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Abstract—Designed for real-time systems, the Patmos
instruction-set architecture’s features ensure a high degree of
predictability. One such feature is its dual-issue pipeline, which
can issue and execute bundles of up to two instructions at a time.
Executing instructions in the second issue slot is a predictable
way to increase the throughput of a processor, but without
dedicated support from the compiler, this benefit cannot be
unlocked. A compiler generates highly predictable programs by
generating single-path code. This technique produces code that
always follows the same trace of instructions. While Patmos’
compiler can already produce single-path code, it does not
assign any instructions to the second issue-slot. This limitation
is unfortunate, as single-path code inherently possesses a high
degree of instruction-level parallelism. In this paper, we present
a single-path code generation technique with support for dual-
issue pipelines. It can also support different bundling algorithms,
which allows changing algorithms without having to edit other
parts of the compiler. We present a simple bundling algorithm
plugged into the single-path code generator. It looks for branches
and bundles the basic blocks on each path of the branch. While
this specific bundling algorithm is too simple to provide a real-
world benefit, it highlights the potential that further work on
bundling algorithms can unlock.

Index Terms—real-time systems, time-predictable computer
architecture, single-path code generation.

I. INTRODUCTION

Single-path code allows time-predictable execution of real-
time applications [1]. It allows for the most precise argumen-
tation about code timing. When there is no timing variation
from the memory hierarchy, the application will have a con-
stant execution time. This makes worst-case execution time
(WCET) analysis as simple as running the code and measuring
the execution time. To enable single-path code execution, a
processor and the memory hierarchy need to fulfill several
properties, e.g., have a constant execution time of instructions
and predicated instructions.

Patmos [2], as part of the T-CREST project [3], has been
specially designed to support the execution of single-path
code: (1) each instruction can be predicated and (2) a dual-
issue pipeline can execute code from both branches of an if-
converted if/else decision. Then, predicates disable the execu-
tion of the not-taken part of a decision when both paths are
executed, as in the single-path paradigm.

Patmos’ compiler uses predicates when generating single-
path code [4]. However, the dual-issue pipeline of Patmos is
not exploited when generating single-path code. The current
instruction scheduler for the compiler can only improve per-
formance by about 11 % when using the dual-issue pipeline [2]
on traditional code.

In single-path code, both branches of an if/else condition
are executed. However, only one of the two branches will have
a predicate set to true. The other branch, executed with its
predicate set to false, will behave like a sequence of no-
ops, even though all instructions are executed. This mutually
exclusive predicate activation of alternative branches renders
any (seeming) dependencies between instructions in the alter-
native branches ineffective, i.e., the sharing of register names
or addresses by these branches creates only so-called false
dependencies and does not create any resource conflicts at
runtime. A compiler generating single-path code knows about
these false dependencies. Therefore, it can use two alternative
branches’ instructions as ideal candidates for parallel issue in
single-path code generation.

This paper presents an instruction scheduler for single-path
code that uses the two issue-slots of the Patmos pipeline. Pre-
vious work produced single-path code that uses only the first
issue slot [4]; this paper presents a technique for transforming
the code such that the second slot is used as well.

The contributions of this paper are: (1) a description of
a generator for dual-issue single-path code that can support
any instruction bundling algorithm, (2) an implementation
of an automatic dual-issue single-path code generator in the
Patmos’ compiler that uses a simple proof-of-concept bundling
algorithm and (3) an evaluation of the performance gain
achieved over single-issue single-path code. This paper is an
extension of [5]. In this paper, we make a slight change to
the specific bundling algorithm used as a proof-of-concept
to handle more complex cases, e.g., nested if/else statements.
We also expand our evaluation to include a set of synthetic
benchmarks to give a better feel for the potential of using the
second issue slot. Additionally, we use a larger subset of the
TACLe benchmark and a real-world drone control program.
In the rest of the paper, when we mention the original work,
we refer to the work presented in [4].



The paper is organized in 7 sections: The following section
presents related work. Section III provides background on the
Patmos processor and single-path code generation in general.
Section IV details how code is transformed into single-path
form and how bundling is supported. Section V describes
the implementation in the compiler together with presenting
a bundling algorithm. Section VI evaluates the performance
impact of the dual-issue code compared to single-issue code.
Section VII concludes the paper.

II. RELATED WORK

The single-path code generation approach is introduced in
[6] for use in real-time systems. The authors of [4] continue
the work, presenting an algorithm for generating single-path
code from conventional code. They show that the generated
code can be used with the Patmos architecture and that the
conversion’s performance cost is significant but manageable.
We build on this work such that the single-path code generated
now uses both issue slots of the Patmos architecture.

Single-path code is dependent on architectural support—like
conditional moves, at a minimum—to work. This precludes its
use on existing architectures without this support. To alleviate
this, the authors of [7] present a filter that can be added
to existing processor cores and alters the instruction stream
to produce the same effect as single-path code. The filter
monitors the state of the processor and the control flow of
the program. It then generates instructions for the processor
that are effectively single-path. This is done by substituting
any non-taken code paths with no-op instructions.

Both [8] and [9] investigate how to execute code on
traditional architectures predictably. The former investigates
the impact of adding single-path code support to an existing
architecture by introducing instructions like conditional moves.
They show that this can be a worthwhile effort, depending on
the coding style used and the specific application. The latter
also investigates different code generation techniques to make
execution more predictable. They use software techniques to
eliminate timing anomalies originating from the processor’s
out-of-order pipeline and control the dynamic branch predictor
state.

In [10], the authors present a memory hierarchy specifically
tailored to use single-path code’s properties to improve per-
formance significantly without impacting predictability. They
use a prefetcher that exploits single-path code to reduce
instruction-cache miss rate and its penalty. The effects of
caches on single-path code are also addressed in [11]. The
authors present a technique for aligning single-path loops
with the instruction cache to reduce cache misses during loop
execution.

In [12], the authors address two issues with single-path
code that we do not address in this paper: (1) it requires
special architectural support (like conditional moves) and (2)
it increases power consumption since more code is run. They
present techniques to address both issues at the cost of a slight
reduction in predictability and increased execution time but
achieve an increase in power efficiency. In contrast, our work

will increase the Patmos processing core’s utilization and can,
therefore, be expected to increase power consumption.

