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Abstract—Virtual memory is an important feature of modern
computer architectures. For hard real-time systems, memory
protection is a particularly interesting feature of virtual memory.
However, current memory management units are not designed for
time-predictability and therefore cannot be used in such systems.
This paper investigates the requirements on virtual memory
from the perspective of hard real-time systems and presents
the design of a time-predictable memory management unit. Our
evaluation shows that the proposed design can be implemented
efficiently. The design allows address translation and address
range checking in constant time of two clock cycles on a cache
miss. This constant time is in strong contrast to the possible
cost of a miss in a translation look-aside buffer in traditional
virtual memory organizations. Compared to a platform without
a memory management unit, these two additional clock cycles
per cache miss introduce only a small performance overhead.

I. INTRODUCTION

Virtual memory is an important concept in general-purpose
computer architectures. On the one hand, it enables the
extension of the address space beyond the size of the physical
memory. On the other hand, virtual memory enables memory
protection, i.e., the memory of a process is protected from
memory accesses from other processes. The latter feature is
especially important in ecosystems where not all components
can be fully trusted. Memory protection keeps faulty processes
from crashing the system by writing to arbitrary locations and
malicious processes from violating privacy by reading from
arbitrary locations.

In hard real-time systems, failures may lead to catastrophic
consequences such as the loss of human life [?]. Such systems
are therefore developed to the highest standards and must pass
the scrutiny of certification authorities. Virtual memory provides
benefits for such systems even if the software has been verified
to be correct and all software modules can be trusted. Without
memory protection, errors such as memory bit flips could
cause a single process to crash the whole system by writing
to random memory locations. Memory protection provides a
fault containment mechanism that protects the overall system
from the behavior of a single rogue process.

Apart from functional requirements, hard real-time systems
must also fulfill timing requirements. To prove the timing
correctness of an application, it is necessary to bound the worst-
case execution time (WCET) of the application’s tasks. The
WCET bounds must be safe in the sense that actual execution
time can never exceed the computed bound. However, the
WCET bounds should not be overly loose to avoid over-
provisioning of resources. Unfortunately, common virtual
memory mechanisms such as paging are unsuited for systems
that require tight WCET bounds.

This paper investigates virtual memory mechanisms that
are suitable for hard real-time systems. We review existing
techniques under the light of time-predictability and examine
which virtual memory features hard real-time systems actually
require. Our findings lead to the design of a memory man-
agement unit (MMU) that supports the required features in a
time-predictable manner.

A. Contributions

The contribution of this paper is twofold. On the one hand,
the paper discusses the requirements on virtual memory from
the perspective of hard real-time systems. These systems are
quite different from general-purpose applications, which leads
to different requirements on virtual memory. In particular,
hard real-time systems require predictability, whereas general-
purpose systems require a high degree of flexibility and favor
average-case performance over worst-case performance. We
find that the requirements of hard real-time systems warrant
an MMU design that deviates from the conventional MMU
design for general-purpose systems.

On the other hand, this paper presents a concrete MMU
design that takes into account the requirements of hard real-
time systems. Our evaluation shows that the proposed MMU
can be implemented efficiently and introduces only a small
performance overhead, compared to a platform without MMU.

B. Organization

The remainder of this paper is organized as follows. Sec-
tion II describes virtual memory and its benefits in general.
Section III covers related work on virtual memory for real-
time systems. Section IV discusses the requirements of virtual
memory for real-time systems and describes the proposed
design for a time-predictable MMU. Section V provides details
on our implementation of a time-predictable MMU. Section VI
evaluates the proposed design and implementation. Section VII
concludes the paper.

II. VIRTUAL MEMORY

Virtual memory provides an abstraction of physical memory
resources [1]. The application uses virtual memory addresses,
which are mapped to physical addresses by the hardware in
cooperation with the operating system.

