
Garbage Collection for Safety Critical Java

Martin Schoeberl
∗

Institute of Computer Engineering
Vienna University of Technology

mschoebe@mail.tuwien.ac.at

Jan Vitek
Computer Science Dept.

Purdue University
jv@cs.purdue.edu

ABSTRACT
The Real-time Specification for Java and the upcoming, and more
restricted, Safety Critical Java standard have been designed to allow
programmers to avoid pauses caused by automatic memory man-
agement algorithms. Dynamic memory is user-managed using a
region-based allocation scheme known as scoped memory areas.
However, usage of those scoped memories is cumbersome and of-
ten leads to runtime errors. In this paper we focus on the safety
critical subset of the Real-time Specification for Java and propose
a real-time garbage collector that can be scheduled like a normal
real-time thread with a deadline monotonic assigned priority. The
restricted programming model offered by Safety Critical Java al-
lows us to substantially simplify the collector. Our proposal has
been implemented and evaluated in the context of the JOP project.
JOP is a Java processor especially designed for embedded real-time
systems. The architecture is optimized for worst-case execution
time (WCET) instead of the usual optimization for average case
execution time. Execution time of bytecodes is known cycle accu-
rate.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storage management, Java

Keywords
Real-time system, Garbage collection

1. INTRODUCTION
The Java programming language is widely used for general pur-

pose programming. Java has a number of safety features (with re-
spect to programming errors) which make it an appealing candi-
date for real-time systems. One key feature that makes Java a safe
language is automatic memory management based on a garbage

∗This work has been supported in part by the Wiener Innovations-
förderprogramm für betriebliche Forschung & Entwicklung – Call
IKT Vienna 2004.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES ’07 September 26-28, 2007 Vienna, Austria
Copyright 2007 ACM 978-59593-813-8/07/09 ...$5.00.

collector (GC). Memory management is a cross-cutting issue and
hard to get right when done by hand, especially in large software
systems. Manual memory management errors can lead to dangling
references which are hard to find and can occur at any point during
the execution of a program. Garbage collection relieves program-
mers from having to worry about this class of errors.

In order to make Java suitable for hard real-time tasks the de-
signers of the Real-time Specification for Java (RTSJ) [7] chose to
avoid GC by introducing the concept of immortal and scoped mem-
ory areas and no-heap real-time threads. A scoped memory area is
a region which supports linear time allocation of objects and bulk
deallocation. The RTSJ mandates write barriers to prevent dangling
pointers. Any reference assignment must ensure that the referred
object has a lifetime at least as long as that of the target of the as-
signment. Scoped memories are thus safer than explicit memory
management, but still hard to use correctly [15]. An alternative that
has received much attention is garbage collection algorithms with
real-time guarantees.

In this paper, we focus on a real-time garbage collection algo-
rithm tuned for safety critical applications (with similar goals as the
the upcoming Safety Critical Java standard (SCJ) JSR-302 [13]).
Safety critical systems represent a class of applications with par-
ticularly stringent correctness requirements because a software de-
fect may result in catastrophic system failure and possibly loss of
life. Safety critical applications are typically designed carefully
and analyzed for their worst case behavior. We argue that when
scheduled correctly and the memory consumption is analyzable,
garbage collection is a viable option for these systems. The advan-
tage of automatic memory management is that it enhances the ex-
pressiveness of the programming model, e.g., producer/consumer
tasks can use dynamic memory, and many patterns of references
that would cause runtime failures in the RTSJ become legal, and
indeed safe. Clearly, adding a garbage collector to the infrastruc-
ture will require additional certification effort, but this is, hopefully,
a one time cost. Furthermore we are encouraged by a number of
projects looking at provably correct garbage collection techniques
(see for instance [11, 27]).

The real-time GC algorithm proposed in this work leverages some
of the other features of the SCJ, such as the fact that SCJ systems
consist only of hard real-time periodic tasks. Avoiding the mixed
mode supported by the RTSJ allows for a simpler and potentially
more efficient collection algorithm. On the other hand, this means
that our proposal is not suited to a plain RTSJ virtual machine.1

The contributions of this paper are the design of a new real-time
1We are considering adapting the approach explored in [16], where
the heap is partitioned in so-called Heaplets and different garbage
collection algorithms are run in each of those heaplets. The idea
would be to use our collector in a safety critical heaplet and use
other real-time collectors for the rest of the VM. New research is

garbage collection algorithm suited for use in safety critical sys-
tems and its implementation in the JOP embedded Java processor.
Our preliminary evaluation suggests that our the new algorithm is
efficient and has highly predictable behavior.

The paper is organized as follows. We start, in Section 2, with
a presentation of the salient points of the proposed Safety Critical
Java standard. Section 3 places our new algorithm in the context
of existing real-time collectors. Section 4 describes the real-time
GC algorithm. A brief description of the implementation on JOP is
given in Section 5. We evaluate the maximum blocking time due to
the GC thread in Section 6 and conclude the paper in Section 7.

2. SAFETY CRITICAL JAVA
Puschner and Wellings were the first to consider the concerns

of safety- and mission-critical systems in the context of the RTSJ
for Java [17]. Their proposal adopts the approach pioneered by the
Ravenscar tasking profile for Ada [8] which defined a strict subset
of the Ada language for high-integrity systems. This work was later
refined by Schoeberl et al. [24].

In this paper we focus on the Safety Critical Java (SCJ) specifica-
tion, a new standard for safety critical applications which is being
drafted by the JSR 302 expert group.