Trace, superblock, and hyperblock scheduling are all prac-
tical approaches to instruction scheduling that are also general
enough to work for VLIW architectures [13]–[16]. Variations
on these techniques can also produce optimal schedules—
given enough time and based on some definition of optimal
[17]. Common to most instruction scheduling approaches is the
goal of reducing average-case execution time (ACET). They
do this by using profiling (or sometimes other methods [18])
to find the most often-executed paths. They then prioritize
reducing the execution time of these paths. This often comes at
the cost of the execution time of other, less-frequently executed
paths and increased code size. However, they are still effective
at reducing the ACET.

For real-time systems, reducing ACET is of little use, so
these scheduling techniques have been modified to instead
focus on reducing WCET. Similarly to this paper, the authors
of [19] investigate how to use very-long instruction word
architectures for time-predictability. Even though their work
is based on single-path, they limit their practical investigation
to basic blocks of innermost loops and do not use loop
transformations nor support inter-procedural code. The authors
of [20] build on this work, presenting a variation of the
hyperblock formation algorithm that takes WCET into account
to better select which blocks to merge into hyperblocks. They
do this by using a WCET analyzer to identify the WCET
path and prioritize reducing its execution time. By doing this
iteratively, they refine the schedule to produce code with low
WCET. In [21], the authors investigate the same problem
except specifically for clustered VLIW processors—a type
of processor with many functional units, perfect for code
with high instruction-level parallelism. They use a heuristic
approach to reducing WCET that uses a precise tail duplication
cost model for computing WCET.

Hyperblock scheduling has an inherent conflict with single-
path code, as they both use predicated execution. Hyperblock
scheduling uses predication to parallelize different paths in the
same hyperblock. However, since single-path code is already
predicated, the benefit of hyperblock scheduling is removed.
Single-path code also has a conflict with the other approaches
to WCET reduction. In general, they seek to find the WCET
path and reduce its execution time. This will effectively reduce
WCET in traditional code at the cost of potentially increasing
other paths’ execution time because of added compensation
code. This is especially notable in tail duplication, which
entails duplicating significant portions of a superblock. This is
an acceptable trade-off for traditional code as only the worst-
case path dictates the overall WCET. However, for single-path
code, all paths are executed. Therefore, reducing the worst-
case path’s execution time by, e.g., 10 cycles, is not acceptable
if 100 cycles are cumulatively added to the other paths.1 The

1Here we refer to other paths through the program graph, before transfor-
mation to single-path code.



result would increase the single-path code’s execution time
by 90 cycles, even though the worst-case path is shortened.
In contrast to the existing techniques, our approach does not
result in any code duplication.

Given the existing techniques’ inherent disadvantages when
scheduling single-path code, we present an approach that
utilizes the characteristics of single-path code for scheduling.
Primarily, it relies on the assignment of predicates to instruc-
tions and basic blocks to find those that can be scheduled
in parallel. Even though our work is only implemented for
the Patmos processor, it is general enough to be used for any
architecture that supports single-path code.

III. BACKGROUND

This paper presents single-path code optimization for the
dual-issue, time-predictable processor Patmos. The following
subsection describes Patmos, which has been designed to exe-
cute single-path code efficiently. It is followed by a description
of single-path code principles and a set of definitions used in
the rest of the paper.

A. The Patmos Processor

Patmos [2] is a processor that is part of the multi-core
architecture T-CREST [3]. T-CREST and Patmos aim to build
time-predictable computers [22], including time-predictable
on-chip communication [23] and memory controllers [24].
Patmos itself is a RISC-style processor optimized for real-time
systems. It has two in-order pipelines and therefore avoids any
timing anomalies [25]. To simplify the cache analysis, Patmos
contains several special caches and a scratchpad memory for
data and instructions. Instructions are cached in the so-called
method cache [26], [27]. It caches full functions, such that
cache misses can only occur at a function call or return.
Patmos also contains a stack cache for stack-allocated data
[28], which is simple to analyze [29]. Both method cache and
stack cache are single-path-friendly cache solutions. Patmos
also contains a standard data cache, which is not easy to
analyze and not compatible with single-path code’s promise
of constant execution time. For normal data, we propose using
the scratchpad memory or the cache-bypassing load and store
instructions.

Patmos supports single-path code with predicated instruc-
tions (also called predication). We say an instruction is enabled
if its predicate is true when executed. If the predicate is false,
we say the instruction is disabled. Enabled instructions behave
conventionally, going through the pipeline and updating the
processor/memory state. However, disabled instructions do
not update the processor or memory state. They effectively
become no-ops. Patmos contains eight predicate bits. Each
instruction specifies which predicate bit it will depend on to
be enabled or disabled. The instruction also specifies if the
bit’s value should be inverted before being used as a toggle.
Additionally, instructions have the same timing regardless of
their predicate’s value; a disabled multiplication instruction is
not faster than an enabled one. Only updating the processor or

memory state is affected by predication, i.e., write-back into
the register file or a write into the memory.

Single-path code contains many data-independent instruc-
tions. Patmos is a dual-issue architecture, which enables the
execution of two such independent instructions in parallel.
To implement this parallel execution, instructions need to
be scheduled by the compiler and marked as a dual-issue
instruction pair, called a bundle. The marking of a bundle is
a single bit in the first instruction and can be decoded in the
fetch stage. This stage uses a split cache (for even and odd
addresses) and always fetches two instructions. Both four-byte
instructions are used if the first is marked as a bundle, and the
program counter is incremented by eight. If not, only the first
instruction is used, and the program counter is incremented
by four.

B. Single-Path Code Generation

We call a piece of code single-path if its execution enforces
the same unique instruction trace, i.e., the same sequence of
instructions and accesses to instruction memory for all possible
data valuations of the manipulated variables. The point of
single-path code is that the enforcement of an invariable
sequence of accesses to instruction memory eliminates one
of the central sources of timing unpredictability. In particular,
when executing single-path code multiple times from the same
processor and memory system states (i.e., the same state of
the processor pipeline and instruction cache) and when the
execution times of instructions are constant, the execution time
of the entire code can be expected to be constant.

