
Time-predictable Distributed
Shared On-Chip Memory

Morten B. Petersen, Anthon V. Riber, Simon T. Andersen, and Martin Schoeberl
Department of Applied Mathematics and Computer Science

Technical University of Denmark

Abstract—Multi-core processors for real-time systems need
to have a time-predictable way of communicating. The use of
a single, external shared memory is the standard for multi-
core processor communication. However, this solution is hardly
time-predictable. This paper presents a time-predictable solution
for communication between cores, a distributed shared memory
using a network-on-chip. The network-on-chip supports reading
and writing data to and from distributed on-chip memory.
This paper covers the implementation of time-predictable read
requests on a network-on-chip. The network is implemented
using static schedules, and time-division multiplexing, enabling
predictions for worst-case execution time. The implementation
attempts to keep buffering as low as possible to obtain a small
footprint. The solution has been implemented and successfully
synthesized with a multi-core system on an FPGA. Finally, we
show resource and performance measurements.

Index Terms—Network-on-chip, Distributed memory, Real-
time systems

I. INTRODUCTION

Multi-core processors for real-time applications need to
have a time-predictable way of communicating. Traditionally,
Multi-core processors use a single shared main memory which
is accessed through arbitration. However, using a shared main
memory tend to scale poorly with increasing core count, re-
sulting in long access latencies and poor bandwidth. This paper
presents a solution for time-predictable communication for
multi-core processors using a network-on-chip (NoC) based
distributed shared memory (DSM). The presented solution
aims to keep latency low and bandwidth high, as well as
ensuring time-predictability. The presented solution uses the
S4NOC [1] as the NoC, introduced in section III. The S4NOC
uses the schedules presented in [2]. We present a network
interface (NI) which provides transparent memory access to
the DSM as well as supporting both reading and writing in a
time-predictable manner. To keep memory access latency low
and bandwidth high, we separate traffic between two NoCs:
one network for transmitting write and read request, and one
for returning read data. If only one network is used, with the
schedule presented in [2], the following issue may arise: NI A
has to answer a read request from NI B in the same cycle as
it desires to write to NI B. This is not possible, as only one
package can be transmitted per schedule time slot. In such
cases, if the schedule [2] used in [1] is not altered, NI A
would have to buffer one of its transmissions for an additional
schedule period. This may lead to accumulation of read and
write requests, thus spoiling time-predictability.

This paper explores a possible solution for a time-
predictable distributed shared memory with support for both
reading and writing. Reading is supported by adding a separate
network to split the network traffic between transmitting writes
and read requests and answering read requests.
The main features of the solution are:

• The total address space is distributed across all NIs,
allowing for fast memory accesses from cores to the
memory local to their NI, avoiding potential bottlenecks
from a single globally shared memory.

• A dual-ported memory in the NI supports concurrent
access from a core (local access) as well as for handling
external memory accesses.

• NIs support external write requests (a core writing to the
memory in an external NI) as well as read requests (a
core requesting memory in an address range located in
an external NI).

• The system uses a static TDM-based scheduled NoC [3],
which allows the implementation to be built as a time-
predictable architecture [4], suitable for time-critical real-
time systems where the worst-case execution time must
be bound and analyzable.

• A NoC and NI with low resource consumption.

II. RELATED WORK

One-way memory [5] presents a time-predictable DSM
solution for communicating between multiple cores using
writes only. As with our solution, the one-way memory project
uses the S4NOC [1] and the schedule presented in [2]. The
S4NOC is a statically scheduled symmetric bi-torus NoC,
which assigns a schedule time slot for a channel to each of
the other tiles in the network. The symmetry of the network
topology allows for the same schedule to be used in all routers.
The one-way memory is designed as follows: each tile contains
a transmit and a receive memory. The receive memory contains
an entry from each other tile in the system while the transmit
memory contains an entry to each other tile in the system. The
system achieves memory coherency by continuously updating
the contents of the transmit memories of each tile in all other
tiles. The duration between writing to a transmit memory and
this change to be propagated to all other receive memories
in the system is fixed and therefore time-predictable. While
being a novel example of a time-predictable distributed shared
memory, implementation-specific knowledge is required to use
the system as a method of communication in software. Our



presented solution requires no implementation specific details,
presenting itself as a contiguous address space which may be
freely read by all tiles.

Communication between cores can be achieved either via
cache coherence protocols that back up shared memory, or
through explicit message passing with a NoC between core-
local memories. For time-predictable on-chip communication,
a NoC with TDM arbitration makes it possible to compute
bounds for the communication delay. Æthereal [6] is such
a NoC that uses TDM, where slots are reserved to allow a
block of data to pass through the NoC router without waiting
or blocking traffic. Like Æthereal, the Argo NoC [7] uses
a TDM based NoC but also uses the same TDM schedule
in the network interface [8]. We follow the TDM approach
of Æthereal and Argo, but provide an even simpler network
interface to the NoC.

The Paternoster NoC [9] avoids flow control and complexity
in the routers by restricting a packet to single standalone
flits. Paternoster connects the routers in a unidirectional torus,
which results in only three ports in the routers. Flits are only
inserted into the X ring when the slot is free. For the direction
change to Y, a small FIFO buffer can hold the packet until a
free slot arrives.

Our NoC uses a similar architecture and employs just
single word packets. However, we use statically scheduled
TDM-based arbitration to bound the maximum latency for
packets and avoid any buffering in the routers. Furthermore,
we support read and write requests by providing two NoCs:
one for read and write request and one for the read response.

