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ABSTRACT

Scoped memories are introduced in real-time Java profiles in
order to make object allocation and deallocation time and
space predictable. However, explicit scoping requires care
from programmers when dealing with temporary objects,
passing scope-allocated objects as arguments to methods,
and returning scope-allocated objects from methods. To
simplify the correct usage of scopes, programming patterns
may be helpful. We present patterns for simple subroutines,
sequences of subroutine calls, and nested calls, where the
patterns avoid memory leaks and unnecessary copying of
values. The patterns are illustrated by implementations in
the safety-critical Java profile.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Organization and De-
sign—Real-time systems and embedded systems; D.3.2
[Language Classifications]: Programming Languages—
Object-oriented languages
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1. INTRODUCTION

Java, as a programming language and as a large collec-
tion of standard libraries, has proven to be a useful tool
to increase programmer efficiency both for the development
and maintenance of software [8]. The benefits provided by
Java come from its high level object-oriented programming
features and the use of an automatic garbage collector (GC).

In recent years, the use of Java for systems with real-
time constraints has been enabled trough the definition of
real-time Java profiles (e.g. [3], [12], and [5]). In those
profiles, standard Java is restricted and extended with addi-
tional classes. One of such extensions is a real-time memory
management strategy which avoids the use of an automatic
GC, as some applications have real-time requirements hard
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to achieve with current garbage collection technology [15].
Memory allocations are performed in specific regions called
scoped memories where objects are collectively deallocated
at scope exit. In safety-critical Java (SCJ), memory man-
agement is the explicit responsibility of the application de-
veloper who has to be aware of the allocation context of ob-
jects. Maintaining referential integrity and the movement of
data between memory areas are two of the most important
issues introduced by the scoped model [13].

In a nutshell, moving data between scopes require a cre-
ative way of using the available SCJ memory API features.
This API contains specific methods used together with a ref-
erence to a target memory to change the allocation context
and safely create the returned objects.

In this paper we look into the expressiveness of the SCJ
memory model and explore patterns how to use it. We
present a collection of memory use patterns with increas-
ing complexity that aim at helping in the development of
SCJ applications. The focus is on how to pass arguments
and return objects between private memories. As a result of
our experiments, we report on two possible effects that may
compromise the intended safety of the specification: the pos-
sibility to break the linear hierarchy in the scope parenting
relationship and leaking memory references between private
handlers. As a solution we suggest an API simplification
that avoids references to memory areas at all.

The remainder of this paper is organized as follows: Sec-
tion 2 presents work previously done regarding scoped mem-
ory use patterns. Section 3 gives an introduction to SCJ’s
memory model and the relevant API for this work. Mem-
ory use patterns specific to SCJ are the topic of Section 4.
Discussion and observations based on experiments with SCJ
memory patterns are presented in Section 5. Concluding re-
marks are presented in Section 6.

2. RELATED WORK

Benowitz and Niessner introduced patterns used for peri-
odic activities as well as scope aware factories [1]. Returning
objects are allocated in immortal memory using memory
pools (fixed size objects) and memory blocks (byte arrays
to allocate varying size objects). Memory pools in regions
other than immortal memory are explored in [2]. This work
describes the communication between several components
participating in a real-time control loop. Each component
is defined in its own scoped memory and has its own pool
in a scoped memory other than immortal. Communication
between components is performed by copying values. Recy-
cling objects is an appealing solution to avoid running out



of immortal memory. Nevertheless, in this work we explore
other possibilities that include the use of SCJ’s mission and
private memories.

Pizlo et al. investigated design patterns for the RT'SJ [14].
The authors document several design patterns for the ef-
fective use of scoped memory regions. From their work only
the Scoped Run Loop pattern has a direct equivalent in SCJ.
The rest are either RT'SJ specific (e.g. Wedge pattern), use
features not available in SCJ (e.g. Portals), or introduce
violations to the reference assignment rules (e.g. Handoff
pattern).

