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Abstract—Real-time systems need to deliver results in time and
often this timely production of a result needs to be guaranteed.
Static timing analysis can be used to bound the worst-case
execution time of tasks. However, this timing analysis is only
possible if the processor architecture is analysis friendly.

This paper presents the T-CREST processor, a real-time
multicore processor developed to be time-predictable and an easy
target for static worst-case execution time analysis. We present
how to achieve time-predictability at all levels of the architecture,
from the processor pipeline, via a network-on-chip, up to the
memory controller. The main architectural feature to provide
time predictability is to use static arbitration of shared resources
in a time-division multiplexing way.

I. INTRODUCTION

This paper presents a technique for achieving time pre-
dictability with a multicore processor architecture. The main
design idea is to optimize all hardware and software compo-
nents for a short worst-case execution time (WCET) instead of
improving average-case performance [1]. We achieve this time
predictability by consistently using static arbitration for shared
resources. In most cases, we use time-division multiplexing
with a pre-computed schedule.

The multicore processor presented here was developed
within a 3-year STREP project funded under the European
Union’s 7th Framework Programme under grant agreement
no. 288008: Time-predictable Multi-Core Architecture for
Embedded Systems (T-CREST).

T-CREST is a multicore architecture that consists of sev-
eral time-predictable processor cores, called Patmos. Those
processor cores are connected via a network-on-chip (NoC) to
support time-predictable message passing between core local
memories. For larger data structures and programs T-CREST
connects to an external memory via a memory tree and a real-
time memory controller. On the software side, a compiler has
been adapted to support Patmos and perform WCET oriented
optimizations. WCET analysis is supported by the aiT WCET
analyzer.

T-CREST has now been in use for research and teaching
for several years. As a platform, it offers: (1) a ready to use
processor for real-time systems, (2) a platform for research on
time-predictable multicore architectures, and (3) a platform for
teaching time-predictable computer architecture.

T-CREST has been further developed with several research
projects. Within the RTEMP project, funded by The Danish

Council for Independent Research – Technology and Pro-
duction Sciences (FTP), we explored, together with Danfoss
Power Electronics, the usage of T-CREST for real-time motor
control. Within the FTP funded project PREDICT (Time-
predictable Control Systems) we are bringing T-CREST into
the air by controlling drones. This project is in cooperation
with the Drone Research Laboratory at Aalborg University.
T-CREST will provide the platform of an open-source Fog
computing node for the FORA (Fog Computing for Robotics
and Industrial Automation) European Training Network.

An overview of T-CREST has been presented in [2]. In [3]
we have discussed some lessons learned within the project
related to open-source development and how to organize the
final integration work for hardware developed at different
places. The contribution of this paper is a detailed description
of how to support time-predictable execution of real-time tasks
in a multicore processor.

The paper is organized in 5 sections: The following section
presents related work. Section III gives an overview of the T-
CREST platform. Section IV presents the design decisions for
a time-predictable multicore architecture. Section V concludes.

II. RELATED WORK

In the FP-7 project MERASA (Multi-Core Execution of
Hard Real-Time Applications Supporting Analysability) [4],
the real-time processor CarCore was developed. CarCore is a
simultaneous multi-threading version of the TriCore processor.
We share the same vision as the MERASA project: building
hardware to support real-time systems and WCET analysis. In
contrast to the MERASA processor core, Patmos focuses on
single-thread real-time performance. To benefit from thread-
level parallelism, we replicate the simple pipeline to build a
multicore system.

The CoMPSoC platform [5] removes all application in-
terference by resource reservation. CoMPSoC combines the
AEtherreal style NoC with customized processor cores from
Silicon Hive and a composable memory controller. In contrast
to the T-CREST platform, no caches are supported and all
code needs to fit into on-chip memory. The memory controller
developed during the T-CREST project is now in use in the
CoMPSoC project.

Paukovits and Kopetz use a time-triggered NoC for the time-
triggered system-on-chip (TTSoC) architecture [6]. The main
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Fig. 1. The T-CREST multicore architecture with several processor cores
connected to two NoCs: one for core-to-core message passing and one for
access to the shared, external memory

difference to other NoC designs is use of time is derived
from world time (via GPS) that forms the basis for the
TDM slotting. The TTSoC architecture has been used in the
GENESYS multiprocessor system-on-a-chip [7]. In contrast to
the TTSoC our TDM schedule uses a time base established by
mesochronous clocking of the network interfaces. Therefore,
we can schedule communication at clock cycle granularity,
even without the need for a global system clock.

III. THE T-CREST PLATFORM

The T-CREST Platform consists of Patmos processor cores,
two on-chip networks, a memory controller, a compiler, a port
of the C standard library, and two WCET analysis tools.