We should note that JSR 302 has not been finalized, thus our
presentation gives an overview of work in progress. Furthemore,
our proposal of real-time garbage collection to SCJ is an extension
of the proposed standard.

This draft JSR 302 standard, like previous work, defines a strict
subset of the RTSJ which is intended to provide a programming
model suited to a large class of safety critical applications. Restrict-
ing the features of the RTSJ is intended to make programs more
amenable to worst case analysis and manual or automatic valida-
tion. The SCJ is structured in three increasingly expressive levels:
Level 0 restricts applications to a single threaded cyclic executive,
level 1 assumes a single “mission” with a static thread assignment,
and level 2 is a multi-mission model with dynamic thread creation.
This paper focuses on level 1 which is expected to cover a large
number of existing SC applications. It should be noted that while
all levels are designed to run on a vanilla RTSJ VM, it is expected
that vendors will provided implementations that are optimized for
the particular features of each level.

2.1 SCJ Level 1
Level 1 of the SCJ requires that all threads be defined during

an initial initialization phase. This phase is run only once at vir-
tual machine startup. The second phase, called the mission phase,
begins only when all threads have been started. This phase runs
until virtual machine shutdown. Level 1 supports only two kinds
of schedulable objects: periodic threads and sporadic events. The
latter can be generated by either hardware or software. This re-
strictions keeps the schedulability analysis simple. In SCJ priority
ceiling emulation is the default monitor control policy. The default
ceiling is top priority.

The Java wait and notify primitives are not allowed in SCJ level
0 and 1. This further simplifies analysis. The consequence is that
a thread context switch can only occur if a higher priority thread is
released or if the current running thread yields (in the case of SCJ
by returning from the run() method).

In the RTSJ, periodic tasks are expressed by unbounded loops
with, at some point, a call to the waitForNextPeriod() (or wFNP()
for short) method of class RealtimeThread. This has the effect of
yielding control to the scheduler which will only wake the thread

needed to address issues of pointers that cross heaplets.

package javax.safetycritical;

public abstract class RealtimeThread {

protected RealtimeThread(RelativeTime period,
RelativeTime deadline,
RelativeTime offset, int memSize)

protected RealtimeThread(String event,
RelativeTime minInterval,
RelativeTime deadline, int memSize)

abstract protected boolean run();

protected boolean cleanup() {
return true;

}
}

public abstract class PeriodicThread
extends RealtimeThread {

public PeriodicThread(RelativeTime period,
RelativeTime deadline,
RelativeTime offset, int memSize)

public PeriodicThread(RelativeTime period)
}

Figure 1: Periodic thread definition for SCJ

new PeriodicThread(
new RelativeTime(...)) {

protected boolean run() {
doPeriodicWork();
return true;

}
};

Figure 2: A periodic application thread in SCJ

when its next period starts or shortly thereafter. In SCJ, as a sim-
plification, periodic logic is encapsulated in a run() method which
is invoked at the start of every period of a given schedulable ob-
ject. When the thread returns from run() it is blocked until the next
period.

Figure 1 shows part of the definition of the SCJ thread classes
from [24]2. Figure 2 shows the code for a periodic thread. This
class has only one run() method which performs a periodic compu-
tation.

The loop construct with wFNP() is not used. The main intention
to avoid the loop construct, with the possibility to split applica-
tion logic into mini phases, is simplification of the WCET analysis.
Only a single method has to be analyzed per thread instead of all
possible control flow path between wFNP() invocations.

We contrast the SCJ threading with Figure 3 where a periodic
RTSJ thread is shown. Suspension of the thread to wait for the
next period is performed by an explicit invocation of wFNP(). The
coding style in this example makes analysis of the code more diffi-
cult than necessary. First the initialization logic is mixed with the
code of the mission phase, this means that a static analysis may

2These are similar to the draft JSR 302 class definitions, but as the
specification is still in the process of being finalized we choose to
use the classes available in the infrastructure we use for our imple-
mentation.

public void run() {

State local = new State();
doSomeInit();
local.setA();
waitForNextPeriod();

for (;;) {
while (!switchToB()) {

doModeAwork();
waitForNextPeriod();

}
local.setB();
while (!switchToA()) {

doModeBWork();
waitForNextPeriod();

}
local.setA();

}
}

Figure 3: Possible logic for a periodic thread in the RTSJ

be required to discover the boundary between the startup code and
the periodic behavior. The code also performs mode switches with
calls to wFNP() embedded in the logic. This makes the worst case
analysis more complex as calls to wFNP() may occur anywhere and
require deep understanding of feasible control flow paths. Another
issue, which does not affect correctness, is the fact that object ref-
erences can be preserved in local variables across calls to wFNP().
As we will see later this has implications for the GC.

2.2 SCJ and Memory Management
The issue of memory management in the SCJ is under vigor-

ous discussion. On the one hand, in order to certify applications
at, for instance, the DO178, Level A [19] it is necessary to prove
that no runtime exception will occur. The burden of proof is high
with RTSJ-style scoped memory as any reference read or write can,
potentially, throw a memory access exception. On the other hand,
mandating a real-time garbage collector does not seem practical for
all applications. One possibility under investigation for SCJ is to
use an ownership type system inspired by [26, 1]. This type system
would ensure that scoped memory is used safely. This would have
the advantage that no changes to the virtual machine are required
and would provide strong correctness guarantees. But, a drawback
of any static approach is that it restricts the set of valid programs.
It is not clear how restrictive the proposed type system will prove.
We take a different approach in this paper as we believe that a real-
time collector can be used for a large number of SCJ applications
if the GC induced jitter can be bounded to a few microseconds and
the overall performance impact remains acceptable.