A. Properties of Virtual Memory

The mapping of virtual to physical addresses enables the
realization of several beneficial features, as detailed in the
following.



a) Address space beyond physical memory: With virtual
memory, processes can use more data than would fit into the
physical main memory. Excess data is stored in secondary
storage such as a hard disk; the mapping of the corresponding
virtual address then encodes that the data cannot be found in
physical memory. When encountering such a virtual address,
the required data are loaded into main memory. The exchange
of data between the main memory and the secondary storage
is handled by the operating system and transparent to the
application. Historically, this feature has been one of the most
important arguments in favor of virtual memory.

The cheap and large memories available today have rendered
this feature somewhat less important. However, extending main
memory through secondary storage is still relevant in general-
purpose systems. When hundreds of processes on a general-
purpose computer! share the main memory, providing more
memory than physically available may still be necessary.

By using secondary storage, the main memory can be seen
as a cache for the data in secondary storage. Data can be first
allocated in secondary storage and just loaded in on demand.
This mechanism can also be exploited to map files into memory
to enable efficient file I/O. Whole blocks of a file can then be
loaded into memory and written back on demand, without the
need for explicit, manual buffering.

b) Memory protection: With virtual memory, each process
lives in its own virtual address space and has its own mapping
to physical memory. Thereby, the address spaces of different
processes are isolated such that a single faulty process cannot
crash the whole system. With only few additional resources,
the mapping between virtual and physical addresses can also
encode whether a memory location is readable, writable,
or executable by a process. The operating system can take
appropriate action if a process tries to violate its access rights.
Additionally, memory protection is vital for ensuring that
processes cannot violate privacy by reading data from other
processes.

Memory protection needs at least two processor modes: a
user mode and a privileged mode; the latter mode is sometimes
also called “kernel” mode or “supervisor” mode. The memory
translation and protection is set up in privileged mode by the
operating system, as part of starting a process. The process itself
executes in user mode and cannot manipulate the translation
and protection settings.

c) Separate linking: In general-purpose systems, it would
be impossible to decide the memory locations of all processes
ahead of time. Applications are compiled independently,
without knowing which other processes will run concurrently.
With virtual memory, the physical locations of code and data are
decided at run-time, when the operating system knows which
processes are present in the system. In principle, executables
could be compiled to use position-independent code, or the
operating system could relocate the binary when loading it to
memory. For example, 4CLinux [2], a variant of Linux that does
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not require an MMU, uses these strategies. However, virtual
memory greatly simplifies compilation and/or the loading
process.

B. Paging

The most popular mechanism to implement virtual memory
is paging, which divides memory into blocks of fixed size.
These blocks are called pages and are typically a few kilobytes
in size (with 4 KB being a popular size). Paging uses a page
table to translate between virtual and physical addresses. The
upper bits of the virtual address are used to index the page table,
which contains the location of the page in physical memory.
The lower bits of the virtual and the physical address are the
same and encode the offset of data within the page. Figure 1
illustrates this mechanism; in that figure, pages 0, 1, 2, and 5
are mapped to physical memory, whereas pages 3, 4, 6, and 7
are in secondary storage. In addition to the physical addresses
of pages, the page table also contains the access permission
flags for each page.

Page tables are typically too big to be kept in on-chip
memory. For example, on an architecture with a 32-bit address
space and 4 KB pages, the page table for the full address range
would have 2'° entries and occupy 4 MB. Therefore, page
tables reside in external memory, and a single memory access
involves, in principle, two accesses to external memory: one
access to access the page table for the address translation, and
a second access to access the actual data. To achieve good
performance, architectures that implement paging include a
translation look-aside buffer (TLB), which caches page table
entries and thus speeds up the address translation.

In addition to the benefits of virtual memory in general (i.e.,
address space beyond physical memory, memory protection,
separate linking), paging also enables the dynamic growing
(and shrinking) of memory areas such as the heap or the stack.
New entries can be added to the page table as needed, and
room in physical memory can be made by evicting a lesser-
used page to secondary storage. As the memory is split into
fixed-size pages, any page-aligned location in physical memory
is suitable to allocate a page.

