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Abstract—In general-purpose computing multi-core platforms,
hardware accelerators and reconfiguration are means to improve
performance; i.e., the average-case execution time of a software
application. In hard real-time systems, such average-case speed-
up is not in itself relevant – it is the worst-case execution-time
of tasks of an application that determines the systems ability to
respond in time. To support this focus, the platform must provide
service guarantees for both communication and computation
resources. In addition, many hard real-time applications have
multiple modes of operation, and each mode has specific require-
ments. An interesting perspective on reconfigurable computing is
to exploit run-time reconfiguration to support mode changes. In
this paper we explore approaches to reconfiguration of commu-
nication and computation resources in the T-CREST hard real-
time multi-core platform. The reconfiguration of communication
resources is supported by extending the message-passing network-
on-chip with capabilities for setting up, tearing down, and
modifying the bandwidth of virtual circuits. The reconfiguration
of computation resources, such as hardware accelerators, is
performed using the dynamic partial reconfiguration capabilities
found in modern FPGAs.

I. INTRODUCTION

Hard real-time systems are a class of systems characterized
by strict constraints on the execution time of tasks. These
systems are used for safety-critical applications, where a failure
to respond in time may lead to catastrophic consequences. Some
examples are: flight electronics, wind turbine control systems,
medical devices, and factory automation systems.

In a multi-core platform supporting real-time applications,
the requirement for time-predictable behavior goes beyond the
individual processors; the network-on-chip (NoC) supporting
communication among tasks mapped to different cores must
also be time predictable. This is typically achieved using end-
to-end virtual circuits for which bandwidth and latency can be
guaranteed.

Field programmable gate array (FPGA) technology has
advanced to a point where it is often used in end-products.
For hard real-time systems that are mainly used in low-
volume professional or high-end applications, this is particularly
attractive since it is not possible to amortize the development
costs of an application-specific integrated circuit over the
production volume. In addition, FPGAs allow the integration
of application-specific I/O-devices and hardware accelerators,
thereby reducing the component count. Many FPGA devices
allow portions of the chip to be reconfigured at run-time, while

the rest of the device continues to operate without interrup-
tion [1]–[3]. The use of such dynamic partial reconfiguration
(DPR) is currently an active area of research in general-purpose
computing, where it can result in reduced hardware cost and/or
higher performance [4].

The T-CREST multi-core platform [5] is an example of an
FPGA-based multi-core platform for hard real-time systems.
The platform currently offers boot-time configuration of both
its communication resources (message-passing NoC) and its
computation resources (hardware accelerators).

Hard real-time systems often have multiple modes of
operation, sometimes called use-cases, that they switch between
during normal operation. Mode changes can occur as part of
the normal and planned operation or in response to external
events [6, p.340]. In a multi-core platform, a mode of operation
can be defined as a set of tasks executing on a set of processors
and communicating across a set of virtual circuits provided by
the NoC.

In this paper we explore run-time reconfiguration in hard
real-time systems to implement mode changes in the context of
the T-CREST platform. Such a run-time reconfiguration relates
to both communication resources (the virtual circuits provided
by the NoC) and computation resources (hardware accelerators).
The reconfiguration of communication resources is achieved by
dynamically setting-up and tearing-down virtual circuits and by
dynamically altering their bandwidth and latency guarantees.
The reconfiguration of computation resources includes starting
and stopping of tasks and DPR of co-processors and hardware
accelerators. Since the reconfiguration is now part of the normal
functionality of the system, it has to be time predictable as
well. To our knowledge, the use of DPR of FPGAs to support
mode changes in hard real-time systems represents a novel and
unexplored field of research.

The paper has two main contributions: (1) it presents and ex-
tends the boot-time configuration capabilities of the T-CREST
platform message-passing NoC Argo to implement run-time
reconfiguration and thereby support the communication aspects
of a mode change, and (2) it explores and evaluates how
to use the DPR-capability of modern FPGAs to support
the computation aspects of a mode change by dynamically
reconfiguring computation resources in the platform.