Constant execution time makes timing repeatable [30],
which brings along the following desirable properties:

• It allows for the most precise argumentation about code
timing. In the simplest cases—where there is no timing
variation from the memory hierarchy—the code will
always have the same timing. This makes WCET analysis
as simple as running and measuring the code’s execution
time and produces an exact result.

• When execution times are expected to be invariable, any
deviations from the expected timing can be taken as
error indicators. Thus, monitoring the execution time of
single-path code is a simple but powerful error-detection
mechanism.

• An observation of execution times does not provide any
clues about the performed computations. This means that
single-path code safeguards computer systems against
side-channel attacks that use execution-time monitoring
to get hints about what is happening in the code. This
contributes to computer systems security.

The fact that we use single-path code may seem to limit
the applicability of the presented approach to algorithms that
do not contain any data-dependent control decisions. Such
a limitation is, however, not the case. Single-path code is
generated by a compiler that applies special code transforma-
tions to eliminate data-dependent control flow from the input
source code. Thus, any execution-time-bounded code may be



i f ! cond goto L e l s e
x = a + 1 ( cond ) x = a + 1
goto Lend ( ! cond ) x = b − 2

L e l s e : .
x = b − 2 .

Lend : .
. . . .

Fig. 1. The difference between branching and predicated execution. On the
left, a condition makes the execution skip one of the paths, while on the right,
both paths are executed, but only one of them will be enabled at a time.

used as a source for single-path code generation. Hard real-
time code must be execution-time bounded, which means the
maximum number of loop iterations and calls to recursive
functions must be bounded [31]. Patmos’ compiler ensures
this by requiring an annotation be added to each loop that
specifies the maximum number of iterations the loop can take.
If the annotation is not present, a compile error is thrown. An
error is also thrown if the code contains any recursive function.
The single-path code transformation does not support recursive
functions.

Three transformation techniques are needed to create single-
path code:

1) If-conversion: When executing branches, timing vari-
ability can be introduced when the two possible alternative
paths consume a different amount of time for their execution.
To address that, the two alternatives are predicated on the
branch condition’s value and are both made to execute. Thus,
if the condition is true, only the true-path code’s predicate is
set to true, and vice versa for the other path. The effect is that
only the required path is run, but the timing is constant, as both
paths’ code is executed (with the false path being disabled and
therefore not having an effect.)

Figure 1 illustrates if-conversion. On the left, we see
conventional code that will always branch over one of the
execution alternatives. On the right, predicated execution never
branches but will instead always disable one of the alternatives.

Nested if-then-else constructs are handled similarly. The
various (nested) code blocks are serialized and predicated with
different predicates. The predicates for code blocks generated
from conditional blocks at deeper nesting levels are computed
by combining the originally nested execution conditions of the
respective code branches.

2) Loop-conversion: Loops are another source of timing
variability. If the number of iterations taken by the loop
changes, the time it takes to execute the loop—and therefore
also the program—changes, too. To eliminate this variability,
the loop is transformed such that it will always iterate the max-
imum number of times. However, to maintain the program’s
semantics, predication is used to disable the loop body as soon
as the required number of iterations has been executed. Thus,
any superfluous iterations have no effect but are still run to
maintain constant timing.

3) Procedure-conversion: A final source of timing variabil-
ity comes from the calling of procedures. Even if the execution
of a procedure takes constant time, if that procedure is called in
some execution scenarios, but not in others, then the program’s
timing will also be variable, e.g., if the procedure is part of
a conditional block whose predicate is true for some inputs
but otherwise false. To maintain constant timing, procedures
are called and executed even though the calling code is
disabled (e.g., from a disabled path in a branch.) However,
all procedures accept an additional predicate-argument used
to predicate the entire procedure’s execution. If the call stems
from disabled code, then the procedure body is also disabled.
This conversion ensures that procedures are always called
while their functionality follows the predicate of their call
context on the execution path. Since each call has constant
timing, the whole program will also have a constant execution
time.

Transforming code into single-path affects the performance
of the final binary. Common among all three of the above
techniques is the forced execution of otherwise unused code.
The impact of single-path code was studied in [4], [32]. In
general, they saw a slowdown below 1.9 times, with some
as low as 1.1 compared to the worst case measured. They
also saw especially egregious examples around 4 and 5. The
”penalty” is heavily dependent on the amount of control-
flow in the program. The more control-flow, the higher the
penalty. It, of course, also depends on the quality of loop
bounds and how single-path-friendly the code is written. The
less precise loop bounds are, the more superfluous iterations
single-path code is forced to take. Likewise, some control-
flow patterns can be optimized to work better for single-path
code. One example is code with an if/else statement, where
both alternatives call the same function but with different
arguments. When converted to single-path, both calls to the
function must be executed. However, if the programmer or
compiler can instead factor out the function call to after the
if/else, they could avoid one of those calls.

C. Definitions

Basic Block: A sequence of instructions whose execution
always starts at the first instruction and may only branch on
the last.

Control-Flow Graph (CFG): A directed graph of blocks
where the edges model how control flows from one block to
the next. A branch is modeled as a block with two out edges
in the CFG—one for each path. We do not handle branches
with more than two targets. As such, switch-like behavior
must be converted into a cascade of simple alternatives.

Dominate: A block dominates another block if all paths
leading to the latter must first go through the former.

Post-dominate: A block post-dominates another block if all
paths going through the latter must eventually also go through
the former.

Loop Header: In a loop, the header block is the one that
dominates all the other blocks in the loop, i.e., it is the entry to
the loop. We associate every block in the CFG with the header



of the innermost loop containing it. We also treat the whole
procedure as a pseudo loop, where the initial block of the
procedure is the header. Therefore, all blocks in the procedure
have a header (except the procedure’s initial block.)

Back Edge: An edge whose source block is in a loop, and
the target block is the header of the same loop.

Exit Edge: Has the source block in the loop but target block
outside it. Informally, the edge exits the loop.

Forward CFG (FCFG): An acyclic CFG resulting from
removing all back edges from a CFG.