The patterns catalog in [1] is extended with another pat-
terns collection in [4]. For this collection, the Memory Tun-
nel pattern is particularly interesting. It is used to move
data between threads executing in different memory areas.
It has however, the problem that it forces a “safe” violation
of the reference assignment rules. It relies on a memory tun-
nel structure which is constructed using native methods to
bypass the scope constraints regarding references. As SCJ is
intended for certification under standards such as DO-178B,
this behavior is likely to reduce the chances of passing any
certification. Thus, we use a different approach to move data
between scopes that goes through mission memory.

Kwon and Wellings propose to map memory areas to Java
methods in a user-controlled fashion in [11]. Motivated by
the overhead incurred when checking the single parent rule
and cross-scope reference assignments [3], they propose a
model that reduces the need for such checks. This is achieved
by associating a memory region with annotated methods.
Memory areas are entered when the method is invoked, ef-
fectively changing the allocation context. Objects created
within this context are collected when the method returns.
References to objects created outside the current method
can be passed as parameters or as local objects in the en-
closing object that the method belongs to. References to
objects in a callee method are not allowed. If there is the
need to return objects after a method is executed, it is done
by specifying an additional parameter that can define where
to store a returned object. The approach uses RTSJ scoped
memories in a restrictive style that is very similar to SCJ
private memories. The annotation facility hides the com-
plexities of using the memory API to encapsulate methods
and to return objects.

The Lifecycle Memory Managed Periodic Worker Threads
pattern (LMMPWT) described in [6] presents an RTSJ
framework where a group of no-heap periodic threads
cooperate together to complete a task. This pattern focuses
on object lifetime management and does not require an
explicit understanding of scopes. Lifetimes assigned to
objects are divided in four categories that can be directly
related to the lifetime of immortal, mission, private and
nested memory allocated objects in SCJ. Movement of data
between scopes and creation of objects in arbitrary memory
areas is done with an encapsulated use of the memory
API. The drawback of this implementation is that it relies
heavily on reflection for manipulation of objects. Note
that the java.lang.reflect package is not part of the SCJ
specification.

In [19], the authors introduce the concept of scoped types
as a way to encapsulate scoped objects. Scope and portal
classes are defined and associated with their defining pack-
ages. Nested scopes are in turn associated with nested pack-
ages. Accessibility of a scoped class is restricted to instances

of classes allocated in the same or nested scopes. This work
is later extended in [16] where the authors document a num-
ber of programming idioms to manipulate scopes.

3. SCJ MEMORY MODEL

SCJ uses a restricted version of the scoped memory
model introduced by RTSJ [3]. In SCJ’s memory model,
the garbage collected heap memory is not needed as the use
of RealtimeThread is not allowed. There are three different
scoped memory areas with different requirements on the
lifetime of objects they can hold, namely immortal memory,
mission memory, and private scopes. Objects allocated
in immortal memory remain valid until the JVM finishes,
objects in mission memory are valid for the duration of
the mission, and objects in initial private scopes are valid
for the duration of one release of a handler. Immortal
and mission memory areas are shared between handlers
executing concurrently and private scopes can be entered
only by a single handler.

Private memories can also have nested scopes to provide
space for temporary computations. Nested scopes are cre-
ated within the backing store reservation space of an event
handler’s private memory and can be entered only from the
memory area where it was created. As an example, the com-
putation of a Fast Fourier Transform (FFT) from a set of
samples may create many objects that won’t be needed af-
ter the result is computed. Any algorithm that consists of
multiple processing phases, with the output of each phase
serving as the input to the next, is a good candidate for the
use of nested private memories to hold the temporary data
used within each phase. JPEG encoding is an example of
such an algorithm.

3.1 SCJ Memory API

Memory areas are constructed as instances of the
ImmortalMemory, MissionMemory and PrivateMemory classes.
The latter two extend a common SCJ class, ManagedMemory.
Unlike the RTSJ, it is not possible to explicitly create
instances of MemoryArea objects. The SCJ infrastructure
instantiates MissionMemory and PrivateMemory objects in
response to certain user requests.