Even when setting aside the issue of swapping pages to
secondary storage, paging increases the timing variability of



memory accesses compared to the direct use of physical
memory. With paging, the timing of a memory access depends
on the contents of the TLB and the cache. Both, either, or none
may be hit, such that a memory accesses may exhibit different

timings depending on the contents of the cache and the TLB.

C. Segmentation

An alternative to paging is segmentation, where the memory
is divided into segments of variable length. Segmentation was
used as early as 1961 in the Burrows B5000 computer, which
was “perhaps the first commercial computer to provide virtual
memory” [4]. Each segment occupies a contiguous area of the
physical memory. A segment is described by its start in physical
memory, its length, and the associated access privileges. As
there are typically only few segments for each process (e.g., a
code, a data, and a stack segment), the segment descriptors of
the active process can be stored in on-chip memory.

Segmentation could in principle be used to provide only
protection. In that case, physical memory address boundaries
would be checked by the hardware without performing address
translation. However, segmentation can also support virtual
addresses by providing an address translation per segment.

With segmentation, virtual addresses consist of a part to

identify the segment and a part for the offset within the segment.

These two parts are often realized as a pair of registers, as in
the Intel 8088/8086, but the segment to be used could also be
encoded within the address.

If the length of a single segment is limited and too small
to fit all code or data, such as 64 KB in the 8088/8086, the
two-part addressing scheme may become problematic. The
programmer and/or the compiler then have to specify in which
segment the code or data reside, which is a complication that
is not present with paging.

Another disadvantage of segmentation is that memory may
become fragmented. Repeated allocation and deallocation of
segments may lead to a situation where small chunks of memory
are unused between the existing segments. The allocation of
a new segment may then fail because none of these chunks
is large enough to accommodate the allocation request, even
though the total unused space would be large enough to fit the
new segment. Similarly, it is impossible to enlarge a segment
that is immediately followed by another segment, even if there
may be unused memory elsewhere. In contrast, paging does not
suffer from fragmentation and supports the growth of memory
areas such as the stack or the heap.

D. Virtual Memory and Caches

A processor can use virtual or physical addresses to access its
caches. When using physical addresses, the address translation
has to happen before the cache can be accessed. As slowing
down cache accesses would severely affect performance, fast
address translation is of utmost importance when using physical
addresses to access the cache.

Using virtual addresses for the cache has the advantage that
address translation only needs to be done when accessing
external memory on a cache miss. Therefore, the address

translation can be placed outside the processor pipeline, on the
path between the caches and the external memory. In contrast,
using physical addresses requires tight integration with the
processor pipeline to minimize the penalty for the address
translation.

However, addressing the cache with virtual addresses com-
plicates sharing data between different processes. The shared
(physical) memory may be mapped to different virtual addresses
in the sharing processes. This may lead to aliasing: different
cache lines from different virtual addresses can correspond
to the same physical memory location. If one cache line is
modified, the other cache line will have a stale (wrong) value.
Changing the address mapping could also lead to stale cache
entries. Consequently, the cache needs to be cleared when
switching between processes, which incurs high costs for
context switches.

In a multiprocessor setting, using virtual addresses for the
caches would also complicate the implementation of hardware
cache coherence mechanisms. Coherence must be established
for cache lines that refer to the same physical address. A cache
coherence mechanism would either have to do a reverse address
translation, or the cache has to also include information about
the physical addresses of its cache lines.

Due to these issues, the use of physical addresses to access
the cache prevails in modern processor architectures [1].

A hybrid approach is to use virtual addresses to index the
cache, but physical addresses to decide whether an access
is a cache hit or miss [1]. This technique puts the address
translation in parallel to the access of the cache memory and
therefore reduces the pressure on the speed of the address
translation. However, this technique also limits the size of the
cache because the number of bits to index the cache may not
exceed the number of bits to index a page.

