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Abstract—The Patmos instruction-set architecture is designed
for real-time systems. As such, it has features that increase the
predictability of code running on it. One important feature is its
dual-issue pipeline: instructions may be organized in bundles of
two that are issued and executed in parallel. This increases the
throughput of the processor in a predictable manner, but only if
the compiler makes use of it.

Single-path code is a code-generation technique that produces
predictable executions by always following the same trace of
instructions. The Patmos compiler can already produce single-
path code, but it does not use the second issue slot available
in the processor. This is less than ideal because the single-
path transformation results in code that has a high degree of
instruction-level parallelism.

In this paper, we present a single-path code generator that
can produce bundled instructions. It includes generic support
for bundling algorithms, such that implementing them is simple
and does not require changing other parts of the compiler.

We also present one such bundling algorithm plugged into the
single-path code generator. With it, we show that we can produce
dual-issue instructions to improve performance.

Index Terms—real-time systems, time-predictable computer
architecture, single-path code generation.

I. INTRODUCTION

Patmos [1] has been designed to support the single-path pro-
gramming paradigm [2]. The following two features have been
added for the support: (1) predication of each instruction and
(2) a dual-issue pipeline. Predicates are needed for disabling
the execution of the not-taken part of a decision; when both
paths are executed as is the case in the single-path paradigm.
The dual-issue pipeline may improve the performance of
single-path code by running instructions in parallel.

Predicates are used by the Patmos compiler when generating
single-path code [3]. However, the dual-issue pipeline of
Patmos is not explored when generating single-path code. For
conventional code, the current instruction scheduler for the
Patmos compiler is only able to improve performance by about
11 % when using the dual-issue pipeline [1].

In single-path code, both branches of an if/else condition are
executed. However, their instructions will be predicated with
the condition, such that the predicate will only be true for the
branch that is meant to be taken. A branch whose predicate is
true will execute as usual. For the other branch, the predicate is
false and its instructions will not produce any side-effects, i.e.,
no results are written back to the register file or main memory.

Therefore, a false branch will effectively contain only no-ops,
even though all instructions are executed. Since only one of
the two alternatives affects the state of registers or memory,
they have no data dependency. This means we can execute
them in parallel with the dual-issue pipeline of Patmos.

This paper presents an instruction scheduler for single-path
code that uses the two issue slots of the Patmos pipeline.
Where previous work produced single-path code that uses
only the first issue slot [3], this paper presents a technique
for transforming the code such that the second slot is used,
too. The contributions of this paper are: (1) a description of
a generator for dual-issue single-path code that can support
any instruction bundling algorithm, (2) an implementation
of an automatic dual-issue single-path code generator in the
Patmos compiler, and (3) an evaluation of the performance
gain achieved over single-issue single-path code.

The rest of the paper is organized in 5 sections: The follow-
ing section presents related work. Section III provides back-
ground on the Patmos processor and single-path code genera-
tion in general. Section IV details how code is transformed into
single-path form and how bundling is supported. Section V
describes the implementation in the Patmos compiler together
with presenting a bundling algorithm. Section VI evaluates
the performance impact of the dual-issue code compared to
single-issue code. Section VII concludes the paper.

II. RELATED WORK

The single-path code generation approach is introduced in
[4] for use in real-time systems. The authors of [3] continue
the work, presenting an algorithm for generating single-path
code from conventional code. They show that the generated
code can be used with the Patmos architecture, but also
that the performance cost of the conversion is significant but
manageable. We build on this work, such that the single-path
code generated now makes use of the second issue slot of the
Patmos architecture.

Similarly to this paper, the authors of [5] investigate how to
make use of very-long instruction word (VLIW) architectures
for time-predictability. Even though their work is based on
single-path, they limit their practical investigation to basic
blocks of innermost loops and do not use loop transformations
nor support inter-procedural code. For bundling, they use
hyper-block scheduling introduced in [6].



The authors of [7] build on both works, presenting a
variation of the hyper-block formation algorithm that takes
worst-case execution time (WCET) into account to better
select which blocks to merge into hyper blocks.

In [8], the authors investigate the problem of constructing
hyper blocks such that WCET is minimized on clustered
VLIW processors—a type of processor with many functional
units, perfect for code with high instruction-level parallelism.