Memory area objects represent an allocation context but
the objects themselves are created outside the allocation
context they represent e.g., the object representing the ini-
tial mission memory resides in immortal memory.

Memory areas are entered implicitly by the infrastructure,
using ManagedMemory.enterPrivateMemory() to move into an
inner nested scope, or with executeInArea() to enter an outer
nested scope.

Objects are created in the allocation context where the
private handler is executing but they can also be created in
a different memory area with the help of newInstance() and
newArray () methods.

It is possible to obtain references to memory areas
with the methods getMemoryArea(Object object) and
getCurrentManagedMemory(). Such references can be used
in combination with the previously described methods to
move to an explicit memory area or to indicate where an
object is to be created.



4. SCOPED MEMORY USAGE PATTERNS

Patterns can be used to document expertise, provide so-
lutions to recurring design problems, and can lead to more
flexible and reusable software. In [9], a design pattern is
defined as a solution to a problem in a context.

Based on experience, the main problems with the SCJ
are establishing abstractions that allow safe and reliable in-
tegration of independently developed software components,
abstractions that provide an assurance that integration of
components does not introduce memory leaks and illegal
references.

This work looks into the expressiveness of the SCJ
memory model and explores patterns relating to the use of
this memory model. The following section presents several
scoped memory usage patterns that aim at helping in the
development of SCJ applications. The focus is on how to
pass arguments into and return objects from methods that
change the allocation context to a nested memory.

4.1 The Basic Pattern

The organization of the event handlers and the initial pri-
vate memory in SCJ can be considered as a basic, minimal-
istic pattern. It works quite well when the event handler will
not return results or need arguments as parameters (e.g. no
feedback is expected when sending control signals to actu-
ators). In this case, it is not necessary to preserve results
for the next time the memory area is activated. Implemen-
tation of this pattern is straightforward. A managed event
handler overrides the handleAsyncEvent() method. Tempo-
rary objects are allocated in the initial private memory and
the memory area is recycled at the end of the release. This
pattern is called Scoped Run Loop Pattern in [14]. The dif-
ference between the SCJ pattern and the RTSJ pattern is
that the memory area does not need to be explicitly created
and entered, as this is all handled by the SCJ implementa-
tion.

4.2 Loop Pattern

Since private memory space is a scarce resource, applica-
tions should carefully use the memory to avoid running out
of space. One way to recycle memory is to use nested private
scopes. A nested private scope can be entered and exited
several times during a release. The object representing the
nested private scope is reused in the implementation to avoid
generating garbage in the initial private memory [17]. This
nested private memory is entered by creating a Runnable and
change the allocation context with enterPrivateMemory().

An example scenario that benefits from temporary allo-
cation within a nested private memory is a loop body that
has no dependency on variables declared within the method
and produces no results that need to be visible following
execution of the loop body. This is shown in Figure 1.

In this example, all the objects created by the Runnable w
executed in the nested memory will be collected when the
enterPrivateMemory () method returns. One can imagine the
instance of the Worker class to be applying an encryption al-
gorithm to a block of static data that should be transmitted
periodically. The encryption algorithm can then generate
garbage as a result of temporal computations which will be
collected at the end of every release.

Two important issues need to be considered. First, avoid-
ance of illegal references and second, the possibility to in-
troduce memory leaks. Memory leaks can be introduced

class MyHandler extends PeriodicEventHandler {
public void handleAsyncEvent() {
Worker w = new Worker();

for(int i =0; i < BLOCK_SIZE; i++){
ManagedMemory.enterPrivateMemory (256, w);

}
}
}

Figure 1: The loop pattern

if on every iteration the loop allocates objects in an outer
memory, for example, in immortal or mission memory.

It is important to emphasize that this additional private
memory is only useful when entered several times, usually
in a loop. If it would be entered only once per release, one
can stay within the primary private memory — the backing
store consumption would be the same.