Control Dependence: In a CFG—given the blocks x, y,
and z—x is control dependent on y if x post-dominates z but
not y. We also say that x is control dependent on the edge
(y,z).

Equivalence Class: Two blocks are in the same equivalence
class if they are control dependent on the same set of edges.

Guard: A predicate or register guards an instruction if
its value determines whether the instruction is enabled or
disabled. A block is guarded by a predicate or register if any
of its instructions are guarded by the same.

IV. SINGLE-PATH TRANSFORMATION

The single-path code generation technique takes the CFG of
a procedure and rearranges it—with various edits—to produce
code with no input-dependent control flow. Our transformation
is a variation of the one presented in [4]. In this section, we
will describe the transformation informally and highlight the
differences from the original work. Section IV-B is wholly our
contribution to the single-path transformation, while the de-
scriptions in subsection IV-A and subsection IV-C are identical
to the original work unless where we explicitly state otherwise.

A. Preparing the CFG

The single-path transformation starts by analyzing the CFG
of a procedure. It tracks each loop by its header block and
identifies all the remaining blocks that are contained in the
loop. This produces a sub-CFG from which an FCFG can
be constructed: Two new nodes—s and t—are added to the
graph, with the former connected to the latter and the latter
to the loop header. The new nodes model how control flow
enters and exits this part of the code. They do not represent
any code in the final program and will be removed again in a
later step. Then, each block in a loop that has a back or exit
edge is connected to t.

Take the procedure in Figure 2 as an example. For the loop
with the header b, the transformation will create the FCFG
seen in Figure 3. Since the whole procedure is also treated
as a loop, the FCFG in Figure 4 is created for the pseudo
loop with header a. Here we see how nested loops are only
represented by their headers; the blocks b and f are the headers
of the two loops in the procedure.

In traditional code, when an exit edge is taken, the loop
no longer executes. Instead, a single-path loop has all its
instructions disabled during superfluous iterations. Therefore,
non-exit edges are added as control-dependence edges if they
are outgoing from an exit edge’s source block. This ensures
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e

g
f

h

Fig. 2. A control-flow graph of a procedure.

that when exit edges are taken, the header block’s predicate
is set to false, which disables the whole loop’s body for the
remaining iterations.

The FCFGs are used to partition the graph into equivalence
classes. In our example, we have two equivalence classes:
{a,b,g,h} and {f}. We assign each class a unique predicate
that will be used as the guard for its instructions. This is an
abstract predicate that is later assigned a physical predicate
register when it is used.

So far, the only difference between our transformation and
the original is that we track predicates on a per-instruction
basis, while the original work tracked it on a per-block basis.
Since we will eventually end up bundling blocks, a bundled
block would end up with instructions from different equivalent
classes. Therefore, we must track each instruction’s predicate
to ensure the final guard register used is the correct one.

At this point in the original single-path transformation,
code generation would continue by reordering the CFG into
a straight-line sequence. However, our approach introduces a
preceding step for the bundling of blocks. We describe this
step in the following subsection, which is wholly part of our
contributions in this paper. Subsection IV-C then continues
with the transformation’s reordering steps, which are mostly
identical to the original work.

B. Bundling

With the information gathered in the previous step, we can
now start bundling blocks together. Conceptually, for any two
blocks whose instructions are in different equivalence classes,
we can use one issue slot of the Patmos pipeline for the
first block’s instructions and the second issue slot for the
second block’s.2 In this subsection, we will only describe
how to incorporate an algorithm for finding block pairs and
bundling them—what we call a bundling algorithm—into the
transformation. In section V, we will then present an exact
proof-of-concept bundling algorithm. We have chosen this split
to highlight how the transformation technique is independent
of the bundling algorithm.

2Not all Patmos instruction can be issued in the second issue slot, e.g.,
memory loads and stores can only be issued in the first slot.
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Fig. 3. FCFG of the loop b.
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Fig. 4. FCFG of the pseudo loop a, with the headers of loops b and f in
grey.

For any two blocks to be bundleable into a combined block,
three rules must hold:
• Non-equivalence: The pair’s instructions must belong

to different equivalence classes to ensure that only one
block’s instructions are enabled at a time. This guarantees
that one block’s instructions do not interfere with the
other’s, e.g., when using the same registers.

• Non-domination: Neither block can dominate or post-
dominate the other. This maintains the semantics of the
programs in cases where blocks in different equivalence
classes dominate each other. This often occurs, e.g., when
one block branches and the other block is part of one of
the conditional paths. If they were to be bundled, the code
for calculating the branch condition would be executed at
the same time as the code for one of the paths.

• Looping: They must be in the same loop. This ensures
that each block is iterated over the correct number of
times.

A bundling algorithm must consists of two parts: (1)
findBlockPair: Finds a pair of blocks that adhere to the

above rules and (2) bundleBlockPair: Performs the actual
bundling of a pair of blocks, deciding exactly which instruc-
tions from each block are paired up, and which one of them
goes into which issue slot.

Our single-path transformation continuously calls a
bundling algorithm, first getting a pair of blocks from
findBlockPair and then having bundleBlockPair bundle
them. This allows the transformation to support a wide range
of bundling algorithms. Those that do not store a state between
calls are most naturally implemented in this setup, e.g., greedy
algorithms. However, algorithms that do need to store a state
are free to do so, which means any type of algorithm is
supported.

After each call to findBlockPair and bundleBlockPair,
the (F)CFG is automatically reordered such that the semantics
of the program are maintained: edges to or from the original
blocks are moved to the new bundled block, which maintains
the correct control flow. The same is done for predicate defini-
tions. These are used to track how the value of a predicate can
be obtained. They are dependent on the condition calculated
in a block and are guarded by other predicates. Therefore,
we move this information over to the bundled block, such
that the next step can emit the correct instructions to evaluate
predicates. It is also worth noting that the algorithm is free
to pair a block that has already been bundled with another
block. This means more than two original blocks may end up
bundled together into one mega-block, so long as all block
pairings adhere to the rules specified above.

The first findBlockPair call, which does not return a
block pair, signals the bundling algorithms end. The trans-
formation, therefore, moves on to the final code generation.