The Real-Time Capable Many-Core Model proposes many
cores with a NoC with TDM-based arbitration [10]. The
Reduced Complexity Many-Core architecture [11] proposes
avoiding shared memory completely and supporting timing
analysis by using a fine-grained message passing NoC. We
agree with this preference for on-chip communication between
local memories over shared memory communication, but sup-
port read and write operations.

The Hoplite architecture [12] uses routers without buffers,
a unidirectional torus, and single flit packages that include the
destination address. On an arbitration conflict, Hoplite uses
deflection as a resolution mechanism. This design results in
very small hardware usage, but it cannot provide real-time
guarantees. The Hoplite design is carefully handcrafted for
Xilinx FPGAs to provide the lowest hardware consumption
possible.

HopliteRT [13] is an extension to Hoplite to provide real-
time guarantees. Hoplite is modified to prioritize deflections
and perform traffic shaping at the network interface to provide
guarantees on end-to-end latencies for packets.

HopliteBuf [14] extends Hoplite and introduces corner
buffers in the routers, similar to the PaterNoster NoC, to store
packets on congestion to completely avoid deflection routing.
A static analysis tool provides bounds on the buffer sizes
to avoid any stalling at the buffers and to provide in-order
delivery of packets. HopliteBuf uses traffic shaping similar to
HopliteRT, to provide real-time guarantees and limits on the
corner buffers.

All versions of Hoplite omit an NI and use generated traffic
patterns to evaluate the design. In contrast, our design contains
NIs connected to real processor cores. We evaluate our design
with programs executing on the cores.

As HopliteRT and HopliteBuf provide upper bounds on the
message latency, we can envision building a time-predictable
DSM with those NoCs. We would need to double the NoCs
for write and readback and add a modified version of our NI.

Hoplite and HopliteRT NoCs can result in out-of-order
delivery of packets due to the deflection routing on congestion.
There is no mechanism described for reestablishing the packet
order at the receiver. HopliteBuf resolves this issue. With the
TDM schedule in S4NOC we avoid out-of-order packets and
can therefore rely on in-order delivery of several independent
transmitted flits that resemble a longer message.

The multi-core processor Epiphany [15] uses a distributed
memory architecture. Each core contains 32 KB of local
memory that is mapped onto a global address space. The
processors contain no caches. Access to the memory of a
remote core takes place over a NoC. The NoC is organized
as a mesh, and favors writes over reads, as writes are posted
without the processor needing to wait for the write to finish.
Packets are single words and routing is performed in a single
cycle per hop. However, conflicting packets can result in
delays that are hard to bound. In contrast, we use TDM-based
arbitration for our distributed memory.

Like the NoC which we present here, the Argo NoC [7]
aims for time-predictability. It uses TDM-based arbitration in
the routers, and it also uses TDM-based direct memory access
transfers of data from the local memory to the NoC. Argo
uses source routing, which means the routing information is
transmitted as a header word. For this header processing and
the switching in the crossbar, the router is pipelined into three
stages. By contrast, our simple router includes the routing
information in the router itself and each router multiplexer
requires just a single pipeline register in the router. Another
important difference is that Argo also supports global asyn-
chronous, local synchronous systems with an asynchronous
router design.

The one-way shared memory [5] is a communication ar-
chitecture for multi-core systems using distributed shared
memory, which implements functionality for communicating
between tiles in the network using writes only. The basis of
that implementation, such as the NoC and the scheduler, have
been used in the solution presented in this paper.

The main differences between our work and all the above
projects (except Epiphany) is the direct support for reads in
the NI/NoC.

Previous work in the field of NoC based DSM generally
implements a shared memory as multiple tiles connected to
NIs in the network. Monchiero et al. [16] presents a DSM
with all memory tiles mirroring a single address space. This
solution achieves latency improvements by placing shared
memories near their utilizing PEs, as well as increasing the
number of memory tiles in the system to reduce contention.
Yuang et al. [17] presents a DSM with shared- and semaphore
memories, used for communication and synchronization. The



Time slot: 0 1 2 3 4 0 1 2

Schedule: N E L N E L

N L N

E L

Fig. 1. 2x2 schedule used by the S4NOC. Columns represent time slots.
Rows represents routes in the network.

shared memory tiles present a contiguous address space,
similarly to this work.

Architecturally, this work distinguished itself in the place-
ment of shared memories. Whereas [17] and [16] present the
shared memories as being distinct tiles within the network,
we place our segments of the shared memory within network
interfaces. This provides UMA (Uniform Memory Access) for
PE-local shared memory and NUMA (Non-Uniform Memory
Access) for PE-external shared memories, allowing shared
memories to be utilized as low-latency scratchpad memories.
Furthermore, [17], [16] do not provide hard real-time guaran-
tees.

III. THE S4NOC NETWORK-ON-CHIP

We base our DSM on the S4NOC project [1] and the T-
CREST multi-core platform [18]. S4NOC is now part of T-
CREST and available in open source at GitHub: https://github.
com/t-crest.

The S4NOC is a statically scheduled TDM NoC intended
for real-time systems. As all traffic is statically scheduled,
there are no conflicts on any shared resource, such as links
or multiplexers. Without the possibility of conflicts there is
no need to provide buffering in the routers, flow control, or
credit-based arbitration.

The original design supports single word packets and single
cycle hops between routers. The routers contain one output
register per port and a multiplexer in front of that register. The
schedule is stored in the router and drives the multiplexer.