4.3 Execute with Primitive Return Value

More interesting is the case when one wants to pass
parameters and/or preserve results within iterations of a
scoped loop or handlers/Runnables executing in its own
private memory.

Naive approaches may attempt to use static fields to pass
information between scopes. This is limiting, because static
fields are only allowed to refer to objects residing in im-
mortal memory; thus, this precludes the passing of scope-
allocated parameters. Further, this approach is not thread
safe, because multiple threads endeavoring to call the same
subroutine would overwrite each other’s parameters.

References to an object allocated in mission memory (or
any other outer scope) used to pass arguments and return
results need to be brought into the Runnable. However,
Runnable’s run() method has no parameters.

As an alternative, we can create a class that implements
Runnable and use input and output objects to pass and return
information. References to those objects are passed in the
constructor of that class. Upon return, the caller copies
the value from the Runnable’s field. Clearly, a drawback
when using this approach is that only primitive values can
be copied as the return value. Figure 2 shows an example.

4.4 Returning a Newly Allocated Object

It might be the case that we want to run part of the ex-
ecution in a nested private memory but we need to create
objects that will be used later. References to objects cre-
ated in inner scopes cannot be passed to outer contexts, as
they will be reclaimed when leaving the inner scope. The
key point here is that objects created while executing in an
inner scope need to be created in an outer scope. SCJ’s API
offers the following two options to create objects outside the
current allocation context:

e Using executeInArea() to explicitly change the alloca-
tion context, or

e Using newArray() or newInstance() to create the objects
without explicitly changing allocation context



public class Worker implements Runnable {
Simpleln in; SimpleOut out;

public Worker(Simpleln in, SimpleOut out) {
this.in = in;
this .out = out;

}

public void run() {
// Use this.in, work and generate garbage
T temp = new T();

// assign primitive values to out
out. result = temp.x;

}
}

class MyHandler extends PeriodicEventHandler {

public void handleAsyncEvent() {
// allocate input and output parameters
// fill input arguments
Runnable r = new Worker(in, out);
ManagedMemory.enterPrivateMemory (256, r);
// now we can use out. result

Figure 2: Execute with return.

For both options we need a reference to the memory area
where the object is to be created and a way to reach the
new object. Figure 3 shows an example of how to use
nested memory scopes with return objects together with
newInstance().

In this example, a reference to the memory is obtained via
the getMemoryArea method. The return object is allocated in
the scope where the caller (this) is allocated, but it can
be done in any outer scope. The newly created object can
be accessed through the reference that is part of the Worker
instance.

The main restriction of this approach is that it is limited
to the use of the parameterless constructor of the returnable
object. This is a consequence of the requirements imposed
on the newInstance() method in SCJ [12]. For more complex
classes executeInArea() needs to be used.

4.5 Scoped Methods

One can create a nice abstraction to hide the complex-
ities of parameter passing, returning results and switching
between memory areas by combining the patterns described
above into a scoped method. Ideally, a scoped method would
be an expression of the form ret = f(params) that can be
executed in a specific memory area, have input parameters,
and can return values or references to objects.

For an SCJ application developer, executing code in
a specific memory area is achieved through the use of
enterPrivateMemory() to go into a nested private memory
or by using executeInArea() to move into an upper nested
scope. Since both methods take a Runnable object as
argument, the active part of a scoped method should be
coded within the run() method of a Runnable object.

To provide the functionality of parameter passing and re-
turning results, we use a parameter object whose fields con-

class Worker implements Runnable {
RetObject rObj;
public void run() {

// Do some work...
MemoryArea mem = MemoryArea.getMemoryArea(this);
rObj = mem.newlnstance(RetObject.class);

}
s

class MyHandler extends PeriodicEventHandler {
public void handleAsyncEvent(){

Worker w = new Worker();
ManagedMemory.enterPrivateMemory(256,w);

// Use returned object and fields
w.rObj ...