C. Code Generation

Each block now has a set of predicate definitions that are
depended upon by succeeding blocks’ equivalence. Therefore,
instructions are inserted that evaluate predicate values and
store them in the correct location, be it in predicate registers
for immediate use or at spill locations: in general-purpose
registers or on the stack.

The next step is to reorder the blocks into a straight-line
sequence based on each FCFG. All blocks in the loop are
put into topological order—excluding s and t, which are no
longer needed—with each block having an edge to the next
block in the sequence. This eliminates all conditional control
flow in the loop. Lastly, a branch is inserted from the last
block of the loop to the header block (which is always the
first in a topological ordering.) This branch is conditioned on
the number of times it has already been taken; After N-1 times
(where N is the maximum number of iterations the loop should
take), the condition becomes false, and execution exits the
loop. This ensures the loop iterates exactly N times.

Recall that in an outer loop’s FCFG, only the header of a
nested loop is represented. To incorporate a nested loop into
its parent loop’s block sequence, the final block in the inner
loop’s sequence is connected to the next block in the outer
loop’ sequence. The result of the single-path transformation on
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Fig. 5. The single-path CFG transformed from the one in Figure 2 with
bundling disabled.

our example procedure—without any bundling—can be seen
in Figure 5. We can see that the loop with header b ends with
the block e, which is connected to the next block in the outer
loop, f.

V. IMPLEMENTATION

We extend the open-source implementation presented in
[4] with support for bundled blocks as described in the
previous section. We describe the overall implementation in
this section, highlighting what modifications we made to the
original implementation. Other than the slight alterations we
made to the CFG preparation and code generation, we also
added the dedicated bundling pass. This section also describes
the implementation of a simple and naive proof-of-concept
bundling algorithm incorporated into the bundling pass to be
used for our evaluations.

A. Compiler Overview

The compiler is based on the LLVM compiler framework
[33]. LLVM provides a frontend called Clang, which translates
C source files into an intermediate representation called Bit-
code. This representation is low level, being similar to assem-
bly code but not specific to any hardware architecture. Bitcode
is therefore well suited as a target for generic language- and
target-independent optimizations, many of which are provided
by the framework. The compiler links together the user’s
code, standard library, and support libraries in Bitcode. This
gives the backend implementation a whole-program view for
analysis and transformations. This is important for the single-
path transformation since it can affect all code—not just the
user’s code. The backend takes the Bitcode and translates it
into machine code for the Patmos architecture.

B. The Single-Path Passes

The single-path transformation starts with a set of passes
that prepare the code for being transformed. The passes ensure
certain properties are established before the transformation
begins, and in the end, code that needs to be present in both
single-path and conventional versions is duplicated. The rest
of this section only concerns the single-path versions of the
code.

Single-Path Info Pass: This pass analyzes the CFG of each
function, finds loops, builds FCFGs, and assigns equivalence
classes and predicate definitions to each block. The subsequent
passes use this information to bundle and emit the code
correctly. The information is updated whenever changes are
made to the CFG.

Our work makes two changes to the properties of this pass
compared to the original implementation. First, we assign

a b c;d e f g h

Fig. 6. The single-path CFG transformed from the one in Figure 2 with
bundling enabled.

equivalence classes to each instruction instead of each block,
as argued for before. We also collect and track predicate
definitions beginning in this pass. The original implementation
did not track definitions in this pass since it could do it in the
Reduce pass described later. However, the information about
predicate definitions (gathered from the blocks’ instructions)
is corrupted whenever blocks get bundled. Therefore, this pass
gathers the information. It is maintained throughout block
bundling to be used in the Reduce pass.

Bundling Pass: This pass is dedicated to block-bundling,
taking an implementation of a bundling algorithm and running
it to completion. As a proof-of-concept, we implement a
straightforward bundling algorithm:
findBlockPair: For each loop, we go through all the

blocks, looking for any that have two immediate successors
or more. When we find one, we look for a successor pair that
upholds the following:
• The successor edges are neither back nor exit edges.
• Neither of them is a header of a nested loop.
• Neither of them post-dominates the other.
• Neither of them has already been bundled before.
The first pair of successors to uphold these four require-

ments is returned by findBlockPair. We search through all
the loops in the function, starting at each loop header and
following a depth-first traversal. If no pair can be found that
upholds the requirement, the algorithm is done.
bundleBlockPair: We try and bundle the first instruction

in the first block with its counterpart in the second block.
This is not always possible, as some instructions in the Patmos
architecture can only be issued in the first issue slot, e.g., loads
and stores from memory have this property. Alternatively, we
try to switch them, such that the second block’s instruction is
in the first issue slot. If this is not possible either, e.g., if both
instructions are loads, we simply revert to interleaving them
without bundling. We then do the same for the next pair of
instructions. If one block has more instructions than the other,
we append the additional instructions to the end.

We can show that any pair found by findBlockPair is
bundleable:
• Non-equivalence: If the block whose successors we are

bundling—the parent block—is not itself a result of
bundling, then it is trivial to see that the successors must
be in two different equivalence classes. If the parent is a
bundled block, we have two possibilities: (1) Each candi-
date is the successor of one of the original parent blocks.
We know that the two parent blocks are of different
equivalence classes, which means their successors cannot
be of the same equivalence class. (2) The candidates are



the successors of the same parent, which we have already
argued for.

• Non-domination: We specifically check any candidate
pair for whether this rule holds and, if not, disregard them.

• Looping: Since we disallow block pairs with exit edges
from the parent, we know they cannot be in an outer loop
of the parent block’s loop. Since we also disallow them
being headers of inner loops, the only possibility left is
that they are both parts of the parent-block’s loop.

Using this bundling algorithm on the CFG shown in Fig-
ure 2 will result in the bundling of the blocks c and d, as can be
seen in Figure 6. Since our algorithm only looks for branching
blocks, it considers blocks b, d, f, and e. b’s successor blocks
are the only pair that adhere to our algorithm’s rules:
• Neither edge from b is a back or exit edge since both c

and d are in the loop.
• Neither successor block is a header of another loop.
• They do not dominate each other.
• They have not been bundled with any other blocks.
For d, one edge exits the loop (going to f.) For f, one edge

is a back edge (loop to f itself.) For e, one edge is a back
edge (going to b,) and the other is an exit edge (going to g.)