The paper is organized as follows. Section II presents
related work about reconfiguration of communication and
computation resources. Section III gives a brief introduction978-1-5090-2520-6/16/$31.00 c©2016 IEEE



to the T-CREST multi-core platform used as a basis for
our work. Section IV provides background on the message-
passing NoC Argo and its extension to implement run-time
reconfiguration. Section V explores the usage of DPR to support
the dynamic reconfiguration of computation resources in the
platform. Section VI concludes the paper.

II. RELATED WORK

A multi-core platform for hard real-time systems has to
provide time-predictable inter-processor communication. This
calls for a NoC that offers guaranteed bandwidth and latency for
end-to-end communication flows. Such guaranteed service (GS)
connections can be implemented by using non-blocking routers
in combination with mechanisms that constrain packet injection
rates, or by using some form of (virtual) circuit switching.

The NoC used in the Kalray MPPA-256 processor uses
flow regulation [7], output-buffered routers with round-robin
arbitration, and no flow control. Network calculus [8] is used
to determine the flow regulation parameters that constrain the
packet injection rates such that buffer overflows are avoided
and GS requirements are fulfilled. In the perspective of this
paper, the Kalray NoC is configured by initializing the routing
tables and injection rate limits in the network interfaces (NIs).

The alternative, virtual circuit switching, is often imple-
mented using static scheduling and time-division-multiplexing
(TDM). Examples are the Æthereal family of NoCs [9], [10]
and the Argo NoC [11]. In the perspective of this paper, these
TDM-based NoCs are configured by initializing schedule tables
and routing tables in the NIs and/or the routers.

The original Æthereal NoC supports both GS and best effort
traffic. The scheduling tables are in the NIs and the routing
tables are in the routers. They can be written by sending
best effort packets, and this aspect compromises the time-
predictability of a (re)configuration.

The aelite NoC [9] only supports GS traffic and it is based
on source routing. The routers are simple pipelined switches
and both schedule tables and routing tables are in the NIs. For
aelite, reconfiguration involves sending messages across the
NoC itself, and for dAElite [10] using a separate dedicated
network.

In all cases, reconfiguration is done incrementally. From this
follows that virtual circuits that persist across the reconfigu-
ration cannot be re-mapped. This can lead to fragmentation
of resources resulting in sub-optimal use of resources. If re-
mapping of virtual circuits is needed, the entire application
must be suspended during the reconfiguration.

A preliminary solution for the Argo NoC reconfiguration
was studied and implemented in the work presented in [24].
This solution also uses a dedicated asynchronous tree network
to broadcast the new TDM schedule and the commands to
trigger the reconfiguration.

Essentially, the extension presented in this paper for our Argo
NoC implements the same functionality, but using fewer hard-
ware resources and supporting instantaneous reconfiguration,
including re-mapping of virtual circuits.

The second topic of this paper relates to mode changes
and DPR of FPGAs. A good survey of the most relevant
hardware aspects of reconfigurable computing can be found
in [4]. The work addresses both single-chip and multi-chip
architectures and explores the challenges of run-time hardware
reconfigurable architectures, with special focus on internal
structures and coupling.

The ReCoBus-builder [12] is an FPGA-design-oriented
framework for component-based, reconfigurable, non-real-time
systems. It uses DPR to generate dynamically reconfigurable
systems providing one or more run-time reconfigurable areas.
For the communication between the reconfigurable resources
and other parts of the system, it uses a fixed bus infrastructure
or dedicated point-to-point links.

PaRA-Sched [13] is an automated design methodology
that takes into account DPR in the scheduling infrastructure
to improve overall performance by automatically masking
reconfiguration time when possible. This allows a rapid
exploration of the DPR impact during the early stages of
the design process.

The work presented in [14] studies the dynamic behavior of
reconfigurable architectures, especially focusing on the usage
of dynamic partial reconfiguration. It proposes a simulation
framework for reconfigurable architectures that comprises a
generic application model and an architecture model, the
combination of which captures the dynamic behavior of the
reconfigurable architectures.