In [9], the authors present a memory hierarchy specifi-
cally tailored to make use of the properties of single-path
code to significantly improve performance without impacting
predictability. They use a prefetcher that exploits single-path
code to reduce instruction-cache miss rate and its penalty. The
effects of caches on single-path code are also addressed in
[10]. The authors present a technique for aligning single-path
loops with the instruction cache to reduce cache misses during
loop execution.

Both [11] and [12] investigate how to predictably execute
code on traditional architectures. The former investigates the
impact of adding single-path code support to an existing
architecture by introducing instructions like conditional moves.
They show that this can be a worthwhile effort, depending on
the coding style used and the specific application. The latter
also investigates different code generation techniques to make
execution more predictable. They use software techniques to
eliminate timing anomalies originating from the processor’s
out-of-order pipeline and to control the state of the dynamic
branch predictor.

Lastly, in [13] the authors address two issues with single-
path code that we do not address in this paper: (1) it requires
special architectural support (like conditional moves) and (2)
it increases power consumption since more code is run. They
present techniques to address both issues at the cost of a slight
reduction in predictability and increased execution time but
achieve an increase in power efficiency. In contrast, our work
will increase the utilization of the Patmos processing core and
can, therefore, be expected to increase power consumption.

III. BACKGROUND

In this paper, we build on two technologies: the Patmos
processor and single-path code. The following subsection
describes the time-predictable processor Patmos, which has
been designed to efficiently execute single-path code. It is
followed by a description of the principles of single-path code
and a set of definitions used in the rest of the paper.

A. The Patmos Processor

Patmos is a RISC style processor optimized for real-time
systems [1]. The aim of Patmos, and the whole T-CREST
architecture [14], is to build time-predictable computers [15].
It uses an in-order pipeline to avoid any timing anomalies
[16]. As the analysis of caches may introduce large over-
estimations of the WCET, Patmos contains special caches and
scratchpad memories to reduce these estimates. Instructions
are cached in the so-called method cache [17], [18]. It caches
full functions, such that cache misses can only occur at

function-call boundaries. Patmos also contains a stack cache
for stack-allocated data [19].

To support single-path code, all instructions in Patmos can
be predicated with one of the eight predicate registers (or their
negations). These predicates are used in single-path code to re-
move execution variation, e.g., by using branchless conditional
execution. Additionally, instructions have the same timing
regardless of the value of their predicate; a multiplication
instruction with a predicate set to false is not faster than one
with the predicate set to true. Only updating the processor
state, i.e., write-back into the register file or a write into
the memory, are affected by the value of the predicate. We
say an instruction is enabled if its predicate evaluates to true
when executed. If the predicate evaluates to false, we say the
instruction is disabled.

Since single-path code executes many data-independent
instructions, Patmos is a dual-issue architecture, enabling the
execution of two such instructions in parallel. They need to
be scheduled by the compiler and marked as a dual-issue
instruction pair, called a bundle. The marking of a bundle
is a single bit in the first instruction and can be decoded
in the fetch stage. This stage uses a split cache (for even
and odd addresses) and always fetches two instructions. If the
instruction is marked as a bundle, both instructions are used
and the program counter is advanced by two instructions. If
not, only the first instruction is used and the program counter
is advanced by one instruction.

B. Single-Path Code Generation

We call a piece of code single-path code if its execution
enforces the same unique instruction trace, i.e., the same
sequence of instructions and accesses to instruction memory
for all possible data valuations of the variables that are manip-
ulated. The point of single-path code is that the enforcement
of an invariable sequence of accesses to instruction memory
eliminates one of the central sources of timing unpredictability.
In particular, when executing single-path code multiple times
from the same processor and memory system states (i.e., the
same state of the processor pipeline and instruction cache)
and when the execution times of instructions are constant,
the execution time of the entire code can be expected to be
constant.

Constant execution time makes timing repeatable, which
brings along the following desirable properties:

• It allows for the most precise argumentation about code
timing. In the simplest cases—where there is no timing
variation from the memory hierarchy—the code will
always have the exact same timing. This makes WCET
analysis as simple as running and measuring the code and
produces an exact result.

• When execution times are expected to be invariable, any
deviations from the expected timing can be taken as
error indicators. Thus, monitoring the execution time of
single-path code is a simple but powerful error-detection
mechanism.



i f ! cond goto L e l s e
Lthen :

x = a + 1 ( cond ) x = a + 1
goto Lend ( ! cond ) x = b − 2

L e l s e : .
x = b − 2 .