}
}

Figure 3: Use of newInstance to create an object in an
upper scope.

tain the method arguments, a reference to the memory area
where the returning object shall be allocated, and a field
to store the reference to the returned object (so it can be
accessed when the method finishes). Figure 4 shows an ex-
ample of a scoped method that executes in a nested private
memory.

4.6 Runnable Factory

Creating all the code above for a single scoped method
might be cumbersome. Typically, one would like to exe-
cute more than one method in an application. Hiding this
complexity can be done through a Runnable factory whose
methods have a Runnable return type. The application’s
method code is implemented in the run method of this re-
turned Runnable. The factory object itself can be instanti-
ated in the handler’s private memory or any other shared
memory. Parameters can be passed when calling the factory
method. Figure 5 illustrates the concept.

The example shows an auxiliary object, auxObjIn, used
to pass arguments and return values by way of the
readTemperature() factory method. This object has a field
used to store a reference to an arbitrary object, resArbObj,
that should be returned. In this case, the memory area
where the result object is to be saved, is obtained from the
auxiliary object via the getMemoryArea() static method.

The drawback with this particular implementation is that
the memory area where the returned object is allocated will
be restricted to the memory area of the auxiliary object. If
the returned object needs to be saved in a different context
then an additional field holding a reference to the destination
memory area can be included in the auxiliary object.

One can go even further and hide the enterPrivateMemory()
within a real method and also return the reference to the
outer scope allocated object.



public class ParamObject {

ManagedMemory mem; // Memory reference
param_X... // Method parameters
ReturnObject rObj; // Return reference

}

public class Method implements Runnable {
ParamObject params;

Method(ParamObject params){
this . params = params;

}

public void run() {
// Use parameters, do work, create garbage

// Change context, create return object
params.mem.executelnArea(new Runnable() {
public void run() {

ReturnObject rObject = new ReturnObject();

// Update return object fields
params.retObject = rObject;}});
}
}

class MyHandler extends PeriodicEventHandler {
public void handleAsyncEvent(){

// Created in the scope where handler executes
ParamObject pObj = new ParamObject();

// This object simulates the method with

// parameters that returns an object

Method myMethod = new Method(pObj);
ManagedMemory.enterPrivateMemory(256,myMethod);

// Now the returned object can be used

Figure 4: Scoped method with parameters and a
return object.

4.7 Producer/Consumer

Control systems are often composed of producer and con-
sumer processes that run in their own thread of control. The
exchange of information between a producer and a consumer
can involve data structures or objects, rather than primitive
types. In [14] and in [4] solutions are proposed for RTSJ.
Such solutions involve the use of portal objects (not part of
SCJ), shared scopes, or the introduction of safe violations
to the reference assignment rules.

Communication between handlers goes through objects lo-
cated in the shared memory areas, mission and/or immortal
memory. Objects in those areas are not reclaimed until ter-
mination of the mission or the JVM respectively. Thus we
need to reuse objects in those shared memory areas. In [7],
a solution is devised using a memory pool of immortal ob-
jects. SCJ allows the use of non-immortal objects to do
manual pooling. The pool of objects can be collected when
the mission finishes.

public class RunnableFactory implements IRunnable{

Q@Override
public Runnable readTemperature(final int i,
final AuxObj auxObjln) {
return new Runnable() {
Q@Override
public void run() {
// Do work, here we can use input parameters ...
// log() is common to all runnables ...

log ();

// Overwrite primitives OK...
// Change execution context ... another runnable ...
MemoryArea.getMemoryArea(auxObjln).
executelnArea(new Runnable(){
Q@Override
public void run() {
ArbObj resArbObj = new ArbObj();
resArbObj.a = 50;
auxObjln.arbObj = resArbObj;}});
}
h
}

©Override
public Runnable otherFactoryMethod() {

.
}

class MyHandler extends PeriodicEventHandler {
public void handleAsyncEvent() {

RunnableFactory factory = new RunnableFactory();
AuxObj auxObj = new AuxObj();

ManagedMemory.enterPrivateMemory (256,
factory .readTemperature(5, auxObj));

ManagedMemory.enterPrivateMemory(512,
factory .otherFactoryMethod());

Figure 5: Runnable factory.