The default configuration of a S4NOC is a bidirectional
torus, resulting in five in- and output ports (north, east, south,
west and local) in each router. The default schedule is a all-to-
all schedule where each core has a dedicated channel to each
other core. With a regular structure such as a bidirectional
torus and an all-to-all schedule, it is possible to find one
schedule that is executed in all routers [2]. That means it is
the same for all routers. So if, for example, in a given clock
cycle a word is routed from west to north, then this is done
in all routers.

Implementing the S4NOC on an FPGA results in a low-area
hardware implementation. One register per port, one 4:1
multiplexer per port, a counter for the TDM schedule, and a
table for the schedule. The table for the schedule is generated
during synthesis.

We will now present an example of a network schedule
using the 2x2 network schedule from Figure 1 as an reference.
Each row of the schedule is a route which a package will
traverse through the network. The columns are clock cycles,
which will be referred to as time slots. In the first time slot

Router

NI 
MEM

CORE 

Fig. 2. Organization of a single tile. The NI is connected to a dual-port
memory as well as to the routers for the two separate networks and a core.

(0) the first route starts. As it can be seen from Figure 1,
the first hop of the first route is in the N (north) direction.
This means that every router passes data from the input L
(local) which is connected to the NI, to the north output of
the router. In the following time slot (1) the next hop in the
first route is E (east). Therefore, every router passes the data
from input S (south) to the east output of the router. The
reason that data is routed from from input S is that data was
transmitted north in the previous time slot, so it is received
through the south input of the receiving router. The same logic
follows for all routes. In time slot 2, every router passes data
from input W (west) to output L (local), which is the network
interface. The next route starts in time slot 2. As this route
starts with N, every router will pass data from input L to output
N, concurrently with passing from W to L. The same logic
applies for the entire schedule. When the schedule has gone
through its period (5 cycles for the 2x2 schedule), it repeats.
This method of transmission defined by schedules leads to the
constraint that a given direction can only appear once in each
time slot. Otherwise, two packages would have to share the
same link in a single cycle.

IV. DISTRIBUTED SHARED ON-CHIP MEMORY

We propose a design that enables the sharing of memory
situated locally in a tile with all other tiles in the network.
A core can send memory access requests to its NI, which
will decide whether the request shall be delegated to the local
memory or to an external memory. This delegation is done
based on the address given in the memory request. These
requests can be either reads or writes.

A. Memory Organization

As shown in Figure 2, a dual-port memory is placed inside
each tile. The dual-port memory allows two concurrent write
or read accesses to the memory. This provides support for
handling memory requests from a core to its local memory
in the same clock cycle as handling a read or write request
from a remote core via the NoC. This organization may yield
a substantial speedup in program execution time, compared
to when using arbitrary addresses in a shared memory space,
if cores are delegated to execute on memory local to their
NI, which has a single cycle memory access time. Having a
dual-ported memory allows for multiple writes or reads to the

https://github.com/t-crest
https://github.com/t-crest


TABLE I
DISTRIBUTION OF A 1024-WORD (10-BIT WIDE) ADDRESS SPACE ON A

2X2 NOC.

Address space NI
0x000 - 0x0FF 0
0x100 - 0x1FF 1
0x200 - 0x2FF 2
0x300 - 0x3FF 3

same address in a single cycle. In a write-write case to the
same address, the core which owns the memory will have its
value written and the other write request will be ignored. In a
producer-consumer scenario, when a write and a read to the
same address occur simultaneously, the newly written value
will be read.

The memory is sized and distributed in such a way as
to allow for the receiving tile to be specified as part of the
address. An example of the memory distribution is as follows;
Having a 2x2 NoC with a 1024-word address space (10-bit
wide), the lower 8 bits address a word within the address
space of a NI, while the upper 2 bits encode the tile within the
network where the memory resides. Equations (1) and (IV-F)
shows a generalization of the number of bits allocated to NI
local address space and tile destination specification, given
a size of the total distributed memory (MemorySize) and
the number of tiles (n) in the system configuration. Table I
illustrates how different memory addresses map to NIs within
the distributed memory in the 2x2 case.

BitsLocalAddrSpace =

⌊
log2

(
MemorySize

n

)⌋
(1)

BitsDestinationNI = dlog2 (n)e (2)

The NI is able to determine if and when it needs to transmit a
read request onto the network, based on the address provided
in the memory request. The destination tile is addressed by
sending the request out in the corresponding time slot. Each
NI has a lookup table that maps destination addresses to time
slots.

B. Network Structure and the Readback Network

Key to the idea of supporting time-predictable read- and
write requests is having two separate NoCs. These two net-
works will be denoted as the write network and the readback
network. The motivation for having two separate networks is to
keep the schedule length as short as possible, and thus reduce
the latency of memory accesses.

The focus of the presented solution is to reduce latency,
and in this, worst case execution times for the system. An
alternative, more space-efficient solution would be to rely on
a single network and doubling the schedule length. In such a
solution, the schedule would repeat itself twice, where the first
half would be responsible for the transmission of writes and
read requests and the second half for transmitting responses
to read requests. This alternative solution would address the
issue of buffering requests in [5] as described in Section I.
While this alternative would be a valid solution if we focus
on minimizing the footprint of the implementation, it would

DW

Address

1 1

W/RValid

Bit Width:

Bit Fields:

DW1

Valid

Bit Width:

Bit Fields:

Write Network Packet

Readback Network Packet

Data

Data

Fig. 3. Data fields of read and writeback network packets.

result in poorer worst-case execution times than the solution
which we present.