III. RELATED WORK

Bennett and Audsley [5] investigate how MMUs of (at
that time) modern processors can be utilized in a time-
predictable way. They conclude that good predictability can
be achieved through proper configuration of the MMU and
careful organization of page tables. However, they also note
that real-time operating systems typically avoid virtual memory
altogether. A particularly interesting feature exploited by
Bennett and Audsley are the Block Address Translation (BAT)
registers of the PowerPC 603e architecture [6]. These registers
can be used for the address translation for large contiguous
memory areas. Address translation through a BAT register takes
precedence over address translation via the TLB, leading to a
faster and more predictable execution.

Zhou and Petrov [7] present a page table organization that
aims for low memory requirements while supporting predictable
page table lookups. They observe that, in embedded systems,
consecutive virtual pages often correspond to consecutive phys-
ical pages. Consequently, the proposed page table organization
encodes such contiguous areas in a single entry.

Puaut and Hardy [8], [9] propose an approach where pages
are exchanged with secondary storage at defined points in the



program. In the initial variant of the approach [8], they model
the exchange of pages with secondary storage similar to the
spilling of registers onto the stack. To minimize the exchange
of pages with secondary storage, they propose a graph coloring
approach. A later variant of the approach [9] uses integer linear
programming to minimize the worst-case costs of exchanges
with secondary storage.

The approach by Puaut and Hardy is predictable in the
sense that the program points at which pages are exchanged
with secondary storage are known. However, they do not
investigate other sources of unpredictability such as page table
lookups. Furthermore, unpredictable or excessive access times
for secondary storage would render the approach by Puaut and
Hardy unusable.

Meenderinck et al. [12] present the design of a predictable
MMU in the context of a system-on-chip platform. They
achieve predictability by keeping page tables in on-chip
memory and prohibiting the swapping pages of to secondary
storage. The evaluated applications are relatively small, such
that the limited page table size does not constitute a major
restriction. However, Meenderinck et al. report a performance
loss of 39% due to address translation.

Bohnert and Scholl [13] describe a virtual memory solution
that takes into account the requirements of real-time systems.
They use sophisticated data structures to ensure that operations
like allocating or deallocating memory can be performed
in constant time. Their evaluation shows that their solution
achieves more predictable behavior compared to a conventional
virtual memory solution. However, the MMU proposed by
Bohnert and Scholl still relies on a cache that resembles a
TLB for the address translation and suffers from the associated
unpredictability.

All approaches described in this section take paging for
granted and optimize the paging mechanism rather than propos-
ing a different MMU design. We agree that paging is by far
the most successful mechanism to implement virtual memory
for general-purpose systems. However, we find that hard real-
time systems have requirements that are quite different from
general-purpose systems, and that these different requirements
call for a different MMU design.

IV. DESIGN

This section first analyzes the requirements on virtual
memory from the perspective of hard real-time systems, and
then presents the design of an MMU that fits these requirements.

A. Requirements

The following paragraphs list requirements for virtual
memory in real-time systems.

a) Time-Predictability: The requirement with highest
priority is predictability. In the context of hard real-time
systems, virtual memory mechanisms that annul predictability
are inadequate. Not using virtual memory would be a better
solution than using a mechanism that might cause tasks to
miss their deadlines. It should be possible to compute tight
execution time bounds even when using virtual memory.

b) Memory protection: The second most important vir-
tual memory requirement for real-time systems is memory
protection. This feature ensures that processes cannot read
or modify each other’s memory contents, neither maliciously
nor by accident. Memory protection is vital to ensure proper
partitioning between different parts of a real-time system and
helps to contain errors. Furthermore, memory protection catches
issues such as wrongly sized memory areas. For example,
without protection, the heap and the stack could grow into each
other and silently corrupt each other’s data. A time-predictable
implementation of virtual memory must support this feature.