The work presented in [15] provides an overview of the
hardware-software partitioning, scheduling, and placement
issues and proposes an exact and a heuristic approach for
hardware-software partitioning. This takes into account key
factors such as placement implications and configuration pre-
fetching for minimizing the schedule length.

III. THE T-CREST MULTI-CORE PLATFORM

This section provides a brief overview of the multi-core
platform T-CREST [5]. The T-CREST platform has been
developed specifically for use in hard real-time applications.
All components have been designed with a focus on time-
predictability and worst-case execution time (WCET) analysis
and with a focus on reducing the complexity and pessimism of
the WCET analysis. Figure 1 shows the overall architecture of
the T-CREST platform. It consists of a number of processing
nodes and two NoCs: a NoC, called Argo [11], that provides
message-passing to support inter-processor communication, and
a shared memory access NoC [16].

A processing node consists of a time predictable, dual-issue
RISC processor, called Patmos, that is optimized for real-time
systems [17], special instruction and data cache memories, and
local private scratchpad memories (SPMs) for instructions and
data.

The Argo NoC offers the possibility to set up virtual point-to-
point circuits between processor nodes. Data is pushed across
these circuits by direct memory access (DMA) controllers in
the source end of the circuit.
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Fig. 1. The overall T-CREST architecture divided into three main parts: the
message-passing NoC Argo, the processing nodes, and the shared memory
access NoC. Each processing node contains the Patmos processor, a SPM, and
the instruction and data caches. The shared memory is off-chip.

The shared memory access NoC [18] is a tree network
that supports transfer of data between local caches and an
external and shared main memory via a real-time memory
controller [19]. It does not include any hardware support for
cache coherency, as inter-processor communication mainly uses
the Argo NoC. Communication via shared memory is possible,
but coherency mechanisms have to be implemented in software.

The platform is supported by a compiler also developed
with a focus on WCET [20]. Moreover, the WCET analysis
tool aiT [21] from AbsInt, which allows statical derivation of
tight WCET bounds, has been extended to support the Patmos
processor.

The T-CREST platform was designed with particular atten-
tion on FPGA implementation, and in the base implementation,
only the Argo message-passing NoC is configurable at boot
time where the virtual circuits are set up.

In the remainder of this paper, we address how to extend this
platform with capabilities for run-time reconfiguration in order
to support mode changes. In Section IV, we first consider
the communication aspects and extend the Argo NoC with
functionality to dynamically alter the set of virtual circuits, in
a way that is transparent to virtual circuits that persist across the
mode change. Then, in Section V, we address the computation
aspects by exploring DPR capabilities of the FPGA. Here the
idea is to expand the T-CREST platform to use heterogeneous
processing nodes such as co-processors, hardware accelerators,
digital signal processors, etc., and to dynamically adapt the
hardware to the different modes of operations.

IV. RECONFIGURATION OF THE COMMUNICATION
RESOURCES

In this section, we first provide additional background about
TDM scheduling and the micro-architecture of the Argo NoC
network interface (NI). Then we describe how the NI can be
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Fig. 2. Mapping of an application into a multi-core platform: (a) task graph
for an application, (b) core communication graph, (c) section of multi-core
platform with possible routing and schedule for processor P0.

extended from being boot-time configurable to being run-time
reconfigurable.

A. TDM Scheduling

The mapping of a multi-mode, real-time application into a
multi-core platform and the generation of a TDM schedule in
the T-CREST platform is performed through the steps shown
in Figure 2.

Each mode of operation consists of a set of communicating
tasks. A set can be modeled as a task graph (Figure 2(a)),
where the nodes represent tasks and the edges represent the
communication between the tasks.

By assigning the tasks to the processing nodes, it is possible
to derive a core communication graph (Figure 2(b)). The
assignment of tasks to processing nodes has to be performed
in a way that minimizes the total number of hops for traffic.
For this graph, the nodes represent the processing nodes, and
the edges represent the communication channels between each
pair of nodes.

In the T-CREST platform, the generation of the task graph
and the core communication graph for each mode of operation
is performed manually. The scheduler, described in [22], is
an off-line procedure that uses the bandwidth requirements
and a description of the NoC topology to generate a schedule
that avoids deadlocks and collisions, and that ensures in-order
arrival of packets.