5. DISCUSSION

During our exploration of SCJ style scopes, we found some
issues that can be avoided by changes in the SCJ API, in
standard Java libraries, and/or allowing true stack alloca-
tion of objects.

5.1 Simplifying Allocation Context Change

The SCJ specification tries to avoid having references to
arbitrary memory areas to forbid a handler to enter or ex-
ecute code outside its private memory. However, the initial
private memory area object is allocated in mission memory.
A reference can be leaked by the event handler owning this
memory area via a shared object in mission memory. A dif-
ferent handler can try to use executeInArea(), newInstance()
and newArray() with this memory reference. This is not an
issue but, as defined by RTSJ, requires checking at runtime
that the targeted memory area is in the current thread’s
scope stack.



To avoid the need for these run-time checks, and thus
to avoid the possibility that the exception will be thrown,
we propose a change in the current API with the following
modifications:

e A new static method, executeInOuter(), as a substitute
for executeInArea()

e Hide getCurrentManagedMemory(), getMemoryArea(),
executeInArea(), newInstance() and newArray() from
the application developer

According to the RTSJ scope rules it is only possible in
SCJ to change the allocation context to an outer memory.
Therefore, we propose to make this explicit with a static
method executeInOuter() on ManagedMemory. This concept
complements the static method to enter a nested private
memory. For the executeInOuter() method, two variants are
considered:

e executeInOuter(Object obj, Runnable logic), that will
cause the calling schedulable object to change the allo-
cation context to the outer memory area where object
obj is allocated

e executeInOuter (Runnable logic) which changes the al-
location context one level out

The new API with these modifications will be semantically
equivalent to the original API but with the added benefit of
being free from memory reference leaks and the mentioned
run-time checks.’

5.2 Scope Aware Java Libraries

Besides scope aware patterns, one can also think on
scope aware Java libraries. Consider for example the case
of doing string concatenation in a temporary scope. We
allocate a StringBuilder object in a temporary scope.
Then, executeInArea() into the outer scope to execute
StringBuilder.toString() to preserve the value in the outer
scope. The issue is on how toString() is implemented. If it
reuses the buffer from the StringBuilder it will end up in
a wrong pointer assignment. If it does create a new array
and copies the StringBuilder buffer then it is fine. The
JDK version in JOP does a copy as well as OpenJDK’s
implementation.

Another example can be found in the data structures of
java.util library (e.g. LinkedList, Vector, Stack, HashMap).
The issue is the mechanism used to free the memory no
longer needed by elements removed from the structures.
When an element is removed, the reference to the removed
element is set to null to help the GC collect the no longer
needed object. Use of such structures in mission or immortal
memory will cause a memory leak. A solution is proposed in
[10], where elements of the data structure are recycled from
a pool of elements.

A more detailed study into programming patterns present
in the current Java class libraries is an interesting topic for
future work. The question to answer would be if it is pos-
sible to obtain re-usable code by rewriting portions of those
libraries to be scope-safe.

tJust before the deadline for the final version of this pa-
per the SCJ expert group accepted our proposal. The
static methods to change the allocation context to an
outer memory area will be on ManagedMemory and are:
executeInOuterArea(Runnable r) and executeInAreaOf(Object
0, Runnable r).

5.3 Stack Allocation

Note that in order to pass reference arguments into a pri-
vate memory scope, it is necessary to allocate a Runnable
object that is nested at the same level as or in a more
inner-nested scope level than the scopes that contain the
referenced arguments. This is an impediment to encapsula-
tion. It adds difficulty to the tasks of integrating indepen-
dently developed safety-critical Java software components
and of evolving system functionality during common soft-
ware maintenance activities.