As in [5], we use the TDM schedule developed in [1],
[2] and the router design from the S4NOC [3]. The TDM
approach ensures a worst-case execution time for read and
write requests, since the schedule is statically determined.

Each network will be responsible for handling separate
kinds of communication:

• Write network: Handles transmission of memory writes
from NIs to an address space external to the transmitting
NI. It also handles the transmission of read requests from
cores to an address space external to the transmitting core.

• Readback network: Handles transmission of read memory
data from an external NI to a requesting core, after a read
request has been received.

The write network is able to support two functions, since
a core in a given cycle is only able to send either a read-
or a write request to its NI. The interface between a core
and its NI follows the open core protocol (OCP) [19]. After
sending a request, a core is expected to stall until it receives
a valid signal from its NI. The valid indicates either that
(a) a write has been written to local memory or transmitted
to the network, or (b) that the value of its read request is
available. From a core’s point of view, the interfaces for
accessing local and external memory are identical. However,
the design inherently has a non-uniform memory access time,
as the request depends on the access address as well as in
which time slot the request occurs.

In the write network, the read or write address needs to be
transmitted in the same packet as any data to be sent over
the NoC. Figure 3 shows how the packet width of the write
network varies according to: the number of tiles in the network
(n), the size of the total address space (MemorySize) and
the data width (DW ). Furthermore, a valid bit and a bit
indicating whether a transmitted message is a write or a read
request are required. As explained in Section IV-A, since the
most significant bits of the address determine which NI should
receive the request, only the address within a block needs to
be transmitted, as the transmission slot is directly correlated
to the upper part of the address.

The static nature of the readback network allows for a
low area implementation. Given that a transmission onto the
readback network is directly linked to when the read request



Sheet1

Page 1

0 1 2 3 4 0 1 2

WR: Request: N E L N E L

N L N

E L

Response: L 0 S W L

S L 0 1 S L

W L 0 1 W L

0 1 2 3 4 0 1 2
Request: N E L N E L

N L N
E L 1

Response: L S W L
S L S L

W L W L

0 1 2 3 4 5 6 7 8 9 10 11 12

Request: N N E E L

E S L

N E E L

N N E L

Response: 0 S S W W L

0 1 2 W N L

0 1 S W W L

S S W L

(a)

0 1

2 3

S

W

N

E

(b)

Fig. 4. Request: Write/read request network schedule, the network responsi-
ble for writing and requesting reads to other NIs. Response: Readback network
schedule, the network responsible for returning data from a read request.
4a illustrates the schedules of a pair of 2x2 write and readback networks.
Columns represent time slots. Rows hold a route each. Grey boxes and
numbers indicate buffered requests, see Figure 5.
4b illustrates the concept of schedule inversion, where the routes shown are the
topmost route of the Request and Response schedules. Solid lines represent
the Request route and dashed lines the Response route.

was received (and thus to which NI transmitted the request),
the destination is implicit and does not need to be encoded. No
address information needs to be encoded within the readback
network, since the requesting core is expected to stall until
a response is received from an external tile. When receiving
data on the readback network, it is therefore known that that
the received data is directly tied to the address to which the
request was made. So the phit width of the readback network
will be:

wReadback = 1 +DW (3)

corresponding to a valid bit and the data width.

C. Readback Network Schedule

With the memory technology available, accessing the on-
chip dual-port memory can be done in constant time. This
means that incoming requests can be handled simultaneously
with local requests from the core. With this constant access
time, the schedule for the readback network can be directly
matched up with the schedule of the write network. This
results in the possibility of implicitly transmitting the read-
request data to the core which transmitted the request, without
having control circuitry in the NI dedicated to checking when
the time slot to transmit the response on the readback network
is present. To ensure minimum memory read latency, the
readback schedule must match up with the write schedule.
Furthermore, it must be ensured that the readback schedule,
like the write schedule, is a valid all-to-all schedule.

As a solution, we introduce the concept of schedule in-
version, where the following transformation is applied to
a schedule: N→S, W→E, E→W, S→N. This implies that
responses to read requests will be routed to the transmitter of
the read request backwards along the same route by which
the request was transmitted. Referring to Figure 4b, it is seen
that a read request sent from tile 2 to tile 1 is routed back
from tile 1 to tile 2. Given that an inverted schedule maintains
the relationship between routes, ie. that inverted routes do not
interfere with other inverted routes, it is thus ensured that if

Sheet1

Page 1

0 1 2 3 4 0 1 2

WR: Request: N E L N E L

N L N

E L

Response: L 0 S W L

S L 0 1 S L

W L 0 1 W L

0 1 2 3 4 0 1 2
Request: N E L N E L

N L N
E L 1

Response: L S W L
S L S L

W L W L

0 1 2 3 4 5 6 7 8 9 10 11 12

Request: N N E E L

E S L

N E E L

N N E L

Response: 0 S S W W L

0 1 2 W N L

0 1 S W W L

S S W L

Fig. 5. Section of a 4x4 schedule taken from [20]. Shows that a read request
can be received out of order with the corresponding transmissions onto the
readback network, using a lookahead shift register. Read data buffering is
explained in Section IV-E). Numbers indicate where read data is present within
the shift register. Grey boxes indicate that the data is in a register within the
shift register

a schedule generated for the write network with [20] is valid,
this validity also applies to an inverted schedule.