Lend : .
. . . .

Fig. 1. The difference between branching and predicated execution. On the
left, a condition makes the execution skip one of the paths, while on the right
both paths are executed, but only one of them will be enabled at a time.

• An observation of execution times does not provide any
clues about the performed computations. This means that
single-path code safeguards computer systems against
side-channel attacks that use execution monitoring to
get hints about what is happening in the code. This
contributes to computer systems security.

The fact that we use single-path code may seem to limit
the applicability of the presented approach to algorithms that
do not contain any data-dependent control decisions. Such a
limitation is, however, not the case. Single-path code is gen-
erated by a compiler that applies special code transformations
to eliminate data-dependent control flow from the input source
code. Thus, any execution-time-bounded code may be used as
a source for single-path code generation. Hard real-time code
has to be execution-time bounded, which means the maximum
number of loop iterations and calls to recursive functions must
be bounded [20].

We use three transformation techniques to create single-path
code:

1) If-conversion: When executing branches, timing vari-
ability can be introduced when the two possible paths have
different lengths. To address that, we instead predicate the
two alternatives on the value of the branch condition and then
make both paths execute. Thus, if the condition is true, only
the true-path code’s predicate is set to true, and vice versa for
the other path. The effect is that we effectively only run the
required path, but the timing is constant, as both paths’ code
is executed (with the false path being disabled and therefore
having no effect.)

Figure 1 illustrates if-conversion. On the left, we see
conventional code that will always branch over one of the
execution alternatives. On the right, predicated execution never
branches, but will instead always disable one of the alterna-
tives.

2) Loop-conversion: Loops are another source of timing
variability. If the number of iterations taken by the loop
changes, the time it takes to execute the loop—and therefore
also the program—changes, too. To eliminate this variability,
we transform the loop, such that it will always iterate the max-
imum number of times. However, to maintain the semantics
of the program, we use predication to disable the loop body as
soon as the required number of iterations have been executed.

Thus, any superfluous iterations have no effect but are still run
to maintain constant timing.

3) Procedure-conversion: A final source of timing vari-
ability comes from the calling and execution of procedures.
Even if the execution of a procedure takes constant time,
if that procedure is called a variable number of times, then
the program’s timing will also be variable, e.g. if one path
of a branch calls the procedure, but the other doesn’t. To
maintain constant timing, procedures are called and executed
even though the calling code is disabled (e.g., from a disabled
path in a branch.) However, all procedures accept an additional
predicate argument, which is used to predicate the execution of
the entire procedure. If the call stems from disabled code, then
the procedure body is also disabled. This conversion ensures
that all procedures are always called a fixed number of times.
Since each call has constant timing, the whole program will
also have a constant execution time.

C. Definitions

Basic Block (BB): A sequence of instructions whose execu-
tion always starts at the first instruction and may only branch
on the last.

Control-Flow Graph (CFG): A directed graph of BBs
where the edges model how control flows from one block to
the next. A branch is modeled as a block that has two out edges
in the CFG—one for each path. We do not handle branches
with more than two targets. As such, switch-like behavior
must be converted into a cascade of simple alternatives.

Dominate: A block dominates another block if all paths
leading to the latter must first go through the former.

Post-dominate: A block post-dominates another block if all
paths going through the latter must eventually go through the
former, too.

Loop Header: In a loop, the header block is the one that
dominates all the other blocks in the loop, i.e., it is the entry
to the loop. We associate every block in the CFG with the
header of the inner-most loop containing it. We also treat the
whole procedure as a pseudo loop, where the initial block
of the procedure is a header too. Therefore, all blocks in the
procedure have a header (except the procedure’s initial block.)

Back Edge: An edge whose source block is in a loop and
the target block is the header of the same loop.

Exit Edge: Has the source block in the loop but target block
outside it. Informally, the edge exits the loop.

Forward CFG (FCFG): An acyclic CFG that is the result
of removing all back edges from a CFG.

Control Dependence: In a CFG—given the blocks x, y,
and z—x is control dependent on y if x post-dominates z but
not y. We also say that x is control dependent on the edge
(y,z).

Equivalence Class: Two blocks are in the same equivalence
class if they are control dependent on the same set of edges.