c) Independent linking: The feature that the binaries for
different applications can be linked independently is of lesser
importance. While large real-time systems may benefit from
this feature, the software of other real-time systems may be
small enough to be linked at once. Support for this feature is
desirable, but should not come at the cost of unpredictability.

d) No address space beyond physical memory: Extending
the address space beyond the size of the physical memory
is not required for hard real-time systems. Quite to the
contrary, swapping data to secondary storage could introduce
unacceptable unpredictability and should be avoided. Support
for this feature would be useless at best and harmful at worst.

e) No extension of memory areas: In hard real-time
systems, the dynamic growing of memory areas is not needed.
The memory consumption of hard real-time tasks must be
bounded just like their execution time must be bounded.
Therefore, the amount of memory needed must be known
beforehand, and the required memory can be allocated before
the task starts execution.

f) Memory areas may be contiguous: We can classify the
memory areas of a hard real-time application into a handful of
categories, such as the code, the data, or the stack. As observed
in previous work [7], the memory areas of embedded real-time
applications are typically mapped to contiguous regions of
memory. Therefore, we think that requiring that these areas be
contiguous is a reasonable constraint.

g) Caches may use virtual addresses: Both using physical
addresses and using virtual addresses for caches may affect
performance negatively. On the one hand, using physical
addresses is likely to increase the cache access time and
hence decrease performance. On the other hand, using virtual
addresses requires that caches be flushed upon context switches
and therefore increases preemption costs. As preemption costs
are already fairly high — in particular when considering
multiprocessor systems — reducing the number of preemptions is
probably more effective than reducing the costs of an individual
preemption. Therefore, using virtual addresses to access caches
may be a viable option for a time-predictable MMU.

B. Proposed Solution

We believe that the requirements outlined above are best
fulfilled by a solution that resembles segmentation rather
than paging. Segmentation enables memory protection and
independent linking. As the number of segments is relatively
small, all relevant information can be kept on-chip, which is
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favorable in terms of time-predictability. The short segment
table can be considered part of the context of a process and
is loaded at the process start and on a context switch to that
process.

Storing all address translation information on-chip as part of
a context switch is in strong contrast to the operation of TLBs
that are used with paging, where TLB misses can occur during
normal process execution. The TLB, a cache in its own, would
need to be integrated with the cache analysis of the WCET
analysis.

The strengths of paging would be simpler exchange of data
with secondary storage, dynamic extension of memory areas,

and memory areas that are non-contiguous in physical memory.

However, these features are not required in hard real-time
systems, such that the downsides of paging outweigh the
benefits.

Some segmentation solutions use pairs of registers for virtual
addresses and allow only rather small segments. However, such
addressing schemes are not a good fit for the flat memory model
of languages such as C. Therefore, we propose to encode the
segment in the upper bits of the virtual address.

Figure 2 shows a simplified diagram of the envisioned MMU.

The upper bits of the virtual address (“seg”) are used to index
a segment table. This table contains the access permissions
(read/write/execute), the lengths, and the base addresses of the
segments. If the respective access is permitted and the offset
is within the bounds of the segment, the base address is added
to the offset from the virtual address to form the physical
address. If the access is not permitted or out of bounds, the
issued command is suppressed (i.e., replaced with an IDLE

command), and the MMU responds with an error response
(i.e., the response value ERR).

To simplify system software, the permission and bounds
checks are disabled when the processor is in privileged mode. In
principle, it would be possible to use separate permission flags
or segment lengths for execution in privileged mode. However,
an application in privileged mode can modify these values
at will, such that memory protection would be incomplete.
We decided to disable the checks altogether rather than
implementing an incomplete solution.