SCJ has two interesting properties that may simplify the imple-
mentation of a real-time collector. Firstly, the split between initial-
ization and mission phase, and secondly the simplified threading
model (which also mandates that self-blocking operations are ille-
gal in mission). During initialization of the application a SCJ vir-
tual machine does not have to meet any real-time constraints (other
than possibly a worst case bound on the entire initialization phase).
It is perfectly acceptable to use a non-real-time GC implementation
during this phase – even a stop-the-world GC. As the change from
initialization to mission phase is explicit, it is clear when the vir-
tual machine must initiate real-time collection and which code runs
during the mission phase.

Simplifying the threading model has the following advantage, if
the collector thread runs at a lower priority than all other threads

in the system, it is the case that when it runs all other threads have
returned from their calls to run(). This is trivially true due to the
priority preemptive scheduling discipline3. Any thread that has not
returned from it’s run() method will preempt the GC until it returns.
This has the side effect that the GC will never see a root in the call
stack of another thread. Therefore, the usually atomic operation of
scanning call stacks can be omitted in the mission phase. We will
elaborate on this in Section 4.3.

3. RELATED WORK
Work on real-time collection can be traced back to Baker’s in-

cremental copying collector [5]. Baker’s idea was to decrease the
intrusiveness of the collector by piggy-backing work onto mutator
operations. To ensure consistency, a small piece of code, called a
read barrier, is inserted by the compiler before every memory read
to perform copying, and the allocation code is modified to perform
a bounded amount of collection work. The worst-case in a pro-
gram using Baker’s collector involves a copy operation upon ev-
ery read, and a (large) unit of collection work on every allocation.
Hence, even though individual pauses are small, the worst case ex-
ecution time of an allocation makes Baker’s collector unsuitable for
most hard real-time settings. Baker’s collector is said to be work-
based, in the sense that work done by the mutator leads to work by
the collector. Bacon et al. [4] investigate different approaches to
real-time collection. In Bacon’s time-based system, the collector
interleaves with the mutator at regular intervals. In [12] Henriks-
son proposes a collector that only becomes active during periods
when the real-time tasks are idle. In both collectors, constant time
read (or write) barriers are still needed to maintain consistency, and
allocation must be made predictable (constant time, or linear in ob-
ject size). The worst-case bounds on execution time in the mutator
become more realistic, allowing the collector to be used in hard
real-time systems.

4. REAL-TIME GC
To minimize the influence of GC work on real-time threads the

collector must to be incremental with minimum blocking times.
Moreover the GC should not penalize high priority threads with
GC work.

4.1 GC Scheduling
The collector work can be scheduled either work based or time

based. On a work based scheduling, as performed in [25], an incre-
mental part of the collector work is performed at object allocation.
This approach sounds quite natural as threads that allocate more ob-
jects have to pay for the collector work. Furthermore, no additional
collector thread is necessary. The main issue with this approach is
to determine how much work has to be done on each allocation – a
non trivial question as collection work consists of different phases.
A more subtle question is: Why should a high frequency (and high
priority) thread increase its WCET by performing collector work
that does not have to be done at that period? Leaving the collector
work to a thread with a longer period will allow higher utilization
of the system.

On a time based scheduling of the collector work, the collec-
tor runs in it’s own thread. Scheduling this thread as a normal
real-time thread is quite natural for a hard real-time system. The
question is: which priority to assign to the collector thread? The
Metronome collector [4] uses the highest priority for the collector.

3If we would allow blocking in the application threads, we would
also need to block the GC thread.

Robertz and Henriksson [18] and Schoeberl [21] argue for the low-
est priority. When building hard real-time systems the answer must
take scheduling theory into consideration: the priority is assigned
according to the period, either rate monotonic [14] or more general
deadline monotonic [3]. Assuming that the period of the collector
is the longest in the system and the deadline equals the period the
collector gets the lowest priority.

4.2 The GC Period
GC work is inherently periodic. After finishing one round of

collection the GC starts over. The important question is which is
the maximum period the GC can be run so that the application will
never run out of memory. Scheduling the GC at a shorter period
does not hurt but decreases utilization.

For the calculation of the maximum GC period the maximum
memory allocation of the periodic threads need to be known. For
objects that live longer than the thread period (producer/consumer
pairs) the maximum lifetime must be known. For a given heap size
H the maximum GC period can be calculated [18, 21] as follows:

For n mutator threads with period Ti where each thread allocates
ai bytes of memory each period, the maximum collector period TGC
that guarantees that we will not run out of memory is

TGC ≤
HMC−3∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(1)

TGC ≤
HCC−4∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(2)

where HMC is the heap size of a mark-sweep-compact collector and
HCC the heap size for a concurrent-copy collector.

Equation (1) and (2) can be extended to incorporate the maxi-
mum lifetime for objects used for communication between threads.
We introduce the lifetime factor li for each producer/consumer pair
τi/τc with periods Ti and Tc which is

li =

{
1 : for normal threads
2
⌈

Tc
Ti

⌉
: for producer τi and consumer τc

(3)

The factor 2 in Equation (3) is for the worst case where τc takes
over all objects at the start of the period and frees them at the end.
The resulting equations for the maximum collector periods are

TGC ≤
HMC−∑

n
i=1 aili−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(4)

and

TGC ≤
HCC−2∑

n
i=1 aili−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(5)

From the two equations we see that the common belief that a
copy collector needs two times the memory of a mark-compact
collector is not true. For both collectors there has to be enough
headroom at the collection start to fulfill two times the allocation
requests during the GC cycle: one for the current cycle and one
for the worst case floating garbage from the last cycle. The copy
collector results in a slightly shorter GC period (or more memory
consumption) as there has to be enough memory available for two
times the memory for objects that are live at the GC cycle start,
whereas for a mark-compact GC memory for one time the live data
is needed. The proofs for the equations can be found in [21].