A. The Hardware

T-CREST is a multicore processor where the individual
processor cores are connected by two NoCs: (1) a message
passing NoC for communication between individual cores and
(2) a memory NoC for communication between the cores and
a memory controller for shared, external main memory.

Fig. 1 shows the T-CREST multicore processor [2]. Each
processor core is a Patmos processor [8], which is a RISC
pipeline optimized for low WCET bounds. Patmos contains a
statically scheduled dual-issue pipeline. The Patmos processor
contains scratchpad memories for time-predictable and low
latency access to local data and instructions. The access to
main memory is backed up by three different caches: (1) a
method cache caches the instructions of full methods [9], (2)
a stack cache caches data allocated on the stack [10], and (3)
a data cache for the other data. For data where a data cache
analysis cannot predict hits and misses, Patmos contains load
and store instructions that bypass the cache. The compiler can
emit those instructions when needed.1

The processor cores are connected by the Argo NoC [11].
The Argo NoC provides time-predictable movement of data

1Private communication with Daniel Wiltsche-Prokesch.

between local scratchpad memories of the processors (message
passing). When data is to be moved, the sender sets up
the message, which is then transferred by the NoC from
the sender’s local scratchpad memory to the receiver’s local
scratchpad memory. To support many cores on a chip, Argo
is available as asynchronous NoC to implement a globally
asynchronous locally synchronous system.

To support larger programs and data structures we use
external, shared memory. For the access to shared memory
T-CREST provides two solutions: (1) the Bluetree memory
tree with prefetching [12] and (2) the TDM based memory
arbiter [13]. the Bluetree memory tree is optimized for the
Predator memory controller [14], while the TDM arbiter is a
general purpose burst based TDM arbiter.

B. The Software

T-CREST contains an adaption of the LLVM compiler
that targets the Patmos instruction set and optimizes for the
WCET [15]. As a C standard library, we have ported newlib
for Patmos.

Patmos support has also been integrated into the WCET
analysis tool aiT from AbsInt [16]. The compiler and the
WCET analysis tool are integrated in two ways: (1) the
compiler delivers information about the program, such as loop
bounds and possible branch targets of indirect branches to
the WCET analysis tool; (2) the WCET analysis tool delivers
the WCET path in the control flow to guide the compiler to
optimize that path. The T-CREST project also includes the
open-source, academic WCET tool called platin [17].

C. Usage of T-CREST

T-CREST has now been in use for research and teaching
for several years. As a platform, it offers: (1) a ready to use
processor for real-time systems, (2) a platform for research on
time-predictable multicore architectures and WCET analysis,
and (3) a platform for teaching time-predictable computer
architecture.

An avionic use case has been successfully ported to T-
CREST [18]. In this evaluation use case it has been shown that
the T-CREST multicore scales better with respect to the WCET
than the LEON multicore processor. As a second use case,
T-CREST was used for a signal processing application [19].
A musical effect device uses multiple cores for the individual
effects and the NoC to move sample data between cores in the
processing pipeline. This application shows that the bandwidth
of the Argo NoC, even with an all-to-all schedule, is high
enough to easily support this multicore application.

T-CREST serves as a platform for real-time architecture
research. The TiCOS operating system has been ported to Pat-
mos [20]. TiCOS is a time-predictable operating system that
supports the ARINC 653 standard. The multicore operating
system MOSSCA has been ported to T-CREST [21].

Patmos support also starts to appear in WCET analysis
tools. For example, Heptane [22] has an experimental support
for Patmos.2 Furthermore, platin, one of the WCET analysis

2Private communication with Benjamin Rouxel and Isabelle Puaut
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Fig. 2. Arbitration schemes round-robin (RR) and time-division multiplexing
(TDM) for a request scenario that results in the same grants with RR and
TDM.

tools from T-CREST, has been adapted to perform whole-
system response-time analysis for fixed-priority real-time sys-
tems [23].

T-CREST has also been used in two TACLe summer schools
on WCET analysis and time-predictable compilation and pro-
cessor architecture.3 Furthermore, at DTU we use T-CREST
in a course of advanced computer architecture and TU Vienna
bases its course on WCET analysis on the T-CREST platform.

IV. ACHIEVING TIME PREDICTABILITY

The main technique used to achieve time predictability in T-
CREST is time-division multiplexing (TDM) as the arbitration
mechanism for shared resources. With TDM, also called time-
triggered architecture [24], time is used for arbitration. A TDM
round is divided into TDM time slots, which are often of
equal length to offer equal bandwidth for all requesters. Each
requester owns its time slot and is only served in that time
slot. The beauty of TDM is that there is no interference at all
between requesters. The access time for a request only depends
on the its timing relative to the requester’s allotted time slot.
In the worst case, this time slot has just been missed and the
request needs to wait for one full TDM round.