Guard: A predicate or register guards an instruction if
its value determines whether the instruction is enabled or
disabled. A block is guarded by a predicate or register if any
of its instructions are guarded by the same.



IV. SINGLE-PATH TRANSFORMATION

The single-path code generation technique takes the CFG of
a procedure and rearranges it—with various edits—to produce
straight-line code. Our transformation is a variation of the one
presented in [3]. In this section we will describe the whole
transformation informally, highlighting the differences from
the original work.

A. Preparing the CFG

When transforming conventional code into single-path, we
start by analyzing the CFG of the procedure in a similar way to
how the original single-path transformation would: We identify
all loops by their header blocks and find which other blocks are
contained in each loop. For each sub-CFG in the procedure,
we construct an FCFG: We create 2 new nodes in the graph,
s and t. We connect s to t and to the header. Then, for each
back or exit edge, we connect the source block to t.

We use the procedure in Figure 2 as an example. From
it, the FCFG generated from the loop with header b can be
seen in Figure 3. In Figure 4 we can see the FCFG of the
pseudo loop with header a. In it, we see that nested loops are
only represented by their headers; the blocks b and f are the
headers of the two loops in the procedure.

We use FCFGs to partition the graph into equivalence
classes. Looking at Figure 4, we have two equivalence classes:
{a,b,g,h} and {f}. Each class is assigned a unique predicate
that will become the guard for its instructions.1

The original transformation tracked guard predicates on a
per-block basis, as all instructions in a block would, in the
end, be guarded by the same predicate. However, for our work,
we will end up bundling blocks with different predicates. This
means the resulting blocks will have some of their instructions
guarded by one predicate and the others by another. Therefore,
we must track predicates on a per-instruction basis, such
that when blocks are bundled, the instructions maintain the
predicate befitting the equivalence class they are part of.

To disable the header block whenever an exit edge is taken,
we add any non-exit edges, that are outgoing from the source
block of any exit edge, as control-dependence edges of the
header. By having these edges assign the header’s predicate to
false, we ensure that superfluous iterations disable the whole
loop body.

At this point in the original single-path transformation, code
generation would begin by reordering the CFG into a straight-
line sequence. However, our approach introduces a preceding
step for the bundling of blocks.

B. Bundling

At this point in the transformation, we have enough informa-
tion about the (F)CFG to start block bundling. When bundling
two blocks, we issue the first block’s instructions in the first
issue slot of the Patmos pipeline and the second block’s

1This is an abstract predicate that is later assigned a physical predicate
register.
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Fig. 2. A control-flow graph of a procedure.
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Fig. 3. FCFG of the loop b.
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Fig. 4. FCFG of the pseudo loop a, with the headers of loops b and f in
grey.



instructions in the second issue slot.2 An exact algorithm for
which block pairs to bundle will be given in the next section.
In this subsection, we will describe how an algorithm can fit
into this single-path transformation.

For any two blocks to be bundleable into a combined block,
three rules must hold:
• Non-equivalence: The pair cannot have the same equiv-

alence class since that would mean that their instructions
will be enabled simultaneously. We cannot allow this, as
that would mean the two blocks might interfere with each
other, e.g., by using the same registers.

• Non-domination: Neither block can dominate or post-
dominate the other. This ensures that the semantics of
the program are maintained, as a pair of blocks can be in
different equivalence classes but also have one dominate
the other. For example, one can be a branching block and
the other can be a block from one of the conditional paths.
If they were to be bundled, then the code for calculating
the branch condition would be executed at the same time
as the code for one of the paths—which might not be
taken.

• Looping: They must be in the same loop. This is to
ensure that each block is iterated over the correct number
of times.

Any bundling algorithm must ensure that any block pairs
it bundles adhere to the above rules. It must consist of two
parts: (1) findBlockPair: Finds a pair of blocks to bundle
and (2) bundleBlockPair: Does the actual bundling of a pair
of blocks, deciding exactly which instructions in each block
get bundled with each other.

The algorithm is called continuously by the transfor-
mation procedure, first calling findBlockPair and then
bundleBlockPair on the returned pair. This setup is flexible
enough to support a wide range of algorithms. Greedy algo-
rithms, that do not store the state between finding block pairs,
are most naturally implemented in this setup. However, it also
allows for the storage of state between calls, for algorithms
that need that. The setup should, therefore, be able to support
all types of algorithms.