4.3 SCJ Simplifications
The restrictions of the computational model for safety critical

Java allow for optimizations of the GC. We can avoid atomic stack

scanning for roots and do not have to deal with exact pointer find-
ing. Static objects, which would belong into immortal memory in
the RTSJ, can be detected by a special GC cycle at transition to the
mission phase. We can treat those objects specially and do not need
to collect them during the mission phase. This static memory area
is automatically sized.

It has to be noted that our proposal is extending JSR 302. Clearly,
adding RTGC to SCJ reduces the importance of scopes and would
likely relegate them to the small subset of applications where fast
deallocation is crucial. Discussing the interaction between scoped
memory and RTGC is beyond the scope of this paper.

4.3.1 Simple Root Scanning
Thread stack scanning is usually performed atomically. Scan-

ning of the thread stacks with a snapshot-at-beginning write barrier
[28] allows optimization of the write barriers to only consider field
access (putfield and putstatic) and array access. Reference manipu-
lation in locals and on the operand stack can be ignored for a write
barrier. However, this optimization comes at the cost of a possible
large blocking time due to the atomicity of stack scanning.

A subtle difference between the RTSJ and the SCJ definition is
the possibility to use local variables within run() (see example in
Figure 3). Although handy for the programmer to preserve state
information in locals,4 GC implementation can greatly benefit from
not having reference values on the thread stack when the thread
suspenses execution.

If the GC thread has the lowest priority and there is no blocking
library function that can suspend a real-time thread, then the GC
thread will only run when all real-time threads are waiting for their
next period – and this waiting is performed after the return from the
run() method. In that case the other thread stacks are completely
empty. We do not need to scan them for roots as the only roots are
the references in static (class) variables.

For a real-time GC root scanning has to be exact. With conserva-
tive stack scanning, where a primitive value is treated as a pointer,
possible large data structures can be kept alive artificially. To im-
plement exact stack scanning we need the information of the stack
layout for each possible GC preemption point. For a high-priority
GC this point can be at each bytecode (or at each machine instruc-
tion for compiling Java). The auxiliary data structure to capture the
stack layout (and information which machine register will hold a
reference) can get quite large or require additional effort to com-
pute [6].

4.3.2 Static Memory
A SCJ copying collector will perform best when all live data is

produced by periodic threads and the maximum lifetime of newly
allocated object is one period. However, some data structures allo-
cated in the initialization phase stay alive for the whole application
lifetime. In an RTSJ application this data would be allocated in im-
mortal memory. With a real-time GC there is no notion of immortal
memory, instead we will use the term static memory.5 Without spe-
cial treatment, a copying collector will move this data at each GC
cycle. Furthermore, the memory demand for the collector increases
by the amount of the static data.

As those static objects (mostly) live forever, we propose a so-
lution similar to the immortal memory of the RTSJ. All data allo-

4Using multiple wFNP() invocations for local mode changes can
also come handy. One of the authors has used this fact heavily in
the implementation of a modem/PPP protocol stack.
5This is a slight misnomer – as object allocated in static memory
are mutable and can die. In the context of the SCJ the latter is
expected to be the exception.

cated during the initialization phase (where no application threads
are scheduled) is considered potentially static. As part of the tran-
sition to the mission phase we perform a special collection cycle in
a stop-the-world fashion. Objects that are still alive after this cycle
are assumed to live forever and make up the static memory area.
The remaining memory is used for the garbage collected heap.

The initialization phase and the transition to the mission phase
are usually not time critical. However, there are classes of applica-
tions for which startup is critical, for example in avionics systems it
is essential for the system to come up promptly after a momentary
power failure. There are two potential solutions, one could trade
initalization time GC against more copy work during the mission
phase, or, as an alternative, one could push most of the initialization
time work to virtual machine build-time as is done in Ovm [2].

This static memory will still be scanned by the collector to find
references into the heap but it is not collected. The main differ-
ences between our static memory and the immortal memory of the
RTSJ are: Firstly, that the choice of allocation context is implicit.
There is no need to specify where an object must be allocated. And
secondly, that references from the static memory to the garbage
collected heap are allowed. This greatly simplifies communication
between threads. For a typical producer/consumer configuration
the container for the shared data is allocated in static memory and
the actual data in the garbage collected heap.

5. IMPLEMENTATION
Our collector is an incremental collector with a snapshot-at-the-

beginning write barrier [28]. The GC is based on the copy collector
by Cheney [9] and the incremental version by Baker [5]. To avoid
the expensive read barrier in Baker’s collector we perform all ob-
ject copies concurrently by the collector. Therefore we name it
concurrent-copy collector. We have implemented the concurrent-
copy GC on the Java processor JOP [20, 23]. The whole collector,
the new operation, and the write barriers are implemented in Java
(with the help of two native functions for direct memory access).
Only the copy operation is optimized by a faster microcode imple-
mentation. Although we show the implementation on a Java pro-
cessor the GC is not JOP specific and can also be implemented on
a conventional processor.