D. Readback Network Time Shifting

With an inverted schedule generated for the readback net-
work, Figures 4a and 5 show how the readback network
schedule is shifted in relation to the write network schedule.
The exact magnitude of the shift is specified by the length of
the first schedule route in the write schedule, which will always
be the longest route. By shifting the second network by the
length of the first schedule route, it is seen that a received read
request from the first route may be responded to immediately,
ensuring minimum memory access latency. As seen in Figure
4a, the first route is 3 cycles long, and thus the readback
schedule is shifted by 3 time slots. In practice, this variable
time shifting is achieved by modifying the start value of the
counter which the router for the readback network uses to
index into its schedule table. This solution is general, so the
same logic follows for 3x3 and larger schedules. With this
time shifting, a precise match is made between the reception
of a readback request and the transmission of the response.
This is indicated by the arrows in Figure 4.

E. Request Buffering

As indicated by the grey boxes in Figure 4, some requests
need to be buffered before they can be transmitted to the
readback network. This is indicated by the second arrow
in Figure 4, where the reception of the request from the
transmitted core arrives one cycle before the transmission
needs to occur. To accommodate this, a lookahead shift register
is implemented which has the read response as input and has
the same number of registers as there are leading grey boxes in
the schedule. For the 2x2 and 3x3 networks there is only one
leading grey box (one extra delay cycle between reception and
transmission) and therefore only one register. A 4x4 network
would require two registers, as there are two time slots where
buffering is required.

The buffer shifts all registers every cycle, regardless of
whether a new response have been read from the memory
or not. A multiplexer is used to choose which response in the



TABLE II
RESOURCE CONSUMPTION OF THE DSM.

Component LUTs Registers
2x2 NI 190 97
2x2 Write network 1165 504
2x2 Read back network 535 396
2x2 Total 2460 1288
3x3 NI 251 102
3x3 Write network 2533 1800
3x3 Read back network 2389 1485
3x3 Total 7181 4203
4x4 NI 383 173
4x4 Write network 5798 3200
4x4 Read back network 5834 2640
4x4 Total 17760 8608
PaterNoster node 8030 3546
OpenSoC router 3752 1551
3× 3 Argo NoC 15177 8342

shift register should be transmitted onto the readback network
in a given schedule cycle. A table generated at compile time
contains the multiplexer selection for every time slot. Each
entry contains an index indicating where data should be read
from the shift register and transmitted onto the readback
network. This table is indexed with the shifted TDM cycle
counter, whose output is used as the selector signal for the
multiplexer.

F. Generating Tables for Control Circuitry

We have built our DSM around the NoC developed for
the S4NOC [1], which uses the schedule generation algorithm
presented in [20]. Key to our design is the ability to generate
control circuitry for determining when to transmit packages
onto the network. For each tile in the network, we are able
to generate a lookup table by analyzing the static schedule in
conjunction with a tiles position in the network in relation to
all other tiles. This lookup table is indexed with the destination
address, see eq. , and returns the timeslot where the route to the
target tile starts. The technique of generating control circuitry
by analyzing a tiles position in the network in relation to the
static schedule, has also been used for implementing request
buffering, described in section IV-E.

V. RESULTS

The network uses the OCP interface for easy integration
with multi-core platforms such as Patmos or other processors.
Using the T-CREST platform [18], the DSM has been attached
to Patmos processors, synthesized, and implemented in an
Altera DE2-115 FPGA, in 2x2 and 3x3 configurations. With
this, C-language tests have been written and compiled for
the Patmos processors. In these tests, a Patmos processor
executes read- and writes to memory locations which maps to
memory located in the other tiles of the DSM. Using the cycle
counter in Patmos, latencies of reads and writes have been
measured. From these, tests have been written for measuring
the bandwidth of the DSM. Implementations larger than 3x3
configurations have been tested using simulations that mimic
the processors. These simulations tested that all tiles can read
and write to all other tiles in all possible time slots. The cycle
accurate simulations have been used to determine the number

2x
2

3x
3

4x
4

5x
5

6x
6

7x
7

8x
8

9x
9

10
x1

0
0

0.5

1

1.5

2
·105

NoC Size

Total Resource Consumption

LUTs

Fig. 6. Resource consumption for various network sizes with a 10 bit memory
space.

of cycles to read and write to all other tiles in all possible
time slots. These simulations have been successfully verified
for networks up to an 8x8 configuration, while configurations
up to 10x10 have been synthesized.

A. Resource Consumption

Table II shows the resource consumption for the 2x2,
3x3, and 4x4 networks. Figure 6 shows the consumption
for synthesized networks up to a 10x10 configuration. The
consumption was found using Quartus Prime 16.1 for an Altera
DE2-115 board that contains the Altera/Intel Cyclone IV
FPGA. The NI usage shown in the table is for a single NI
and should thus be multiplied by the size of the network to
get the total consumption. The consumption shown excludes
the actual memory, as this depends on the chosen size and
implementation. All the networks assumed an address width
of 10 bits. The individual NIs increase in size with larger
configurations, as the look-up tables for the routes increase.
The readback network is always smaller than the write network
in the number of registers, as it carries only the read data
and no address. In comparison, a single Patmos core uses
approximately 8000 LUTs and 4200 registers. Therefore, an
entire 3x3 network requires the same amount of resources as
a single Patmos core.