At the beginning of the bundling pass, our bundling algo-
rithm’s findBlockPair is called, which returns the blocks c
and d. Then bundleBlockPair is called, bundling the various
instructions in those blocks, yielding the bundled block c;d.
The pass then updates the (F)CFG, such that the new block
takes the old blocks’ place without changing the semantics.
findBlockPair is then called again. However, this time no
blocks are returned, signaling the bundling algorithm’s end
and, therefore, also the bundling pass.

Reduce Pass: The reduce pass produces the final single-
path code. First, a specialized predicate-register allocation is
performed. It assigns predicate registers to each equivalence
class. If not enough registers are available, a general-purpose
register is used as a spill location, such that the predicate
register that is used furthest in the future can be freed for
reuse.

This register-allocation algorithm is the same as the original
work’s algorithm, except modified to handle bundled blocks,
which is not much different from handling non-bundled blocks
with just one guard predicate.

After predicate-register allocation, all instructions in the
function are assigned the physical predicate-register guard that
the allocation specified. Function calls are never predicated
since the functions need to be run every time. Instructions for
spilling or restoring are inserted in newly created blocks and
are also not predicated.

Finally, after reordering the blocks into a straight-line se-
quence, consecutive ones are merged wherever possible, such
that the remaining branches are only for facilitating looping.

VI. EVALUATION

We implemented a simple and naive bundling algorithm to
prove the single-path transformation’s effectiveness in sup-
porting any bundling algorithm. To show that it works and

can increase performance, we measure the number of cycles
used when executing various benchmark programs with and
without bundling (compiled using the -O2 optimization flag.)
The benchmarks are run on a cycle-accurate simulator of the
Patmos processor, where all caches are 2-way set associative
using a least-recently-used replacement strategy.

A. Synthetic Benchmarks

Theoretically, a speedup of 2 is the maximum possible when
using bundling on the Patmos processor. This occurs when
all instructions are paired up in bundles, cutting the number
of instructions in half. However, it is practically impossible
to reach this ceiling, as there are various reasons inhibiting
instructions from being bundled, e.g., arithmetic instructions
with immediate values larger than 4095 take up two instruction
words on their own, which means no other instructions can be
bundled with them. To get a feel for the potential of bundling
instructions, we devise three synthetic benchmark programs
that are easy for our naive algorithm to bundle.

The first benchmark, synth opt, is designed to be a best-
case program when given to our algorithm to bundle. It con-
sists of a loop, whose body is a simple if/else statement with
some branchless calculations in each path. This benchmark is
simple enough that our algorithm can bundle it optimally. To
do so, it merely takes the two blocks that comprise the two
branches and bundles them. The branches consist of heavy
math calculations to maximize the number of instructions
being bundled. We also ensure that the two branches do the
same amount of work, such that all their instruction can be
paired up, with no spare instructions having to forego being
bundled. Lastly, the loop iterates 4095 times. This number of
iterations is the maximum possible where the loop counter
can still fit into short-immediate arithmetic operations. This is
required, as our math uses the loop-counter, which ensures no
instructions are optimized away. Any immediate values larger
than 4095 are so large the compiler has to put them in a
long-immediate arithmetic instruction, which, as stated before,
takes up two instruction words and cannot be bundled with
other instructions. The result is a program that is primarily
a loop with 142 instructions. When bundling is enabled, 132
of the instructions are bundled by our algorithm. The last 10
are the overhead of managing the loop iteration and cannot
be bundled by our algorithm. This includes instructions that
determine whether to keep looping and calculating the branch
condition.

The second benchmark, synth if, is a variation of
synth opt introducing nested if/else statements. Each branch
of the original if/else statement now contains another if/else
statement. Every path in this program is also the same length.
This will show us if the algorithm can optimally bundle
this slightly more complex example and what performance
improvements are attainable with a higher number of execution
paths. Similarly to synth opt, the resulting assembly is
mainly a loop of 130 instructions. When bundled, 92 of
them are bundled. However, unlike the previous benchmark,
it does not get optimally bundled; two blocks that manage the



loop increments, among other things, are not bundled, even
though they can be. Luckily these two blocks only have two
instructions each, so we only missed out on two bundles. The
remaining 34 instructions manage looping and predicates. This
is a higher amount than in the synth opt benchmark and is
caused by the fact that it has additional execution paths. It
is also exacerbated by inefficient management of predicate
registers, resulting in some predicates being spilled to the
stack, which could have been avoided.

The last synthetic benchmark, synth asym, is a variation
of synth if. Instead of having inner if/else statements in
both branches of the outer if/else statement, the false branch
of the outer if/else statement only consists of branchless cal-
culations. This benchmark exercises the algorithm’s decision-
making, as there are many different ways to bundle the
resulting blocks. However, since we have blocks of different
sizes—the two branches in the inner if/else statement indi-
vidually contain fewer calculations than the false-branch of
the outer if/else statement—some bundlings are better than
others. Looking at the assembly, it comprises a loop of 114
instruction, where only 48 get bundled. To understand this low
amount of bundling, we will have to take a look at some of
the blocks in this programs:

1) Calculates the condition of the outer if/else statement.
2) The body of the false-branch of the outer if/else state-

ment. This is the largest block by far.
3) Calculates the condition of the inner if/else statement in

the true-branch of the outer if/else statement.
4) The true-branch of the inner if/else statement.
5) The false-branch of the inner if/else statement.
Block 1 cannot be bundled with any other block, as they are

all control dependent on it. Blocks 4 and 5 cannot be bundled
with block 3 for the same reason. Any of blocks 3-5 can be
bundled with block 2, as they are in different branches of the
outer if/else statement. Our algorithm chooses to bundle block
2 with block 3. This is a natural choice, as those two blocks
are both direct successors of block 1. However, this is the
worst choice, as block 3 is significantly smaller than 4 or 5.
The optimal choice, which our algorithm cannot perform, is
to bundle block 2 with both blocks 4 and 5. This is possible
because block 2 is slightly larger (by design) than those blocks
combined. They could have been scheduled in the second issue
slot directly after each other, while block 2 would take up the
first issue slot.