After each call to findBlockPair and bundleBlockPair,
the (F)CFG is automatically reordered such that the semantics
of the program are maintained: edges to or from the original
blocks are moved to the new bundled block, such that control
flow is maintained. The same is done for predicate definitions,
which must maintain the predicates they were originally
guarded with.

The bundling algorithm is continuously called until it can no
longer find any more pairs to bundle, at which point we can
continue to the final code generation. However, it is worth
noting, at this point, that the algorithm is free to reuse an
already bundled block to bundle with another block, meaning
more than two of the original blocks are then inside the
resulting block. Even though the Patmos pipeline can only

2Not all Patmos instruction can be issued in the second issue slot, e.g.,
memory loads and stores can only be issued in the first slot.

a b c d e f g h

Fig. 5. The single-path CFG transformed from the one in Figure 2. No
bundling is performed.

issue two instructions at a time, this single-path transformation
allows for any number of unbundled blocks to be bundled into
one mega-block, as long as all block-parings adhere to the
rules.

C. Code Generation

The final code generation is done in much the same way
as the original single-path transformation. For each edge in
the FCFG that has an equivalence class depend on it, we
insert predicate definitions at its source block. This is code
that calculates the class’s predicate from the condition that
leads to the edge being taken. A key difference from previous
work is that multiple equivalence classes can depend on a
given edge; its target block could be the result of bundling.

We can now begin reordering the blocks into a straight-line
sequence based on the FCFG. All blocks in the loop are put
into a sequence using topological order—excluding s and t,
which are no longer needed. Each block is given an edge to
the next block in the sequence, eliminating any conditional
control flow. A branch is inserted from the last node to the
header (which is always the first in a topological ordering.)
The branch is made conditional on the number of times it is
taken: After N-1 times (with N being the maximum number of
iterations) the condition becomes false and the loop is exited.
This ensures we always run the loop the maximum number of
times.

In an outer loop’s FCFG we only see the headers of nested
loops. Instead of connecting these headers to the next block
in the sequence, their own FCFG’s final node is connected to
the next node in the outer FCFG. In Figure 5 we can see the
result of the transformation of the CFG in Figure 2. We can
see how the FCFG of the loop with header b ends with the
block e, which is connected to the next block in the outer
loop, f.

V. IMPLEMENTATION

We build directly on the open-source implementation pre-
sented in [3]. We adapt it with the support for bundled blocks
described in the previous section and add a dedicated pass that
takes single-path functions and bundles their blocks.

A. Compiler Overview

The Patmos compiler is based on the LLVM compiler
framework [21]. LLVM provides a frontend called Clang,
which translates C source files into an intermediate representa-
tion called Bitcode. This representation is very low level, being
similar to assembly code but not specific to any hardware
architecture. Bitcode is therefore well suited as a target for
generic language- and target-independent optimizations which



are provided by the framework. We link together the user’s
code, standard library, and support libraries in Bitcode. This
gives the backend implementation a whole-program view for
analysis and transformations. This is important for the single-
path transformation since it can affect all code—not just the
user’s code. The backend takes the Bitcode and translates it
into machine code for the Patmos architecture.

B. The Single-Path Passes

Unchanged from the original, the single-path transformation
starts with a set of passes that prepare the code for being
transformed into single-path. This includes passes that ensure
certain properties are established and a pass that copies code
that needs to be present in both single-path and conventional
versions. The rest of this section only concerns the single-path
versions.

Single-Path Info Pass: A pass dedicated to analyzing the
CFG of each function; finding loops, building FCFGs, and
assigning equivalence classes and predicate definitions to each
block. The result of this pass is used, and edited, by the next
passes to correctly bundle and emit the code.

We change two properties in this pass compared to the
original implementation. First, we assign equivalence classes
to each instruction instead of each block, which we have
argued for before. We also track predicate definitions from
this point. In the original implementation, this was not needed,
as the information was gathered in the Reduce pass described
later. However, block bundling corrupts the information about
which guards must be put on each definition. Therefore, we
gather this information now and maintain it throughout block
bundling to be used in the Reduce pass.