Good software design requires software engineers to en-
capsulate data and control within clear boundaries of ab-
straction. These principles of abstraction demand that a
programmer who intends to allocate temporary objects must
take responsibility according to the conventions of the under-
lying programming language technology for managing the
temporary memory that is consumed by those temporary
objects.

A problem with the draft JSR-302 specification is that
the choice to introduce a private memory scope from within
a particular method is not a purely private concern. The
caller needs to know that a callee is going to perform pri-
vate allocations because the caller needs to set aside memory
within its scope to hold the representation of the Runnable
object that is used to pass arguments into the private mem-
ory scope. Further, the caller needs to know the size of
the Runnable object. If subsequent software maintenance
activities require changes to the structure of the Runnable
object, it becomes the software maintainers job to identify
all of the contexts from which the method is called and ad-
just their computations of scope sizes appropriately. And if
a callee that performs local memory allocations is invoked
from within a loop, each iteration of the loop may allocate
yet another Runnable object within the caller’s default mem-
ory allocation area. This represents a form of memory leak.
Note that the problem of managing memory for temporary
objects is different than the problem of managing memory
for objects that are intended to persist beyond the lifetime
of a particular method invocation. In that case, the caller of
the method must take responsibility for managing the mem-
ory for the persistent objects. That is a different problem,
not addressed by the solution described in this section.

It is important to note that the motivation for these pro-
posed refinements is improved abstraction. The performance
benefits are minimal, as the design of the restrictive scoped
memory subset supported by JSR-302 is already sufficient to
allow private memory scopes to be allocated on the run-time
stack. Better separation of concerns, supporting improved
abstraction of software components, could be realized if the
JSR-302 specification were amended to allow entry into a
private scope within which argument and local variables can
be accessed without necessitating the creation of a Runnable
object within the outer-nested scope. This mechanism re-
sembles stack allocation as it is possible in C, or which opti-
mizing JVMs might perform when references to the objects
does not escape from the method. One possible solution is
illustrated by the code fragment in Figure 6

The openPrivateMemoryArea() method is only allowed to be
invoked as the first operation within a try statement that has
an accompanying finally clause which contains only an in-
vocation of closePrivateMemory() with no code following the
finally clause within the method. An additional restriction
is that this pattern is only allowed within methods that are



public void Method(argl, arg2, arg3, ...) {

try {
ManagedMemory.openPrivateMemoryArea(size);

// body of method can make arbitrary
// reference to argl, arg2,

// and can allocate in inner—nested
// private memory area

}
finally {
ManagedMemory.closePrivateMemory();

// No code is allowed to follow the finally
// statement within this method,

// and the finally statement is not allowed
// to have anything other than

// the closePrivateMemory() invocation .

Figure 6: Coding style for possible stack allocation
in SCJ.

declared to have void or primitive return types. Otherwise, a
programmer might accidentally endeavor to return a locally
allocated object to the caller’s context.

The authors acknowledge that it would be difficult for the
JSR-302 group to adopt this solution because there is no
equivalent capability in the current RT'SJ standard and there
is a strong desire to maintain full compatibility between the
JSR-302 and RTSJ standards. Perhaps the JSR-282 group
will see the value of this style of interaction and add similar
capabilities to the JSR-282 standard in order to allow com-
patible support for the necessary JSR-302 enhancements.

5.4 Creating a Temporary Memory from exe-
cuteInArea

A common requirement in scoped-memory software sys-
tems is to allocate temporary objects as part of a computa-
tion carried out in a more outer-nested scope. Consider the
following use cases:

1. A string object that is to be returned from a method
must be constructed in an outer-nested scope so that
it can be referenced from objects residing in outer-
nested scopes. Construction of the String object re-
quires instantiation and manipulation of a temporary
StringBuilder object to perform catenation of values
supplied as a method’s input parameters.

2. A constructor for a complex object needs to allocate
temporary objects in order to compute the values to
be stored into certain instance fields of the constructed
object. The constructor itself generally executes in the
scope of the object to be constructed, which may not
be the inner-most private memory area.