5.1 Heap Layout
Figure 4 shows a symbolic representation of the heap layout with

the handle area and two semi-spaces, fromspace and tospace. Not
shown in this figure is the memory region for runtime constants,
such as class information or string constants. This memory region
although logically part of the heap is neither scanned, nor copied
by the GC. This constant area contains it’s own handles and all
references into this area are ignored by the GC.

To simplify object move by the collector all objects are accessed
with one indirection, called the handle. The handle also contains
auxiliary object data structures, such as a pointer to the method
table or the array length. Instead of Baker’s read barrier we have
an additional mark stack which is a threaded list within the handle
structure. An additional field (as shown in Figure 4) in the handle
structure is used for a free list and a use list of handles.

The indirection through a handle, although a very light-weight
read barrier, is usually still considered as a high overhead.
Metronome [4] uses a forwarding pointer as part of the object and
performs forwarding eagerly. Once the pointer is forwarded subse-
quent uses of the reference can be performed on the direct pointer
till a GC preemption point. This optimization is performed by the
compiler.

We use a hardware based optimization6 for this indirection [22].
The indirection is unconditionally performed in the memory access
unit. Furthermore, null pointer check (and array bounds check) is
done in parallel to this indirection.

There are two additional benefits from an explicit handle area
instead of a forwarding pointer: (a) access to the method table or
array size needs no indirection, and (b) the forwarding pointer and
the auxiliary data structures do not need to be copied by the GC.

The fixed handle area is not subject to fragmentation as all han-
dles have the same size and are recycled at a sweep phase with a
simple free list. However, the reserved space has to be sized (or the
GC period adapted) for the maximum number of objects that are
live or are floating garbage.

5.2 The Collector
The collector is scheduled periodically at the lowest priority and

within each period it performs following steps:

Flip An atomic flip exchanges the roles of tospace and fromspace.

Mark roots All static references are pushed onto the mark stack.
Only a single push operation needs to be atomic. As the
thread stacks are empty we do not need an atomic scan of
thread stacks.

Mark and copy An object is popped from the mark stack, all ref-
erenced objects, which are still white, are pushed on the mark
stack, the object is copied to tospace and the handle pointer
is updated.

Sweep handles All handles in the use list are checked if they still
point into tospace (black objects) or can be added to the han-
dle free list.

Clear fromspace At the end of the collector work the fromspace
that contains only white objects is initialized with zero. Ob-
jects allocated in that space (after the next flip) are already
initialized and allocation can be performed in constant time.

The longest atomic operation is the copy of an object or array. To
reduce blocking time, we plan to implement an array7 copy and
access hardware module within JOP. The hardware can perform
copies in an interruptible fashion, and records the copy position on
an interrupt. On an array access the hardware knows whether the
access should go to the already copied part in the tospace or in the
not yet copied part in the fromspace. It has to be noted that splitting
larger arrays into smaller chunks, as done in Metronome [4] and in
the GC for the JamaicaVM [25], is a software option to reduce the
blocking time.

The collector has two modes of operation: one for the initial-
ization phase and one for the mission phase. At the initialization
phase it operates in a stop-the-world fashion and gets invoked when
a memory request cannot be satisfied. In this mode the collector
scans the stack of the single thread conservatively. It has to be
noted that each reference points into the handle area and not to an
arbitrary position in the heap. This information is considered by the
GC to distinguish pointers from primitives. Therefore the chance
to keep an object artificial alive is low.

As part of the mission start one stop-the-world cycle is performed
to clean up the heap from garbage generated at initialization. From
that point on the GC runs in concurrent mode in it’s own thread and
omits scanning of the thread stacks.
6We have implemented it for array access, but applying this opti-
mization for field access is straight forward.
7Since objects are typically small, this optimization is likely to pay
off only for arrays.

Zeichenblatt 1

Titel
Mittwoch, 20. Juni 2007

Zeichenblatt 1

Titel
Mittwoch, 20. Juni 2007

length

wh/gr

Array

handle

handle

mtab/len

white

0

mtab

black

handle

0

mtab/len

white

Object

reference

use list free list

handle

From Space To Space

Handle Area

reference

Figure 4: Heap layout with the handle area

5.3 The Mutator
The coordination between the mutator and the collector is per-

formed within the new and newarray bytecodes and within write
barriers for JVM bytecodes putfield and putstatic for reference fields,
and bytecode aastore.

5.3.1 Allocation
Objects are allocated black (in tospace). In non real-time col-

lectors it is more common to allocate objects white. It is argued
[10] that objects die young and the chances are high that the GC
never needs to touch them. However, in the worst case no object
that is created and becomes garbage during the GC cycle can be
reclaimed. Those floating garbage will be reclaimed in the next
GC cycle. Therefore, we do not benefit from the white allocation
optimization in a real-time GC. Allocating a new object black has
the benefit that those objects do not need to be copied. The same
argument applies to the chosen write barrier. The following code
shows our simple implementation of bytecode new:

synchronized (mutex) {
// we allocate from the upper part
allocPtr -= size;
ref = getHandle(size);
// mark as object
Native.wrMem(IS_OBJ, ref+OFF_TYPE);
// pointer to method table in the handle
Native.wrMem(cons+CLASS_HEADR, ref+OFF_MTAB_ALEN);

}

As the old fromspace is cleared by the GC we do not need to
initialize the new object and perform new in constant time. The
methods Native.rdMem() and Native.wrMem() provide direct access
to the main memory. Only those two native methods are necessary
for an implementation of a GC in pure Java.