Bundling Pass: A dedicated pass implements the bundling
algorithm. As a proof-of-concept, we implement a very simple
bundling algorithm:
findBlockPair: For each loop, we go through all the

blocks, looking for any that have exactly two immediate
successors. When we find one, we ensure the following about
its successors:
• The successor edges are neither back nor exit edges.
• Neither of them is a header of a nested loop.
• Neither of them post-dominates the other.
If these three requirements hold, the two successors are a

pair of bundleable blocks. We repeat this until we cannot find
a block with successors to merge. We do this for all loops,
starting at the header and following a depth-first traversal.
bundleBlockPair: We simply try and bundle the first

instruction in the first block with its counterpart in the second
block. This is not always possible, as some instructions in
the Patmos architecture can only be issued in the first issue
slot—loads and stores from memory have this property. Alter-
natively, we try to switch them, such that the second block’s
instruction is in the first issue slot. If this is not possible
either (e.g. if both instructions are loads,) we simply revert to
interleaving them without bundling. We then do the same for
the next pair of instructions. If one block has more instructions
than the other, we append the additional instructions to the end.

a

b

c;d
e

g f

h

Fig. 6. CFG where c and d have been bundled.

We can show that any pair found by findBlockPair is
bundleable:

• Non-equivalence: If the block whose successors we are
bundling—the parent block—is not itself a result of
bundling, then it is trivial to see that the successors must
be in two different equivalence classes. If the parent is a
bundled block, we have two possibilities: (1) Each candi-
date is the successor of one of the original parent blocks.
We know that the two parent blocks are of different
equivalence classes, which means their successors cannot
be of the same equivalence class. (2) The candidates are
the successors of the same parent, which we have already
argued for.

• Non-domination: We specifically check any candidate
pair for whether this rule holds and, if not, disregard them.

• Looping: Since we disallow block pairs that have exit
edges from the parent, we know they cannot be in an outer
loop of the parent block’s loop. Since we also disallow
them being headers of inner loops, the only possibility
left is that they are both part of the parent block’s loop.

Using this algorithm on the CFG in Figure 2 will result in
the bundling of the blocks c and d as can be seen in Figure 6.

Reduce Pass: The reduce pass produces the final single-
path code. First, a specialized predicate-register allocation is
performed. It assigns predicate registers to each equivalence
class. If not enough registers are available, a general-purpose
register is used as a spill location, such that we can spill the
predicate register that is used furthest in the future, freeing it
for reuse.

This register-allocation algorithm is the same as the original
work’s algorithm, except modified to be able to handle bundled
blocks, which is not much different from handling non-
bundled blocks with just one guard predicate.

After predicate-register allocation, we go through all the
instructions in the function and assign them the physical
predicate-register guard that the allocation specifies. Function
calls are never predicated since the functions need to be run
every time. Instructions for spilling or restoring are inserted
in newly created BBs and are also not predicated.

Finally, after reordering the blocks into a straight-line se-



TABLE I
EXECUTION TIME (IN CYCLES) FOR DIFFERENT TACLE BENCHMARK
PROGRAMS WITH OR WITHOUT BUNDLING ENABLED. OMITTED THE 5

PROGRAMS THAT PRODUCED NO BUNDLES.

bsort countnegative prime adpcm dec
Without bundling 428 418 43 321 24 893 7 173 386

With bundling 428 218 42 439 24 844 7 173 380
Difference 200 882 49 6

Improvement % 0,047 2,036 0,197 0

quence, consecutive ones are merged wherever possible, such
that the remaining branches facilitate looping.

VI. EVALUATION

We implemented a simple bundling algorithm to prove the
effectiveness of the single-path transformation in supporting
any bundling algorithm. To show that the algorithm works
and increases performance, we measure the number of cycles
used by 9 programs from the TACLe benchmark [22], with
and without bundling. Our compiler currently fails to generate
single-path code for the rest of the benchmark’s programs,
which means it is also unable to bundle them.

The benchmarks are run on a cycle-accurate simulator of the
Patmos processor, where all caches are 2-way set associative
using a least-recently-used replacement strategy.

Table I shows the number of clock cycles for the execution
of each program. However, only 4 of the 9 programs measured
resulted in bundles being created when bundling was enabled.
These are therefore the only programs shown in the table. This
is caused by the simplicity of the bundling algorithm, which
is not sophisticated enough to see bundling opportunities in
the 5 remaining programs.

