages
1–4. IEEE, 2012.

[41] Domiţian Tămaş-Selicean and Paul Pop. Optimization of ttethernet
networks to support best-effort traffic. In Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), pages 1–4. IEEE,
2014.

[42] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of
communication schedules for ttethernet-based mixed-criticality systems.
In Proceedings of the eighth IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, pages 473–482.
ACM, 2012.

[43] TTTech. TTETools – TTEthernet Development Tools v4.4.
[44] TTTech. AS6802: Time-Triggered Ethernet. SAE International, 2011.
[45] TTTech. Deterministic ethernet & tsn: Automotive and industrial iot.

Industrial Ethernet Book, 89, July 2015.
[46] Yingjing Zhang, Feng He, Guangshan Lu, and Huagang Xiong. Clock

synchronization compensation of time-triggered ethernet based on least
squares algorithm. In 2016 IEEE/CIC International Conference on
Communications in China (ICCC Workshops), pages 1–5. IEEE, 2016.

[47] Lin Zhao, Feng He, Ershuai Li, and Jun Lu. Comparison of time sensitive
networking (tsn) and ttethernet. In 2018 IEEE/AIAA 37th Digital Avionics
Systems Conference (DASC), pages 1–7. IEEE, 2018.

[48] Luxi Zhao, Paul Pop, and Silviu S Craciunas. Worst-case latency analysis
for ieee 802.1 qbv time sensitive networks using network calculus. Ieee
Access, 6:41803–41815, 2018.

[49] Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. Timing
analysis of rate-constrained traffic in ttethernet using network calculus.
Real-Time Systems, 53(2):254–287, 2017.

[50] Xuan Zhou, Feng He, and Tong Wang. Using network calculus on
worst-case latency analysis for ttethernet in preemption transmission
mode. In 2016 10th International Conference on Signal Processing and
Communication Systems (ICSPCS), pages 1–8. IEEE, 2016.