Table I shows the number of clock cycles used to execute
each benchmark program without bundling (Original) and with
bundling (Bundled). It also shows the difference between the
two counts and the resulting speedup.

For our synth opt benchmark, we can see that without
bundling, the program requires 586 735 cycles to execute,
while it only requires 316 399 cycles with bundling. This is a
speedup of 1.85.3 The relative reduction in clocks used almost

3Notice that a speedup of 1 means no change to the execution time. A
value below 1 is an increase in execution time and therefore a slowdown. A
speedup of 2 is the theoretical maximum.

TABLE I
EXECUTION TIME (IN CYCLES) FOR THE VARIOUS BENCHMARK

PROGRAMS WITH OR WITHOUT BUNDLING ENABLED. THE FIRST GROUP
OF PROGRAMS IS THE SYNTHETICS, THEN THE TACLE BENCHMARK
SUITE, AND LASTLY, THE DRONE CONTROL/ESTIMATION FUNCTIONS.

Original Bundled Difference Speedup

synth opt 586 735 316 399 270 336 1.854
synth if 521 160 349 149 172 011 1.493
synth asym 471 993 373 689 98 304 1.263

binarysearch 2 975 2 965 10 1.003
bsort 428 418 428 218 200 1.000
countnegative 43 321 42 439 882 1.021
adpcm dec 7 173 323 7 173 317 6 1.000
adpcm enc 7 191 612 7 191 600 12 1.000

control 15 651 568 15 688 468 -36 900 0.998
estimation 14 865 814 14 851 716 14 098 1.001

exactly matches the reduction in the number of bundles in the
loop. Since 132 instructions were bundled together, 66 cycles
were removed from the original 142 cycles required to run
the loop. This is a reduction of roughly 46,5%. The last half
percentage point not reflected in our results can be attributed
to the instructions run before the loop even starts.

For the synth if benchmark, we can see that the im-
provement only amounts to a speedup of 1.49. This lesser
improvement can be attributed to the higher amount of predi-
cate management instructions that are not being bundled. For
the synth asym benchmark, we see a speedup of 1.26, which
cements the importance of bundling blocks intelligently, unlike
what our algorithm does here.

B. TACLe Benchmarks

We also evaluate our algorithm’s performance on 13 pro-
grams from the TACLe benchmark suite [34]. We cannot use
all the programs in the suite. First, some use recursion, which
is not supported by the single-path code transformation, while
others have loops without valid loop bounds, which is also
a necessity for single-path code. Additionally, our compiler
currently fails to generate single-path code for many of the
rest of the benchmark’s programs. Therefore, we only evaluate
the execution times of 13 of the programs in the benchmark
that were successfully compiled using single-path code.

Only 5 of the 13 programs measured resulted in bundles
being created when bundling was enabled. These are, there-
fore, the only programs shown in Table I. This is caused by
the bundling algorithm’s simplicity, which is not sophisticated
enough to see bundling opportunities in the remaining pro-
grams. In Table II, we can get a more detailed look at what
the algorithm is doing. It shows compiler statistics regarding
the bundling of blocks for each of the benchmark programs
we have run. First are the number of basic blocks in the
program (Before), then the number of pairs of blocks the
algorithm found suitable for bundling (Pairs Bundled), and
lastly, the pairs it did not find suitable (Pairs Rejected). By
“pairs,” we mean two blocks with the same parent and are
then checked for whether they can be bundled. As an example,
we can look at the synth asym benchmark. It originally had



TABLE II
STATISTICS ON THE NUMBER OF BLOCKS IN EACH COMPILED PROGRAM.

# Blocks Before Pairs Bundled Pairs Rejected

synth opt 6 1 0
synth if 12 3 0
synth asym 9 2 1

binarysearch 9 1 0
bsort 17 1 1
countnegative 15 1 0
insertsort 20 0 4
jfdctint 14 0 0
matrix1 22 0 0
md5 55 0 17
adpcm dec 60 2 6
adpcm enc 64 2 8
h264 dec 43 0 4
petrinet 163 0 124
duff 8 0 0
test3 526 0 0

control 39 12 21
estimation 13 2 4

nine blocks in its code. Two pairs of blocks were bundled,
which corresponds to blocks 2-3 and 4-5, while one other
pair was rejected. Looking at the five TACLe programs with
blocks bundled, we can see that not many block pairs were
bundled. countnegative was the benchmark that resulted in
the highest relative performance increase, even though this is
based on only one block pair being bundled. The adpcm dec
and adpcm enc did slightly better by bundling two pairs each.
However, since they are much larger programs, it resulted in
a negligible performance increase.

We also take a look at whether bundleBlockPair found
the optimal instruction bundling. A sub-optimal bundling
would revert to interleaving instructions instead of bundling
them. Table III shows the total number of instructions in
the programs (Before), then the number of instruction pairs
that were bundled (Pairs Bundled), and lastly, the number of
instruction pairs that should have been bundled but could not
because they both needed to be in the first issue slot (Pairs
Interleaved). We can see that all instructions that could have
been bundled were bundled. Therefore, a better algorithm for
bundleBlockPair would have made no difference.

In general, we can see that bundling does increase perfor-
mance, though, as we expected, not by much. For most of the
programs with bundled blocks, the increase is negligible. The
exception is countnegative’s 1.02 speedup which is similar to
the proportion of bundles created, 2, from the 79 theoretical
maximum. This is, therefore, in line with expectations.

C. Real-World Use Case

To close out the evaluation of our bundling algorithm, we
use a real-world program that would be a suitable use case of
bundled single-path code. We measure the execution time of
the state estimation and control functions presented in [35].
These are used for the automatic control and stabilization of a
drone. This drone platform is specifically engineered to use
real-time hardware and software components to ensure the

TABLE III
STATISTICS ON THE NUMBER OF INSTRUCTIONS IN EACH COMPILED
PROGRAM. OMITTED THE 5 TACLE PROGRAMS THAT PRODUCED NO

BUNDLES.