To get a more detailed look at what the algorithm is doing,
we can look at Table II. It shows compiler statistics regarding
the bundling of blocks for each of the 9 programs. First are
the number of basic blocks in the program (Before), then the
number of pairs of blocks the algorithm found suitable for
bundling (Pairs Bundled), and lastly the pairs it did not find
suitable (Pairs Rejected). By “pairs” we mean two blocks that
have the same parent and are then checked for whether they
can be bundled. We can see that at most two pairs of blocks
were ever bundled, and for the majority of programs, many
candidates were rejected.

Looking at the four programs that had blocks bundled, we
take a look at whether bundleBlockPair found the optimal
instruction bundling. A sub-optimal bundling would revert to
interleaving instructions. Table III shows the total number
of instructions in the programs (Before), then the number of
instruction pairs that were bundled (Pairs Bundled), and lastly
the number of instruction pairs that should have been bundled
but could not because they both needed to be in the first
issue slot (Pairs Interleaved). We can see that all instructions
that could have been bundled were bundled. Therefore, a
better algorithm for bundleBlockPair would have made no
difference.

In general, we can see that bundling does in fact increase
performance, though, as we expected, not by much. For most

TABLE II
STATISTICS ON THE NUMBER OF BLOCKS IN EACH COMPILED PROGRAM

FROM THE TACLE BENCHMARK.

# Blocks Before Pairs Bundled Pairs Rejected
bsort 17 1 7
countnegative 15 1 5
prime 22 2 11
adpcm dec 60 2 21
insertsort 20 0 8
jfdctint 14 0 4
matrix1 22 0 7
md5 55 0 17
petrinet 163 0 128

TABLE III
STATISTICS ON THE NUMBER OF INSTRUCTIONS IN EACH COMPILED

PROGRAM FROM THE TACLE BENCHMARK. OMITTED THE 5 PROGRAMS
THAT PRODUCED NO BUNDLES.

# Instructions Before Pairs Bundled Pairs Interleaved
bsort 147 3 0
countnegative 159 2 0
prime 245 2 0
adpcm dec 1261 2 0

of the programs that had their blocks bundled, the increase
is negligible, except for the countnegative which exceeds our
expectations at a 2 % performance increase. This is impressive
when we note that only 2 bundles were created out of the 159
instructions.

Source Access

Patmos and the T-CREST platform are available as open-
source and include the contributions of this paper. The Patmos
homepage can be found at http://patmos.compute.dtu.dk/ and
provides a link to the Patmos Reference Handbook [23], which
includes build-instructions in Section 5.

The T-CREST project repositories can be found at
https://github.com/t-crest, with the repository for the compiler
used in this work at https://github.com/t-crest/patmos-llvm.3

However, we advise following the handbook instructions to
correctly set up a machine to build and run Patmos programs.

VII. CONCLUSION

In this paper, we presented a generator for single-path code
that can use the second issue slot of the Patmos architec-
ture’s dual-issue pipeline. We present an implementation of
the generator for the compiler of the Patmos processor. We
show that the transformation can incorporate a wide range of
bundling algorithms, and also present a simple one, that takes
single-issue single-path code and produces dual-issue single-
path code.

We evaluate the work on a subset of the TACLe benchmark
suite and show that dual-issue code is produced and improves
performance. Even though the increase is small, we show that
the impact of using the second issue slot of the Patmos archi-
tecture has the potential for performance gains. More work is

3The evaluations were done using the commit with hash:
3e88062e4e1fa5ec7a4ffcfb4b865a913914bc65.

http://patmos.compute.dtu.dk/
https://github.com/t-crest
https://github.com/t-crest/patmos-llvm


therefore needed to more effectively bundle instructions, such
that the potential of pairing single-path code with the Patmos
architecture can be better realized.
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Sørensen, Peter Wägemann, and Simon Wegener. TACLeBench: A
benchmark collection to support worst-case execution time research.
In Martin Schoeberl, editor, 16th International Workshop on Worst-
Case Execution Time Analysis (WCET 2016), volume 55 of OpenAccess
Series in Informatics (OASIcs), pages 2:1–2:10, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[23] Martin Schoeberl, Florian Brandner, Stefan Hepp, Wolfgang Puffitsch,
and Daniel Prokesch. Patmos reference handbook. Technical report,
Technical University of Denmark, 2020.