The maximum frequency of the network has been found
using dummy cores, which are faster than the Patmos cores.
For the Cyclone IV at the slow speed grade we observe the
worst-case maximum frequency between 190 and 170 MHz for
the 2x2, 3x3 and 4x4 networks. When synthesizing with a 3x3
Patmos setup the maximum frequency is 78 MHz, where the
critical path is within the Patmos cores. We therefore conclude
that the NoC design with a single pipeline register per hop is
a valid design point for FPGAs.

The last section of Table II shows other NoC components
and a complete Argo NoC to compare with our DSM NoC.
Similarly to S4NOC and Argo, the PaterNoster NoC and the
OpenSoC NoC [21] are available in open-source, which allows
us to synthesize those NoCs for the same FPGA. From the



results, we can observe that a PaterNoster node (including
an NI) and an OpenSoC router consume resources in the
same range as a complete 3x3 configuration of our DSM.
The PaterNoster NI is relatively large, as it contains a fully
associative receive buffer to be able to read from any channel
independently of the receiving order.

We observe that the Argo NoC requires double the amount
of hardware in a 3x3 configuration. However, Argo contains
an NI that provides hardware support for message passing and
DMA handling.

B. Bandwidth and Latencies

As we are targeting real-time systems the maximum latency
for a read or write must be analyzable. Using the TDM based
NoC this is easily achievable. The lowest latency will be to
the core’s local memory, which requires a single cycle. For
real-time systems we need to provide bounds for the worst-
case. We can analyze those bounds for both a read and write
request. As it is a statically scheduled TDM, we know exactly
how long an NI will maximally wait to send a message. The
maximal wait time is the length of the schedule (period) minus
1, if we just missed the time slot. Passing the message through
the network will at most take the length of the longest (route).
Therefore, the worst-case latency for a write request will be
schedule period - 1 + route. For a read request we need to
include the response path, which is the same as the send
path, and the maximal buffering time in the NI (buffer), which
is equal to the number of grey boxes in schedule table (see
Figures 4a and 5). Therefore, we get a worst-case latency for
a read request of schedule period - 1 + route × 2 + buffer.
For the 2x2, 3x3, and 4x4 networks respectively, the schedule
period is 5, 10, and 19 cycles, the longest route is 3, 4, and
5 cycles and the buffer time is 1, 1, and 2 cycles.

This is a substantial latency reduction compared to the
default memory configuration of the T-CREST platform. In
the T-CREST platform, each Patmos processor is connected
to the main memory through TDM arbitration. It takes 21
cycles to deliver a 4 word burst from main memory, which
yields a worst-case latency for accessing main memory for a
configuration of n cores of:

lwc = n× 21 (4)

Given a 2x2 or 7x7 configuration this equates to write
latencies of 84 or 1029 cycles, for a 4 word burst. For
comparison our DSM shows, for 2x2 or 7x7 configurations, a
single word write latency of 5 or 72 clock cycles. Worst-case
read and write latencies for the DSM are shown in Table V.

The maximum bandwidth that can be achieved in the net-
work occurs when cores execute write commands. To achieve
maximum bandwidth, cores must execute writes such that
they target external memories in a sequence defined by the
schedule. For instance, if in a 2x2 NoC the tiles and their
location are denoted by the associations {N0 ∼ NW,N1 ∼
NE,N2 ∼ SW,N3 ∼ SE}, for N0, the optimal write
sequence which follows the schedule of Figure 4 will be
(N3, N2, N1). If this execution constraint is satisfied, a core

can transmit n − 1 writes in a TDM round. The maximum
write bandwidth of the entire network can therefore be stated
as:

bwwr,max =
n× (n− 1)

period
× word (5)

which for a 2x2 network is 2.4 words/cycle, for a 3x3 7.2
words/cycle and for a 4x4 12.63 words/cycle.

The theoretical results have been verified with measure-
ments for a 2x2 and 3x3 network based on C tests running
on Patmos on an FPGA. The network was integrated using
an OCP interface between the processor and the NI. For a
2x2 and 3x3 network, the measured minimum and maximum
latencies for writes and reads are shown in Tables III and IV.

For networks larger than 3x3, up to 7x7, latency has been
measured through a testbench using the actual hardware.
Due to the exponential increase in testbench simulation time,
latency measurements for networks larger than 7x7 (up to
10x10) are model based. Table V shows the relationship
between network size and maximum measured latency. This
indicates that the networks tend to scale linearly with the
number of tiles, which is a desirable feature. Furthermore,
it is seen that the difference in read and write latencies is
primarily dominated by the period length and that the relative
difference between a write and a read becomes lower for
larger networks. It is true for all sizes that the buffer is
not used for the maximum read schedule, as the readback
network has been matched for the longest latency. The Route
values of Table V are for a single direction and so the worst
case read values are all equal to the Period + 2 times the
Route, while a write is only a single period, as this is the
longest time the processor may wait for sending a packet. As
seen earlier, the shared memory of the T-CREST platform,
which uses a statically scheduled TDM arbiter for access, has
a maximum write latency of n × 21 cycles. Therefore, the
DSM shows improved worst-case timings for memory access
compared to the T-CREST shared main memory. For larger
networks, congestion becomes an issue when using a shared
main memory and as such may require alterations to keep
the critical path low. This is much less of an issue when
using the DSM. Using this setup, a write bandwidth of 2.396
words/cycle has been reached, where the discrepancy between
the theoretical maximum bandwidth of 2.4 words/cycle and
measured bandwidth is a result of the overhead related to
the cores needing to align their write instructions with the
schedule, as well as a slight measurement overhead.