5.3.2 Write Barriers
A snapshot-at-begin write barrier synchronizes the mutator with

the collector on a reference store into a static field, an object field,
or an array. The to be overwritten field is pushed on the mark stack

when it points to a white object. The following code shows the
implementation of putfield for reference fields:

private static void f_putfield_ref(int ref, int val,
int index) {

if (ref==0) {
throw new NullPointerException();

}
synchronized (GC.mutex) {

// handle indirection
ref = Native.rdMem(ref);
// snapshot-at-beginning barrier
int oldVal = Native.rdMem(ref+index);
if (oldVal!=0 &&

Native.rdMem(oldVal+GC.OFF_SPACE)!=GC.toSpace) {

GC.push(oldVal);
}

Native.wrMem(val, ref+index);
}

}

The shown code is part of a special class (com.jopdesign.sys.JVM)
where Java bytecodes that are not directly implemented by JOP can
be implemented in Java [20]. All putfield bytecodes are replaced by
quick variants on class linking. During this step also putfield in-
structions for references and double-word length fields (double and
long) are replaced by special bytecodes. Therefore, the code shows
the special bytecode putfield_ref.

6. EVALUATION
To evaluate our proposed real-time GC we execute a simple test

application on JOP and measure the release time jitter of high prior-
ity threads. The test setup consists of JOP implemented in an Altera
Cyclone FPGA clocked at 100 MHz. The main memory is a 1 MB
SRAM with an access time of two clock cycles. JOP is configured
with a 4 KB method cache (a special form of instruction cache) and
a 128 entry stack cache. No additional data cache is used.

public boolean run() {

int t = Native.rdMem(Const.IO_US_CNT);
if (!notFirst) {

expected = t+period;
notFirst = true;

} else {
int diff = t-expected;
if (diff>max) max = diff;
if (diff<min) min = diff;
expected += period;

}
work();

return true;
}

Figure 5: Measuring release time jitter

Period Jitter

200 µs 0 µs
100 µs 0 µs
50 µs 17 µs

Table 1: Release jitter for a single thread

6.1 Measuring Release Jitter
Our main concern on garbage collection in real-time systems is

the blocking time introduced by the GC due to atomic code sec-
tions. This blocking time will be seen as release time jitter on the
real-time threads. Therefore we want to measure this jitter.

Figure 5 shows how we measure the jitter. Method run() is the
main method of the real-time thread and executed on each periodic
release. Within the real-time thread we have no notion about the
start time of the thread. As a solution we measure the actual time
on the first iteration and use this time as first release time. Each
iteration the expected time, stored in the variable expected, is in-
cremented by the period. In each iteration (except the first one) the
actual time is compared with the expected time and the maximum
value of the difference is recorded.

As noted before, we have no notion about the correct release
times. We measure only relative to the first release. When the
first release is delayed (due to some startup code or interference
with a higher priority thread) we have a positive offset in expected.
On an exact release in a later iteration the time difference will be
negative (in diff). Therefore, we also record the minimum value for
the difference between the actual time and the expected time. The
maximum measured release jitter is the difference between max
and min.

To provide a baseline we measure the release time jitter of a sin-
gle real-time thread (plus an endless loop in the main method as an
idle non-real-time background thread). No GC thread is scheduled.
The code is similar to the code in in Figure 5. A stop condition
is inserted that prints out the minimum and maximum time differ-
ences measured after 1 million iterations.

Table 1 shows the measured jitter for different thread periods.
We observed no jitter for periods of 100 µs and longer. At a period
of 50 µs the scheduler introduces a considerable amount of jitter.
From this measurement we conclude that 100 µs is the practical
shortest period we can handle with our system. We will use this
period for the high-priority real-time thread in the following mea-
surement with an enabled GC.

Thread Period Deadline Priority

τh f 100 µs 100 µs 5
τp 1 ms 1 ms 4
τc 10 ms 10 ms 3
τlog 1000 ms 100 ms 2
τgc 200 ms 200 ms 1

Table 2: Thread properties of the test program

6.2 Measurements
The test application consisting of three real-time threads (τh f , τp,

and τc), one logging thread τlog, and the GC thread τgc. All three
real-time threads measure the difference between the expected re-
lease time and the actual release time (as shown in Figure 5). The
minimum and maximum values are recorded and regularly printed
to the console by the logging thread τlog. Table 2 shows the release
parameters for the five threads. Priority is assigned deadline mono-
tonic. Note that the GC thread has a shorter period than the logger
thread, but a longer deadline. For our approach to work correctly
the GC thread must have the lowest priority. Therefore all other
threads with a longer period than the GC thread must be assigned a
shorter deadline.

Thread τh f represents a high-frequency thread without dynamic
memory allocation. This thread should observe minimal distur-
bance by the GC thread.

The threads τp and τc represent a producer/consumer pair that
uses dynamically allocated memory for communication. The pro-
ducer appends the data at a frequency of 1 kHz to a simple list.
The consumer thread runs at 100 Hz and processes all currently
available data in the list and removes them from the list. The con-
sumer will process between 9 and 11 elements (depending on the
execution time of the consumer and the thread phasing).

It has to be noted that this simple and common communication
pattern cannot be implemented with the scoped memory model of
the RTSJ. First, to use a scope for communication, we have to keep
the scope alive with a wedge thread [15] when data is added by
the producer. We would need to notify this wedge thread by the
consumer when all data is consumed. However, there is no single
instant available where we can guarantee that the list is empty. A
possible solution for this problem is described in [15] as handoff
pattern. The pattern is similar to double buffering, but with an ex-
plicit copy of the data. The elegance of a simple list as buffer queue
between the producer and the consumer is lost.