3. A method to modify a data structure that resides in
an outer-nested memory area (e.g. HashMap.put (key,
value)) needs to execute in the outer-nested memory
area that holds the data structure in order to allocate
objects that can be referenced from the data structure.
In some cases, such as when adding a new entry to an
existing hash table requires that the size of the hash
table be expanded, this method must allocate tempo-
rary objects.

As currently drafted, the JSR-302 specification only al-
lows invocation of enterPrivateMemory() if the current mem-
ory area is the inner-most memory area associated with the
current thread. This makes it difficult to address these com-
mon use-case scenarios.

We propose the following refinement to JSR-302. Con-
sider the case that private memory P2 nests within private
memory P1. Suppose further that from within allocation
context P2, the program invokes executeInArea(), making
P1 the current allocation context. If the program now in-
vokes enterPrivateMemory(), a new private memory area P3
is created which physically nests within P2 (is stacked on top
of P2) even though it is conceptually private to the current
execution context (P1).

However, despite being a safe use case in SCJ, this pat-
tern is disallowed from RT'SJ due to the restrictions imposed
by the schedulable object’s scope stack. Once the alloca-
tion context is changed to a scoped memory area, the scope
stack will contain only that memory area and the ones be-
low it [3, 14] making the current allocation context the in-
nermost scoped memory (top of the scope stack). Thus, a
new enterPrivateMemory() will create a sibling of P2, since
the previous enterPrivateMemory() has not returned yet and
a new P3 area will be created and pushed to the scope stack.

There are good use cases that motivate the creation of
temporary memories after the change of allocation context
with executeInArea(); implementing the new private mem-
ory area as nested within the last entered private memory
(the one from where executeInArea() was called from) of this
thread seems reasonable.

5.5 IllegalStateException

The description of enterPrivateMemory() in the specifica-
tion is incomplete. Currently, it is documented to throw
IllegalStateException if invoked during initialization phase.
It should also state that the exception will be thrown if in-
voked when the current allocation context is the result of
an executeInArea() invocation. This further restriction is
needed to keep each private memory area with at most one
child.

6. CONCLUSIONS

Safety-critical Java defines three memory areas: immor-
tal memory, mission memory, and private memories. Pri-
vate memories are used for temporal storage for the lifetime
of a single release. Private memories can be nested. Us-
age of these memories and returning results from an inner
nested memory is not trivial. In this paper we analyzed
possible usage patterns of the scoped memory as defined in
safety-critical Java aiming at helping in the development of
applications.

Temporary storage offered by nested private memories can
be exploited with the use of scoped loops which are entered
more than once per handler release. If results are to be pre-
served for the next loop iteration, one can think on updating
global objects in immortal memory. This is limiting and not
thread safe because static fields are only allowed to refer to
other immortal objects and multiple threads may overwrite
each other’s parameters. A different approach is the use of
auxiliary objects to return results and pass arguments from
and into the Runnable required by the enterPrivateMemory()
and executeInArea() methods. Returning objects from pri-
vate or nested private memory areas is accomplished by an



allocation context change and by saving the reference to the
newly allocated object in a field of an auxiliary object. The
complexities of creating auxiliary objects, passing references
and saving results can be hidden by means of encapsulated
methods.

During our exploration of SCJ style scopes, we found some
issues that can be avoided by changes in the SCJ API, in
standard Java libraries, and/or allowing true stack alloca-
tion of objects. We have proposed a simplification of mem-
ory allocation context change by using static methods to
switch to an outer memory area. This mechanism fits well
with the usage of a static method to create and enter a
nested private memory.
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8. SOURCE ACCESS

The examples presented in this work are part of the
JOP distribution and implementation of SCJ [18]. It can
be downloaded from https://github.com/jop-devel/jop.
The source files of the example patterns are located in the
java/target/src/paper/scopeuse/ directory.
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