# Instructions Before Pairs Bundled Pairs Interleaved

synth opt 187 33 0
synth if 174 23 0
synth asym 168 12 0

binarysearch 117 2 0
bsort 147 3 0
countnegative 159 2 0
adpcm dec 1 261 2 0
adpcm enc 1 471 2 0

control 2 179 33 6
estimation 1 737 2 0

drone’s correct flight. We measure the functions on a real-
world data set, acquired from a drone’s test flight, and later
inserted into the program to be provided to the functions
during the benchmark. The benchmark program consists of
a loop that first loads the drone’s sensor data, passes it to the
state estimation function, and lastly calls the control function
to perform the correct flight adjustments. This loop is executed
1024 times (with the same number of data points), and we
measure only the execution times of the two relevant functions.

Table I shows the control function (control) and the state
estimation function (estimation). We see a slight slowdown
for control and a slight speedup for estimate. However, as
seen in Table II and Table III, the algorithm did find small
bundling opportunities for both functions. The reduction in
control’s performance is caused by a slightly worse cache
performance when bundling is enabled. The method cache
consistently missed one more time in bundled code than in
non-bundled code (which had 12 misses.) This extra cache-
miss resulted in about 0,7 % more cycles being spent waiting
on the method cache in bundled code. This is probably caused
by the bundled code being slightly larger than the non-bundled.
The data-cache also fared worse, where the miss rate was
intermittently higher for the bundled code. However, the data
cache is used much less than the instruction cache, with the
bundled code only missing once or twice more per call. In
general, the slight increase in performance gained from the
33 bundled instruction pairs was heavily offset by the worse
cache performance. We also see that the algorithm performed
sub-optimal bundling in control, as six instruction pairs were
forced to be interleaved. Though, even if this had been done
better, the effect would be negligible.

To verify the cache misses causing the reduction in perfor-
mance, we rerun the non-synthetic programs with the memory
system burst size increased to 32 bytes (the default is 16 bytes,
which was used for Table I) using pasim’s --bsize flag. This
causes cache misses to have a lower penalty, as data is loaded
faster. As seen in Table IV, this change reduces control’s
execution time to 9 409 759 cycles without bundling and
9 360 559 with bundling. This means bundling now produces
a speedup of 1.005. Note that the number of method cache
misses does not change with an increase in the burst size.



TABLE IV
EXECUTION TIME (IN CYCLES) FOR THE VARIOUS BENCHMARK

PROGRAMS WITH OR WITHOUT BUNDLING ENABLED USING A MEMORY
SYSTEM BURST SIZE OF 32.

Original Bundled Difference Speedup

binarysearch 2 660 2 650 10 1.004
bsort 427 788 427 609 179 1.000
countnegative 41 830 40 990 840 1.020
adpcm dec 7 169 543 7 169 558 -15 1.000
adpcm enc 7 181 490 7 181 394 96 1.000

control 9 409 759 9 360 559 49 200 1.005
estimation 9 054 295 9 104 772 -50 477 0.994

We can decrease the number of misses by enlarging the
method cache, but that does not significantly change the
speedup of control, as the bundled code always misses more
than without bundling. Changing cache sizes did not have a
significant effect on speedups. We also see a slowdown of
estimation when using the larger burst size. This is caused
by a slightly worse utilization of the method cache, where
more bytes are loaded from main memory that need to be
discarded. This causes more stalls in the method cache, even
though no extra cache misses occur. For example, when not
bundled, the first run of the function required the method cache
to free 1 920 bytes, while the bundled version needed to free
1 936 bytes. This results in the stall count increasing from
5 880 to 5 943.

Source Access

Patmos and the T-CREST platform are available as open-
source and include the contributions of this paper. The Patmos
homepage can be found at http://patmos.compute.dtu.dk/ and
provides a link to the Patmos Reference Handbook [36], which
includes build-instructions in Section 5.

The T-CREST project repositories can be found at
https://github.com/t-crest, with the repository for the compiler
used in this work at https://github.com/t-crest/patmos-llvm.4

However, we advise following the handbook instructions to
correctly set up a machine to build and run Patmos programs.
The synthetic benchmarks can be found at https://github.com/t-
crest/patmos-misc.5

VII. CONCLUSION

In this paper, we have presented a single-path code generator
that leverages the Patmos architecture’s dual-issue pipeline by
using its second issue slot. We implemented the generator
in the Patmos processor’s compiler and showed that it could
incorporate a wide range of bundling algorithms.

We have implemented a simple bundling algorithm that
takes single-issue single-path code and produces dual-issue
single-path code. We evaluated the work by first devising a set
of synthetic benchmarks to investigate the potential speedup

4The code implementing the bundling can be found in the file:
lib/Target/Patmos/SinglePath/PatmosSPBundling.cpp. Commit
Hash: 55c7a000393dded7a5886c5fcb6c665d95b5fa7f

5Subfolder: experiments/singlepath vliw/synthetic benchmarks.
Commit hash: da0ff6bcebf0e5acc15c1ee1ee4e5889720aefe2.

of using bundled code. This showed that doing bundling well
can give good results, but doing it sub-optimally can quickly
reduce the benefits. We also used a subset of the TACLe
benchmark suite and a real-world drone control program to
see how our algorithm performs in representative scenarios. In
general, the algorithm provided little to no real-world benefit.
This was expected as the algorithm is meant as a simple proof-
of-concept to show the potential impact of using the second
issue slot of the Patmos architecture.

More work is needed to bundle instructions more effectively.
A more sophisticated bundling algorithm is needed to effec-
tively find blocks to bundle for maximizing the use of the
second issue slot. To do this, the algorithm should analyze
more than just control-flow. For example, it could look at
the resource utilization of blocks and pair those blocks that
don’t contend with each other. Another example could be
finding very similar blocks, which could allow it to merge
identical instructions into one instruction used for both blocks.
Further work is also needed to make single-path code more
predictable. Using the data cache introduces variance into
single-path code’s execution that requires WCET analysis. We
plan on tackling this issue such that single-path code executes
in constant time, even when accessing memory through the
data cache. This will need a specially designed cache that
allows more fine-grained control of what data is stored where
and for how long.
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