With regard to the number of segments, we face a trade-off
between flexibility and hardware resources. Providing many
segments (potentially hundreds or thousands) would lead to
a solution whose flexibility could approach paging. However,
such a solution would also require a substantial amount of
hardware resources to keep all segmentation information on-
chip. Instead, we propose to provide few segments, thus
minimizing the required hardware resources. More concretely,
we propose a solution with eight segments, which could be used
as shown in Table I. As the segment is encoded in the upper
bits of the address (rather than in other parts of instruction set),
the number of segments could be easily increased if future
experience proves the need to do so.

In the proposed segment usage convention shown in Table I,
segment 0 is reserved for operating system code, such as code
that implements system calls. Segments 1-4 are used for the dif-
ferent memory areas of the application. We distinguish between
read-only data and writable data to catch the modification of
data that is meant to be constant. Segments 5-7 are intended
for segments that are shared between applications, such as
code and data that are part of the C library.



TABLE I
PROPOSED SEGMENT USAGE

Segment  Usage Permissions
0 system --X
1 code --X
2 read-only data r--
3 writeable data/heap rw-
4 stack rw-
5 shared code --X
6 shared read-only data r--
7 shared writeable data rw-

When using eight segments and 32-bit addresses, the size
of a segment is limited to 512 MB. We do not expect that
embedded real-time systems require larger segment sizes, such
that some of the traditional inconveniences of segmentation
are alleviated.

We propose the use of virtual addressing of the caches
to avoid increasing the memory access times on cache hits.
Address translation and permission checks are performed when
the cache is filled or data is written (back) to external memory,
i.e., only cache misses may suffer delays caused by the MMU.
The downside of virtual addressing is that caches need to
be invalidated upon context switches, increasing the costs of
preemptions. However, in our opinion, worst-case analyses will
benefit more from low cache access times than they would
from low preemption costs. Furthermore, virtual addressing
requires less tight integration with the processor pipeline, which
simplifies implementation.

Issues regarding virtual addressing of caches and cache
coherence protocols do not pose a problem for the platforms
we envision. On the one hand, hardware cache coherence
protocols are problematic with regard to time-predictability [?]
and should be avoided in a time-predictable platform. On the
other hand, hardware cache coherence protocols do not scale
to platforms with many cores. For such many-core platforms,
communication between cores should use the on-chip network
rather than shared memory [14]. Therefore, we do not consider
hardware cache coherence mechanisms in the design of our
time-predictable MMU.

V. IMPLEMENTATION

We implemented the proposed MMU in the context of the
time-predictable processor Patmos [15], which is part of the
time-predictable T-CREST platform [16]. Among other features
to aid time-predictability, Patmos implements a cache archi-
tecture that is designed for time-predictability. For example,
the default configuration includes a separate cache for stack
data [17], and a method cache [18], i.e., an instruction cache
that caches whole methods. The details of the cache architecture
had to be taken into account for the integration of the MMU.
However, the MMU itself is rather generic and can be included
in other architectures as well.

A. Hardware

In our implementation, the MMU is placed outside the
processor core and intercepts transactions between the processor

core and the memory controller. When building Patmos without
virtual memory support, the MMU can be replaced by a
dummy hardware module that simply forwards signals without
changing them. The segment table of the MMU is exposed
to the processor as an I/O device; modification of the table is
only allowed when the processor is in privileged mode.

Patmos uses variants of the OCP protocol [19], [20] for
internal communication and for accessing external memory.
The MMU signals invalid memory accesses to the processor
by responding with the value ERR, which is part of the OCP
standard. The memory stage triggers an exception whenever
receiving a response value ERR instead of a response value
DVA (data valid). Some of the data caches required minor
adaptions to properly forward ERR responses, but otherwise,
the triggering of exceptions on invalid data cache accesses was
straightforward. However, the instruction cache and the stack
cache require a different mechanism to trigger an exception.
These caches handle memory accesses internally and stall the
pipeline rather than responding back to the memory stage.
Therefore, we had to add signals to notify the memory stage
of invalid memory accesses originating from these caches.