The main criticism of TDM arbitration is that it is not
work conserving. This means that unused slots are not reused
by a different core. However, this is a misconception in the
context of real-time systems. For real-time systems, we need to
provision resources for the worst case. But the worst case with,
say, a round-robin arbiter is the same as for a TDM arbiter.
Furthermore, the distance between consecutive TDM slots for
a given requester is always constant. This information can be
used to hide some of the latency when work is performed
between TDM slots. This cannot be statically explored for
WCET analysis with a round-robin arbiter.

Moreover, round-robin arbitration can result in a longer
waiting time than with a TDM arbiter [25]. Consider three
requesters A, B and C, competing for a resource. They are
accessing it in following order: A, B, C, A. In TDM each
access can only happen in a requesters own slot. If it misses
a slot, one must wait for the next round. If all requesters are
ready to access the resource, round-robin will look the same
as TDM. This is considered the worst case for round-robin
arbitration.

3See http://www.mrtc.mdh.se/projects/TACLe/tacle.eu/index.php/activities/
summer-schools-forums/2014-venice.html and https://www.cister.isep.ipp.pt/
news/451/tacle summer school 2016/
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Fig. 3. A request scenario that results in a longer latency for requester A in
the RR scheme than when using TDM.

However, from a single processor’s point of view this is not
the worst case! Assume that the access of B and C is delayed
by almost two slots. In that case B and C also delay A’s second
access to the resource. That means that less global traffic can
result in longer latency for an access. In the timing analysis
community, this is called a timing anomaly [26].

Fig. 2 and Fig. 3 show the two different request scenarios
to a single shared resource with two arbitration mechanisms:
round-robin (RR) and TDM. Fig. 3 depicts the timing anomaly
that a globally lower request rate can result in a locally longer
latency with round-robin arbitration.

In the NoC we use TDM in two components: the router
and the network interface. The NoC router is organized as a
3-stage pipeline without any additional buffering. Arbitration
to the 5 ports is based on TDM and is statically scheduled.
No two packets compete on an output port. Packets are read
from a local memory in the network interface before being
injected into the NoC. This reading is implemented by a
DMA machinery. As the packet injection into the NoC is itself
scheduled in a TDM fashion, the DMA machinery itself is time
sliced in a TDM fashion. Packets in the NoC are transmitted
from a core local memory, through a network of routers, and
into the receiver’s core local memory in the allocated TDM
slots without any buffering or flow control.

For larger data structures and the program code T-CREST
uses external memory. This access to shared memory is also
TDM arbitrated. Each core receives a time slot large enough
for one burst read or write to fill or evict one cache line.

Another important aspect of TDM is a low-cost arbitration
mechanism, which needs just counters and tables. Further-
more, TDM arbitration can be distributed to the clients, when
all components have a common notion of time. This means
that there is no central arbitration point (as it would be with
round-robin or priority based arbitration). A central arbitration
point results in limits of scalability, while TDM scales better.
A common notion of time is trivial in clocked systems, but
can also be achieved with mesochronous clocked sources of
tokens flowing through an asynchronous NoC [11].

The Patmos processor is organized in a 5-stage pipeline, like
many other RISC processors. Although usually not seen in this
way, pipelining also implements TDM for processor resources
such as the ALU. However, in standard architectures different
pipeline stages often share a resource. One example is the
access to memory on a cache miss. An instruction in the fetch

http://www.mrtc.mdh.se/projects/TACLe/tacle.eu/index.php/activities/summer-schools-forums/2014-venice.html
http://www.mrtc.mdh.se/projects/TACLe/tacle.eu/index.php/activities/summer-schools-forums/2014-venice.html
https://www.cister.isep.ipp.pt/news/451/tacle_summer_school_2016/
https://www.cister.isep.ipp.pt/news/451/tacle_summer_school_2016/


stage can miss in the instruction cache in the very same cycle
as a load or store can miss in the memory stage. Although
these two instructions may be completely independent, the
access to the shared memory resource results in a timing
dependency between those two instructions. In Patmos, we
even time-slice the access to the memory from the processor
caches. All cache loading in Patmos is performed in the same
pipeline stage, the memory stage. Thus, cache misses can
only happen in that single pipeline stage, which effectively
provides TDM based arbitration between the caches. No in-
struction timing depends on any other instruction, resulting in
a time composable processor architecture without any timing
anomaly.

V. CONCLUSION

This paper presents the time-predictable multicore architec-
ture T-CREST. Time predictability can be achieved by using
static, predefined arbitration to shared resources. In most cases
time-division multiplexing is the arbitration scheme used in T-
CREST. With this static arbitration, we are able to completely
avoid any timing interference between tasks executing on
different processing cores on the multicore processor. This
isolation enables static worst-case execution time analysis of
real-time tasks, executing on a multicore processor.
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