As with the best-case scenario for writes, the best-case
bandwidth for read requests is achieved if read-requests are
transmitted in accordance with the schedule, ie., when a read-
request response is received, the next read should be issued
to the core which matches up to the time slot that follows
from receiving the response. As core stall time due to read
requests varies with the schedule, an expression describing
best-case bandwidth is not trivial. However, this network is
designed for real-time systems, which means that we care
more about worst-case latency. The worst-case read latency



TABLE III
MEASURED MIN AND MAX

MEMORY ACCESS CLOCK CYCLES
IN A 2X2 NOC

Min: Max:
Core 0 → Core 0
Write: 1 1
Read: 1 1
Core 0 → Core {1,2}
Write: 1 5
Read: 6 10
Core 0 → Core 3
Write: 1 5
Read: 7 11

TABLE IV
MEASURED MIN AND MAX

MEMORY ACCESS CLOCK CYCLES
IN A 3X3 NOC

Min: Max:
Core 0 → Core 0
Write: 1 1
Read: 1 1
Core 0 → Core {1,2,3,6}
Write: 1 10
Read: 6 15
Core 0 → Core {4,5,7,8}
Write: 1 10
Read: 7 16

TABLE V
SCHEDULE PROPERTIES FOR INCREASING NOC SIZES, DENOTED IN

CLOCK CYCLES. wc = WORST-CASE LATENCY

NoC size Schedule
period

Longest
route Writewc Readwc

2x2 5 3 5 11
3x3 10 3 10 16
4x4 19 5 19 29
5x5 27 5 27 37
6x6 42 7 42 56
7x7 58 7 58 72
8x8 87 9 87 105
9x9 113 9 113 131
10x10 157 11 157 179

can be expressed as:

lrd,wc = lenTDMround − 1 + 2 · lrt+ bc (6)

With lrt = hops/cycles in the longest route and bc = number of
buffer cycles. A bandwidth measurement for the read network
has been made, where all cores are set to continuously read
from the same tile. This test configuration does not resemble
the best-case bandwidth, as timing of the schedule is not
considered. However, this is a more realistic use case scenario
due to spatial locality. This bandwidth has been measured for
2x2 and 3x3 NoCs, see Tables III and IV.

As we see, the bandwidth is not optimal, owing to the fact
that the NIs must wait a substantial amount of time between
receiving the response for the request and hitting the TDM
slot for transmitting a new read to the target tile.

TABLE VI
MEASURED NETWORK BANDWIDTH FOR READING

Total bandwidth
2x2 NoC 0.788 words/cycle
3x3 NoC 0.886 words/cycle

Sheet1

0 1 2 3 4 0 1 2 0 1 2 3 4 5 6 7 8 9

WR: Request: N E L N E L N E L N E L

N L N N L N L

E L E L E L

Response: L S W L

S L S L

W L W L

0 1 2 3 4 0 1 2

Request: N E L N E L

N L N

E L

Response: L S W L

S L S L

W L W L

ResponseRequest

Page 1

Fig. 7. Schedule for a 2x2 DSM using a single NoC.

C. Single NoC Comparison

As described in Section IV-B, an alternative and more area
efficient solution for the problem presented is to utilize only
a single network, doubling the schedule length and dedicating
each half of the schedule to either reading or writing, see
Figure 7. While this solution has not been implemented, we
here present some considerations regarding such an alternative.
We suspect that the worst-case read latency on a single-
NoC DSM will be in the range of double the latency of the
presented double-NoC solution, but do not present a definite
answer. Such a solution may contain unexplored positive as
well as negative influences on worst-case latency, i.e. possible
schedule overlap and differences in buffer length. With respect
to area utilization, we note that the readback network is
considerably leaner than the write network, given the lack of
address information within a readback packet (see Figure 3).
As such, assuming that the presented work shows a theoretical
halving of worst-case latency compared to a single NoC
solution, a two-NoC DSM may present a substantial worst-
case latency improvement without a major increase in area.

D. Source Access

The entire solution is open source and freely available at
https://github.com/t-crest/patmos. The project and related tests
can found in the readme at https://github.com/t-crest/patmos/
tree/master/c/apps/twoway.

VI. FUTURE WORK

As it has been noted that our network can run at more
than twice the clock speed of the Patmos processor, we would
be able to run the NIs and networks at double the frequency
of the cores and have the OCP wrapper handle the different
clock speeds and interfacing. A request would be clocked in,
be processed and, when ready, would be stored and sent back
to the requesting tile at the rising edge of the slow clock. This
would result in a nearly halved latency for the long schedule
routes and nearly a doubling of the bandwidth. It would not
have any impact on the local reads and writes, as these are
already handled in a single cycle.

VII. CONCLUSION

We have presented a solution for time-predictable commu-
nication for multi-core processors. The solution implements a
distributed on-chip shared memory, with data transfer though
a time-division multiplexed, statically scheduled network-on-
chip. The design revolves around a network interface con-
taining a dual-port memory for concurrent memory access
to NI-local memory from both the core local to the NI as
well as requests from external cores. The design relies on two
parallel networks where the network traffic is split between
write messages and read-back messages. Using an inverted
and time-shifted schedule, it is possible to respond to read
requests in a static manner, based on when the read requests
are received by the network interface, utilizing a minimum
amount of buffering and control hardware.