The OCP protocol distinguishes reads and writes, but does
not include signals to distinguish reads that originate from
the data cache or from the instruction cache. To enable this
distinction and hence the proper handling of read and execute
permissions, we added an appropriate input signal to the MMU.
Conceptually, a command handled by the MMU comprises this
signal and the OCP command.

The hardware implementation closely follows the orga-
nization shown in Figure 2. However, the implementation
includes some additional logic to correctly handle OCP burst
transactions.

In the OCP variant used between the processor core and the
external memory, a slave must accept a whole burst transaction
once it accepts the initial command. To keep the critical path
between the processor core and the external memory reasonably
short, the MMU registers its inputs before processing them.
As the MMU cannot know whether the external memory will
accept the transaction at the time when it registers the inputs, the
MMU itself must be capable of buffering a whole transaction.
This is particularly important in multicore configurations, where
an individual core has to share access to external memory with
other cores.

B. Compilation

Adapting the linking process to use virtual addresses was
relatively straightforward. A simple linker script is sufficient
to map different parts of the executable to different segments.
However, we needed to adapt the compiler for Patmos to make
the generated code work correctly with virtual memory.

By default, the Patmos compiler emits call instructions where
the target address is given by an immediate value. In the
instruction set of Patmos, this immediate value is 22 bits wide.
This means that the code must fit into the first 4 MB of the
address space, which should be sufficient for most embedded
systems. With virtual addresses however, this would mean that



only segment 0 would be usable for code, which would be
an undue restriction. In particular, having only one segment
available for code would make it impossible to switch between
operating system code and application code in a clean fashion.
We adapted the compiler to load full 32-bit addresses into a
register and use an indirect call when compiling for virtual
memory.

Future work could extend the Patmos instruction set to
support immediate calls with 32-bit immediate values, similar
to the already present support for ALU instructions with 32-
bit immediate values. An alternative extension could be the
introduction of calls that are relative to the program counter.
Such extensions would (at least partially) eliminate the code-
size and run-time overheads of calls when compiling for virtual
memory.

C. Software

To experiment with the MMU, we developed an application
that downloads ELF binaries via TFTP and executes them. Due
to the use of virtual memory, the segments of the downloaded
binary may be placed arbitrarily in the physical address space.
Read-only segments (such as code and read-only data) can be
used in-place, where the binary is downloaded. Only segments
that are larger than in the binary (such as the heap) or not
present in the binary (such as the stack) are freshly allocated.

We currently support only statically linked binaries. Future
work could also explore the use of shared segments for common
code such as the C library or low-level arithmetic functions.

VI. EVALUATION

To evaluate the proposed MMU design, we evaluate the
hardware resources required to implement the MMU in an
FPGA and the performance impact of the MMU.

A. Hardware

We synthesized Patmos with the MMU for an Altera Cyclone
IV FPGA (part number EP4C115F29C7N). This FPGA is found
on the Altera DE2-115 development board, the default target
for Patmos. We configured Patmos with a single-issue pipeline,
a 4 KB method cache with 16 entries, a 2 KB stack cache, and
a 2 KB direct-mapped data cache with a write-back policy. The
external memory in our setup is an asynchronous SRAM with
an access time of 21 clock cycles for a 16-byte burst access.
We used a clock frequency of 80 MHz; the MMU is not on
the critical path and hence does not influence the maximum
frequency.

Table II presents the hardware synthesis results. The table
shows the resource usage of the whole Patmos core (excluding
I/0 devices, but including caches), the MMU, and the buffer
for burst transactions inside the MMU. The figures for the
whole core include the MMU, and the figures for the MMU
include the burst buffer.