Thread τlog is not part of the real-time systems simulated appli-
cation code. Its purpose is to print the minimum and maximum
differences between the measured and expected release times (see
former section) of threads τh f and τp to the console periodically.

Thread τgc is a standard periodic real-time thread executing the
GC logic. The GC thread period was chosen quite short in that
example. A period in the range of seconds would be enough for
the memory allocation by τp. However, to stress the interference
between the GC thread and the application threads we artificially
shortened the period.

As a first experiment we run only τh f and the logging thread τlog
to measure jitter introduced by the scheduler. The maximum jitter
observed for τh f is 7 µs – the blocking time of the scheduler.

In the second experiment we run all threads except the GC thread.
For the first 4 seconds we measure a maximum jitter of 14 µs for
thread τh f . After those 4 seconds the heap is full and GC is nec-
essary. In that case the GC behaves in a stop-the-world fashion.
When a new object request cannot be fulfilled the GC logic is exe-

Threads Jitter

τh f 0 µs
τh f , τlog 7 µs
τh f , τlog,τp,τc 14 µs
τh f , τlog,τp,τc,τgc 54 µs

Table 3: Jitter measured on a 100 MHz processor for the high
priority thread in different configurations

cuted in the context of the allocating thread. As the bytecode new
is itself in an atomic region the application is blocked until the GC
finishes. Furthermore, the GC performs a conservative scan of all
thread stacks. We measure a release delay of 63 ms for all threads
due to the blocking during the full collection cycle. From that mea-
surement we can conclude for the sample application and the avail-
able main memory: (a) the measured maximum period of the GC
thread is in the range of 4 seconds; (b) the estimated execution time
for one GC cycle is 63 ms. It has to be noted that measurement is
not a substitution for static timing analysis. Providing WCET esti-
mates for a GC cycle is a challenge for future work.

In our final experiment we enabled all threads. The GC is sched-
uled periodically at 200 ms as the lowest priority thread – the sce-
nario we argue for. The GC logic is set into the concurrent mode
on mission start. In this mode the thread stacks are not scanned
for roots. Furthermore when an allocation request cannot be ful-
filled the application is stopped. This radical stop is intended for
testing. In a more tolerant implementation either a out-of-memory
exception can be thrown or the requesting thread has to be blocked,
it’s thread stack scanned and released when the GC has finished it’s
cycle.

We ran the experiment for several hours and recorded the max-
imum release jitter of the real-time threads. For this test we used
slightly different periods (prime numbers) to avoid the regular phas-
ing of the threads. The harmonic relation of the original periods can
lead to too optimistic measurements. The applications never ran out
of memory. The maximum jitter observed for the high priority task
τh f was 54 µs. The maximum jitter for task τp was 108 µs. This
higher value on τp is expected as the execution interferes with the
execution of the higher priority task τh f .

6.3 Discussion
With our measurements we have shown that quite short block-

ing times are achievable. Scheduling introduces a blocking time of
about 7–14 µs and the GC adds another 40 µs resulting in a maxi-
mum jitter of the highest priority thread of 54 µs. In our first im-
plementation we performed the object copy in pure Java, resulting
in blocking times around 200 µs. To speedup the copy we moved
this function to microcode. However, the microcoded memcpy still
needs 18 cycles per 32-bit word copy. Direct support in hardware
can lead to a copy time of 4–5 clock cycles per word.

The maximum blocking time of 54 µs on a 100 MHz processor
is less than blocking times reported for other solutions.

Although we measured a low blocking time in our experiment
we think there is room for improvements. As a first enhancement
we will implement a hardware memcpy in the memory unit of JOP
to reduce the blocking time. However, for very large arrays the re-
sulting blocking time may still be too large. A common solution is
to break up arrays into smaller chunks sometimes called Arraylets
[4]. However, this comes at a more complex array access with a
higher cost.

As we are running our GC on a soft-core Java processor our de-

sign space is larger and we can consider implementing a function
unit that supports incremental copy. This copy unit will be inte-
grated with the array (field) access unit. On a timer interrupt (for a
scheduling decision) the memory copy will also be interrupted and
the application thread can run. The copy/access unit remembers
the copy position and will redirect the array/field access either to
fromspace or to tospace.

Another option is a full hardware implementation of the GC. The
proposed algorithm is not very complex and should result in a not
too complex hardware. However, this design direction should be
carefully evaluated against a way simpler parallel solution: running
the GC on one CPU of a chip multiprocessor version of JOP.

7. CONCLUSION
In this paper we have presented a real-time garbage collector for

safety critical Java. Our collector is scheduled as a normal real-time
thread and, according to it’s deadline, assigned the lowest priority
in the system. The restrictions from the SCJ programming model
and the low priority result in two advantages: (a) avoidance of stack
root scanning and (b) short blocking time of high priority threads.
We have implemented the proposed GC on the Java processor JOP.
At 100 MHz we measured 40 µs maximum blocking time intro-
duced by the GC thread.

As future work we plan to implement the presented GC in Ovm [2]
for a safety critical Heaplet. A critical operation for a concurrent,
compacting GC is the atomic copy of large arrays. We consider to
extend JOP with a copy unit that can be interrupted. This unit is
integrated with the array access unit and will redirect the access to
either fromspace or tospace depending on the array index and the
value of the copy pointer.

Acknowledgments.
We thank the JTRES reviewers for their helpful comments. This

work is supported in part by NSF grants 501 1398-1086 and 501
1398-1600.