The solution has been implemented and tested using the
hardware construction language Chisel. Performance has been

https://github.com/t-crest/patmos
https://github.com/t-crest/patmos/tree/master/c/apps/twoway
https://github.com/t-crest/patmos/tree/master/c/apps/twoway


measured by integrating the system with the Patmos multi-core
processor running C test programs. Resource consumption has
been measured by implementing the design on an Altera DE2-
115 FPGA, using Quartus Prime 16.1. Finally, we have briefly
discussed further improvements of the design.

Acknowledgement

The work presented in this paper was partially funded by
the Danish Council for Independent Research | Technology
and Production Sciences under the project PREDICT (http:
//predict.compute.dtu.dk/), contract no. 4184-00127A.

REFERENCES

[1] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki, “A statically
scheduled time-division-multiplexed network-on-chip for real-time sys-
tems,” in Proceedings of the 6th International Symposium on Networks-
on-Chip (NOCS), (Lyngby, Denmark), pp. 152–160, IEEE, May 2012.

[2] F. Brandner and M. Schoeberl, “Static routing in symmetric real-time
network-on-chips,” in Proceedings of the 20th International Conference
on Real-Time and Network Systems (RTNS 2012), (Pont a Mousson,
France), pp. 61–70, November 2012.

[3] R. B. Sorensen, M. Schoeberl, and J. Sparso, “A light-weight statically
scheduled network-on-chip,” in NORCHIP 2012, 2012.

[4] M. Schoeberl, “Time-predictable computer architecture,” Eurasip Jour-
nal on Embedded Systems, 2009.

[5] M. Schoeberl, “One-way shared memory,” in Proceedings of the Con-
ference on Design, Automation and Test in Europe, pp. 269–272, 2018.

[6] K. Goossens and A. Hansson, “The AEthereal network on chip after ten
years: Goals, evolution, lessons, and future,” in Proceedings of the 47th
ACM/IEEE Design Automation Conference (DAC 2010), pp. 306 –311,
2010.

[7] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. T. Müller, K. Goossens,
and J. Sparsø, “Argo: A real-time network-on-chip architecture with
an efficient GALS implementation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, pp. 479–492, 2016.

[8] J. Sparsø, E. Kasapaki, and M. Schoeberl, “An area-efficient network
interface for a TDM-based network-on-chip,” in Proceedings of the
Conference on Design, Automation and Test in Europe, DATE ’13, (San
Jose, CA, USA), pp. 1044–1047, EDA Consortium, 2013.

[9] J. Mische and T. Ungerer, “Low power flitwise routing in an unidi-
rectional torus with minimal buffering,” in Proceedings of the Fifth
International Workshop on Network on Chip Architectures, NoCArc ’12,
(New York, NY, USA), pp. 63–68, ACM, 2012.

[10] S. Metzlaff, J. Mische, and T. Ungerer, “A real-time capable many-core
model,” in Proceedings of 32nd IEEE Real-Time Systems Symposium:
Work-in-Progress Session, 2011.

[11] J. Mische, M. Frieb, A. Stegmeier, and T. Ungerer, “Reduced complexity
many-core: Timing predictability due to message-passing,” in Architec-
ture of Computing Systems - ARCS 2017: 30th International Conference,
Vienna, Austria, April 3–6, 2017, Proceedings, (Cham), pp. 139–151,
Springer International Publishing, 2017.

[12] N. Kapre and J. Gray, “Hoplite: Building austere overlay nocs for fpgas,”
in 25th International Conference on Field Programmable Logic and
Applications (FPL 2015), pp. 1–8, Sept 2015.

[13] S. Wasly, R. Pellizzoni, and N. Kapre, “Hoplitert: An efficient fpga noc
for real-time applications,” in 2017 International Conference on Field
Programmable Technology (ICFPT), pp. 64–71, Dec 2017.

[14] T. Garg, S. Wasly, R. Pellizzoni, and N. Kapre, “Hoplitebuf: Fpga nocs
with provably stall-free fifos,” in Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’19, (New York, NY, USA), pp. 222–231, ACM, 2019.

[15] A. Olofsson, T. Nordström, and Z. ul Abdin, “Kickstarting high-
performance energy-efficient manycore architectures with Epiphany,” in
in Proc. Asilomar Conference on Signals, Systems and Computers (M. B.
Matthews, ed.), pp. 1719–1726, IEEE, 2014.

[16] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Exploration of
distributed shared memory architectures for noc-based multiprocessors,”
in 2006 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation, pp. 144–151, July 2006.

[17] Zhang Yuang, Li Li, Yang Shengguang, Dong Lan, Lou Xiaoxiang, and
Gao Minglun, “A scalable distributed memory architecture for network
on chip,” in APCCAS 2008 - 2008 IEEE Asia Pacific Conference on
Circuits and Systems, pp. 1260–1263, Nov 2008.

[18] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Toc-
chi, “T-CREST: Time-predictable multi-core architecture for embedded
systems,” Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471,
2015.

[19] Accellera Systems Initiative, “Open Core Protocol specification, release
3.0.” Available at http://accellera.org/downloads/standards/ocp/, 2013.

[20] F. Brandner and M. Schoeberl, “Static Routing in Symmetric Real-time
Network-on-Chips,” Proceedings of the 20th International Conference
on Real-time and Network Systems, p. 61, 2012.

[21] F. Fatollahi-Fard, D. Donofrio, G. Michelogiannakis, and J. Shalf,
“Opensoc fabric: On-chip network generator,” in 2016 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 194–203, April 2016.

http://predict.compute.dtu.dk/
http://predict.compute.dtu.dk/
http://accellera.org/downloads/standards/ocp/

