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Abstract. In this paper we explore a time-predictable chip-multiprocessor (CMP)
system based on single-path programming. To keep the timing constant, even in
the case of shared memory access for the CMP cores, the tasks on the cores are
synchronized with the time-sliced memory arbitration unit.

1 The Single-Path CMP System

The main goal of our approach is to build an architecture that provides a combination of
good performance and high temporal predictability. We rely on chip-multiprocessing to
achieve the performance goal and on an offline-planning approach to make our system
predictable. The idea of the latter is to take as many control decisions as possible before
the system is actually run. This reduces the number of branching decisions that need
to be taken during system operation, which, in turn, causes a reduction of the number
of possible action sequences with possibly different timings that need to be considered
when planning respectively evaluating the system’s timely operation.

1.1 System Overview

We consider a CMP architecture that hosts n processor cores, as shown in Figure 1. On
each core the execution of simple tasks is scheduled statically as cyclic executive. All
core’s schedulers have the same major cycle that is synchronized to the shared memory
arbiter. Each of the processors has a small local method cache (M$) for storing recently
used methods, a local stack cache (S$), and a small local scratchpad memory (SPM)
for storing temporary data. These caches store only thread local data and therefore
no cache coherence protocol is needed. To avoid cache conflicts between the different
cores our CMP system does not provide a shared cache. Instead, the cores of the time-
predictable CMP system access the shared main memory via a TDMA bus with fine-
grained statically-scheduled access.

1.2 Tasks

All tasks in our system are periodic. Tasks are considered to be simple tasks according
to the Simple-Tasks Model introduced in [1]:! Task inputs are assumed to be available

! More complex task structures can be simulated by splitting tasks into sets of cooperating sim-
ple tasks.
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Fig.1. A JOP based CMP system with core local caches and scratchpad memories, a TDMA
based shared memory arbiter, and the memory controller.

when a task instance starts, and outputs become ready for further processing upon com-
pletion of a task execution. Within its body a task is purely functional, i.e., it does
neither access common resources nor does it include delays or synchronization opera-
tions.

To realize the simple-task abstraction, a task implementation actually consists of a
sequence of three parts: read inputs — process — write outputs. While the application
programmer must provide the code for the process part (i.e., the functional part), the
first and the third part are automatically generated from the description of the task in-
terface. These read and write parts of the task implementations copy data between the
local memories of the processing cores and the global memory. Care must be taken to
schedule the data transfers between the local memories and the global memory such
that all precedence constraints between tasks and mutual exclusion constraints are met.

Following our strategy to achieve predictability by minimizing the number of con-
trol decisions taken during runtime, all tasks are implemented in single path code. This
means, we apply the single-path transformation described in [2, 3] to (a) serialize all
input-dependent branches and (b) transform all loops with input-dependent termination
into loops with a constant iteration count. In this way, each instance of a task executes
the same sequence of instructions and has the same temporal access pattern to instruc-
tions and data.

1.3 Mechanisms for Performance and Time Predictability

By executing tasks on different cores with some local cache and scratchpad memory
we manage to increase the system’s performance over a single-processor system. The
following mechanisms make the operation of our system highly predictable:



— Tasks on a single core are executed in a cyclic executive, avoiding cache influences
due to preemption.

— Accesses to the global shared memory are arbitrated by a static TDMA mem-
ory arbitration scheme, thus leaving no room for unpredictable conflict resolution
schemes and unknown memory access times.

— The starting point of all task periods and the starting point of the TDMA cycle for
memory accesses are synchronized, and each task execution starts at a pre-defined
offset within its period. Further, the single-path task implementation guarantees a
unique trace of instruction and memory accesses. All these properties taken to-
gether allow for an exact prediction of instruction execution times and memory
access times, thus making the overall task timing fully transparent and predictable.

— As the read and write sections of the tasks may need more than a single TDMA slot
for transferring their data between the local and the global memory, read and write
operations are pre-planned and executed in synchrony with the global execution
cycle of all tasks.

Besides its support for predictability, our planning-based approach allows for the

following optimizations of the TDMA schedules for global memory accesses. These
optimizations are based on the knowledge available at the planning time:
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— The single-path implementation of tasks allows us to exactly spot which parts of
a task’s process part need a higher and which parts need a lower bandwidth for
accessing the global memory (e.g., a task does not have to fetch instructions from
global memory while executing a method that it has just loaded into its local cache).
This information can be used to adapt the memory access schedule to optimize the
overall performance of memory accesses.

— A similar optimization is thinkable to optimize the timing of memory accesses dur-
ing the read and write sections of the task implementations. These sections access
shared data and should therefore run under mutual exclusion. Mutual exclusion is
guaranteed by the static, table-driven execution regime of the system. Still, the crit-
ical sections should be kept short. The latter could be achieved by an adaption of
the TDMA memory schedule that assigns additional time slots to tasks at times
when they perform memory-transfer operations.

Implementation

The proposed design is evaluated in the context of the Java optimized processor (JOP) [4]
based CMP system [5]. We have extended JOP with two instructions: a predicated move
instruction for single-path programming in Java and a deadline instruction to synchro-
nize application tasks with the TDMA based memory arbiter.