8. REFERENCES
[1] Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble,

Jan Vitek, and Tian Zhao. Scoped Types and Aspects for
Real-Time Java. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP 2006), pages
124–147, Nantes, France, July 2006. Springer.

[2] Austin Armbuster, Jason Baker, Antonio Cunei, David
Holmes, Chapman Flack, Filip Pizlo, Edward Pla, Marek
Prochazka, and Jan Vitek. A Real-time Java virtual machine
with applications in avionics. ACM Transactions in
Embedded Computing Systems (TECS) (to appear), 2007.

[3] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.
Wellings. Hard real-time scheduling: The deadline
monotonic approach. In Proceedings 8th IEEE Workshop on
Real-Time Operating Systems and Software, Atalanta, 1991.

[4] David F. Bacon, Perry Chang, and V.T. Rajan. A real-time
garbage collector with low overhead and consistent
utilization. In Conference Record of the ACM Symposium on
Principles of Programming Languages, pages 285–298, New
Orleans, Louisiana, January 2003.

[5] Henry G. Baker. List processing in real time on a serial
computer. Commun. ACM, 21(4):280–294, 1978.

[6] Jason Baker, Antonio Cunei, Filip Pizlo, and Jan Vitek.
Accurate garbage collection in uncooperative environments
with lazy pointer stacks. In International Conference on
Compiler Construction (CC), 2007.

[7] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The Real-Time
Specification for Java. Java Series. Addison-Wesley, June
2000.

[8] Alan Burns, Brian Dobbing, and G. Romanski. The
ravenscar tasking profile for high integrity real-time
programs. In Proceedings of the 1998 Ada-Europe
International Conference on Reliable Software Technologies,
pages 263–275. Springer-Verlag, 1998.

[9] C. J. Cheney. A nonrecursive list compacting algorithm.
Commun. ACM, 13(11):677–678, 1970.

[10] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: an exercise in cooperation. Commun. ACM,
21(11):966–975, 1978.

[11] Chris Hawblitzel, Heng Huang, Lea Wittie, and Juan Chen.
A garbage-collecting typed assembly language. In TLDI ’07:
Proceedings of the 2007 ACM SIGPLAN international
workshop on Types in languages design and implementation,
pages 41–52, 2007.

[12] Roger Henriksson. Scheduling Garbage Colection in
Embedded Systems. PhD thesis, Lund University, July 1998.

[13] Java Expert Group. Java specification request JSR 302:
Safety critical java technology. Available at
http://jcp.org/en/jsr/detail?id=302.

[14] C. L. Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, 1973.

[15] Filip Pizlo, J. M. Fox, David Holmes, and Jan Vitek.
Real-time java scoped memory: Design patterns and
semantics. In Proceedings of the 7th IEEE International
Symposium on, Object-Oriented Real-Time Distributed
Computing (ISORC 2004), pages 101–110, 2004.

[16] Filip Pizlo, Antony L. Hosking, and Jan Vitek. Hierarchical
real-time garbage collection. In LCTES ’07: Proceedings of
the 2007 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools, pages 123–133, New York, NY, USA,
2007. ACM Press.

[17] Peter Puschner and Andy Wellings. A profile for high
integrity real-time Java programs. In 4th IEEE International
Symposium on Object-oriented Real-time distributed
Computing (ISORC), 2001.

[18] Sven Gestegard Robertz and Roger Henriksson.
Time-triggered garbage collection: robust and adaptive
real-time GC scheduling for embedded systems. In LCTES
’03: Proceedings of the 2003 ACM SIGPLAN conference on
Language, compiler, and tool for embedded systems, pages
93–102, New York, NY, USA, 2003. ACM Press.

[19] RTCA/DO-178B. Software considerations in airborne
systems and equipment certification. December 1992.

[20] Martin Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna
University of Technology, 2005.

[21] Martin Schoeberl. Real-time garbage collection for Java. In
Proceedings of the 9th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed
Computing (ISORC 2006), pages 424–432, Gyeongju,
Korea, April 2006.

[22] Martin Schoeberl. Architecture for object oriented
programming languages. In Proceedings of the 5th
international workshop on Java technologies for real-time
and embedded systems (JTRES 2007), Vienna, Austria,
September 2007. ACM Press.

[23] Martin Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, doi:10.1016/j.sysarc.2007.06.001, 2007.

[24] Martin Schoeberl, Hans Sondergaard, Bent Thomsen, and
Anders P. Ravn. A profile for safety critical java. In 10th
IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing
(ISORC’07), pages 94–101, Santorini Island, Greece, May
2007. IEEE Computer Society.

[25] Fridtjof Siebert. Hard Realtime Garbage Collection in
Modern Object Oriented Programming Languages. Number
ISBN: 3-8311-3893-1. aicas Books, 2002.

[26] Jesper Honig Spring, Filip Pizlo, Rachid Guerraoui, and Jan
Vitek. Reflexes: Abstractions for highly responsive systems.
In To Appear in the Proceedings of the 2nd International
Conference on Virtual Execution Environments (VEE), 2007.

[27] Martin T. Vechev, Eran Yahav, David F. Bacon, and Noam
Rinetzky. Cgcexplorer: a semi-automated search procedure
for provably correct concurrent collectors. In PLDI ’07:
Proceedings of the ACM SIGPLAN 2007 conference on
Programming Language Design and Implementation, pages
456–467, 2007.

[28] Taichi Yuasa. Real-time garbage collection on
general-purpose machines. Journal of Systems and Software,
11(3):181–198, 1990.