The results in Table II show that the MMU consumes less
than a tenth of the logic cells of the processor. About a third
of the logic cells of the MMU are used for the buffer that
buffers whole OCP burst transactions. The fraction of registers

TABLE II
HARDWARE RESOURCE USAGE ON ALTERA CYCLONE IV FPGA

Unit Logic cells Registers Memory Bits

Core 9374 4455 88640

F MMU 814  (8.7%) 707 (15.9%) 0 (0%)
- Buffer 245 (2.6%) 237 (5.3%) 0 (0%)

used for the MMU is relatively larger, with a share of almost
sixteen percent of the whole processor. Again, about a third
of the registers is used for the OCP burst transaction buffer.
The rather high share of registers is due to the segmentation
table, which is too small to implement with an on-chip memory
block. Using a larger number of segments would cause the
hardware synthesis to implement the segment table in on-chip
memory block and thus reduce the number of registers. About
500 logic cells and registers are spent on the implementation of
the actual virtual memory implementation, which we consider
a quite efficient implementation of an MMU.

The hardware of the proposed solution is similar to the
hardware to implement a TLB in a traditional paging solution.
We expect that a TLB implementation would require a compa-
rable amount of hardware resources. However, the proposed
solution eliminates TLB misses and page faults as part of
normal operation, making it trivial to guarantee predictable
behavior of the MMU.

B. Performance

When using the MMU in Patmos, performance is affected
by two factors. On the one hand, the MMU introduces a
latency of two clock cycles due to the pipelining registers
that keep the critical path reasonably short. These two clock
cycles increase the cache miss time of 21 clock cycles by
10%, which we consider a small, but predictable performance
decrease. On a multiprocessor version of Patmos, with time-
predictable memory arbitration [21], the worst-case cache miss
time is multiplied by the number of processors, making those
additional two clock cycles negligible.

On the other hand, the use of full 32-bit addresses for
calls carries a performance overhead, compared to the use of
immediate calls with 22-bit addresses. As these overheads
do not vary at run-time, the proposed MMU may affect
performance, but does not affect time-predictability.

As mentioned, the MMU increases the latency of cache
misses by about 10% for the evaluated configuration. As not
every instruction causes a cache miss, we can expect the
overhead introduced by the MMU itself to be less than 10%.
The overhead for using full 32-bit addresses for calls is harder
to estimate, because it combines the effects of executing more
instructions, a larger code size, and a slightly higher register
pressure.

Table III shows performance measurement results for the
CoreMark benchmark [22] in different setups. The Coremark
benchmark consists of several sub-benchmarks, such that the
results reflect the behavior over these different sub-benchmarks.
The row labeled “short calls” presents result when using 22-bit



TABLE III
COREMARK RESULTS FOR DIFFERENT SETUPS, ITERATIONS PER SECOND

No MMU  With MMU

131.96 130.91
117.39 116.12

Short calls
Long calls

immediate values for calls, whereas the row labeled “long
calls” presents results when using full 32-bit call addresses.
Two columns in Table III show results with and without the
MMU present in the processor.

The results in Table III show that the performance impact
of the MMU is very small, around 1%. However, using long
call addresses has a noticeable impact, reducing performance
by about 11%. We conclude that the MMU itself meets
the goal of providing good performance while being time-
predictable. However, future revisions of Patmos should extend
the instruction set to reduce the performance penalty for using
32-bit call addresses.

VII. CONCLUSION

Hard real-time systems can benefit from the use of virtual
memory, in particular from the memory protection provided
by virtual memory. This paper presented the design and
implementation of a time-predictable MMU.

We analyzed the requirements of hard real-time systems on
virtual memory and found that these requirements are rather
different from the requirements of general-purpose systems.
In particular, hard real-time systems require predictability,
whereas general-purpose solutions favor flexibility and average-
case performance over predictable worst-case performance.
Traditional virtual memory solutions are therefore not a good
fit for hard real-time systems.

We presented the design of a time-predictable MMU that
takes into account the requirements of hard real-time systems.
Furthermore, we implemented the proposed solution in the
time-predictable processor Patmos. Our evaluation showed that
the proposed MMU can be implemented efficiently in hardware,
and that it introduces only a small performance overhead.
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