2.1 Processor Extensions

Single path programming substitutes control decisions (if-then-else) by predicated move
instructions. To avoid execution time jitter, the predicated move has to have a constant



execution time. On JOP we have implemented a predicated move for integer values
and references. This instruction represents a new, system specific Java virtual machine
(JVM) bytecode. This new bytecode is mapped to a native function for access from Java
code. The following listing shows usage of conditional move for integer and reference
data types. The program will print 1 and true.

String a = "true”;
String b = "false”;
String result;

int val;

boolean cond = true;

val = Native.condMove(1, 2, cond);
System.out.printin(val );

result = (String) Native.condMoveRef(a, b, cond);
System.out.printin( result );

The representation of the conditional move as a native function call has no call
overhead. The function is substituted by the system specific bytecode during link time
(similar to function inlining).

In order to synchronize a task with the TDMA schedule a wait instruction with a
resolution of single clock cycles is needed. We have implemented a deadline instruction
as proposed in [6]. The deadline instruction stalls the processor pipeline until the desired
time in clock cycles. We have implemented an I/O device for the cycle accurate delay.
The time value for the absolute delay is written to the I/O device and the device delays
the acknowledgment of the I/O operation until the cycle counter reaches this value.
This simple device is independent of the processor and can be used in any architecture
where an I/O request needs an acknowledgment. I/O devices on JOP are mapped to so
called hardware objects [7]. A hardware object represents an I/O device as a plain Java
object. Field read and write access are actual I/O register read and write accesses. The
following code shows the usage of the deadline I/O device.

SysDevice sys = IOFactory.getFactory().getSysDevice();

int time = sys.cntint;
time += 1000;
sys.deadLine = time;

The first instruction requests a reference to the system device hardware object. This
object (sys) is accessed to read out the current value of the clock cycle counter. The
deadline is set to 1000 cycles after the current time and the assignment sys.deadline =
time writes the deadline time stamp into the I/O device and blocks until that time.

2.2 Evaluation

We evaluate our proposed system within a Cyclone EP1C12 FPGA that contains 3 pro-
cessor cores and 1 MB of shared memory. The TDMA slot of each processor is 7 cycles
and a complete TDMA round takes 21 cycles. As a first experiment we measure the



Table 1. Measured single-path execution time

Task Read  Process  Write  Total

11,72 594 774 576 1944
3 864 65250 576 66690
T4 26604 324 28422 55350
Ts 1368 324 324 2016

execution time of a short program fragment with access to the main memory. Without
synchronizing the task start with the TDMA arbiter the execution time of this single-
path program is between 332 and 352 clock cycles. With the deadline instruction we
can force that each iteration of the task starts at multiples of the TDMA round (21 clock
cycles). In that case each task execution takes 336 cycles. This little experiment shows
that single-path programming on a CMP system, synchronized with the TDMA based
memory arbitration, results in repeatable execution time [8].

To validate our programming model for cycle-accurate real-time computing, we de-
veloped a controller application that consists of five communicating tasks. This case
study give us some insights about the practical aspects of using the proposed program-
ming model. Tasks T;-T5 are implemented in single-path code, thus their execution time
does not depend on control-flow decisions. All tasks are synchronized on each activa-
tion with the same phase of the TDMA based memory arbiter. Therefore, their execution
time does not have any jitter due to different phase alignments of the memory arbiter.
With such an implementation style it is possible on the JOP to determine the WCET of
each task directly by a single execution-time measurement. Table 1 shows the observed
WCET values for each task, given separately for the read, process, and write part of the
tasks.

3 Related Work

Time-predictable multi-threading is developed within the PRET project [6]. The access
of the individual threads to the shared main memory is scheduled similar to our TDMA
arbiter. The PRET architecture implements the deadline instruction to perform time
based, instead of lock based, synchronization for access to shared data. In our approach
we perform synchronization with three different execution phases.

The approach, which is closest related to our work, is presented in [9]. The proposed
CMP system is also intended for tasks according to the simple task model [1]. Similar
to our approach, a TDMA based memory arbitration is used. The paper deals with
optimization of the TDMA schedule to reduce the WCET of the tasks. We think that this
optimization can be best performed when the access pattern to the memory is statically
known — which is only possible with single-path programming.

Optimization of the TDMA schedule of a CMP based real-time system has been
proposed in [10]. The described system proposes a single core per thread to avoid the
overhead of thread preemption. It is argued that future systems will contain many cores



and the limiting resource will be the memory bandwidth. Therefore, the memory access
is scheduled instead of the processing time.

4 Conclusion

A static scheduled chip-multiprocessor system with single-path programming and a
TDMA base memory arbitration delivers repeatable timing. The repeatable and pre-
dictable timing of the system simplifies the safety argument: measurement of the ex-
ecution time can be used instead of WCET analysis. We have evaluated the idea in
the context of a time-predictable Java chip-multiprocessor system. The cycle accurate
measurements showed that the approach is sound.
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