The time is divided into periods, and a period is further
divided in time-slots. Figure 2(c) shows two TDM periods for
the traffic out of the processor P0 (channel c1 and c4) and the
communication channel paths on a section of the multi-core
platform. Channel c1 has been assigned two time slots and



channel c4 has been assigned three time slots through two
different paths in the NoC (c4’ and c4”).

B. The Argo NoC

Argo is a TDM-based, packet-switched, source-routed NoC
for hard real-time multi-processor platforms. Argo allows an
application programmer to set up a set of virtual point-to-
point circuits between processor nodes providing GS message-
passing. The interface between the NoC and a processor node is
shown in Figure 1. For each node, the processor is connected
to one of the ports of a dual-ported SPM, while the NI is
connected to the second port.

Through the virtual circuits, blocks of data can be transferred
from the SPM of a node into the SPM of a remote node. The
data transfer is managed by TDM-driven DMA controllers
integrated in the NIs of the NoC. A DMA controller is dedicated
to each virtual circuit in the sender, inserting the packets,
according to the static TDM schedule, into the shared routing
structure. The static TDM schedule avoids collisions by design
and no flow control or buffering is needed.

Figure 3 shows a block diagram of the Argo NI [23],
including our addition to support reconfiguration. The Argo NI
contains a slot counter that is reset at the end of a schedule
period and it indexes into a slot table. Each entry in the slot
table points to an entry in the DMA table that stores the counters
and pointers corresponding to a DMA controller. The DMA
controller reads the data to be sent from the SPM, assembles
the packet and sends it, in the time slot designated by the TDM
counter. Each DMA controller implements the source end of a
virtual circuit.

In order to transfer a block of data stored in its local SPM,
a processor has to set up the TDM-driven DMAs in the NI,
through the configuration interface. The static schedule, which
has the same length for all nodes, is stored in the NIs of the
NoC, and it specifies the route of each packet and the time
slot in which each packet must leave the the NI. Incoming
packets are directly written into the destination SPM at the
target address carried by the packet.

The Argo NoC uses a 5-ported router based on a pipelined
crossbar that routes incoming packets according to the routing
information contained in the packet header. Argo supports
both synchronous, mesochronous, and asynchronous router
implementations. The topology of the NoC is configurable
(mesh, bitorus, etc.).

C. Support for NoC Reconfiguration

The Argo NoC needs to be configured at boot-time. The
configuration process is executed by each processor, and it
consists of writing the scheduling information into the slot
table of each NI. Once all the NIs are configured, the NoC
can start to operate.

A simple way of reconfiguring the communication bandwidth
and latency of the NoC is to reconfigure, at run-time, the
scheduling information stored in the NIs of the NoC, in a way
similar to the initial configuration at boot-time.
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Fig. 3. Network interface of the Argo NoC. The blocks highlighted in gray
are introduced to support reconfiguration.

We have investigated and presented an approach for recon-
figuration of the Argo NoC in [25]. The blocks of Figure 3
highlighted in gray show the extension of the NI introduced
to support reconfiguration.

The slot table is extended in order to store multiple schedules,
each spanning a range of entries. Each schedule is represented
by two pointers to the minimum and the maximum of the range.
These pointers are stores in a small table in the reconfiguration
controller. A reconfiguration simply requires that the TDM
counter is set to the start entry of a new schedule at the end of
a TDM period. A schedule period counter is also introduced to
provide all the NIs with the same notion of the current period.

The schedule distribution and the NoC reconfiguration are
performed by the individual processors, and these operation are
coordinated through shared memory-based communication. A
reconfiguration master invokes a reconfiguration of the NoC by
sending a special packet to the reconfiguration controller of all
the slave NIs, announcing a change to the new schedule. This
packet contains the index of the reconfiguration table entry that
holds the high and low pointers for the new schedule and the
moment in time (TDM period) after which the new schedule
should be applied. When that moment comes, according to the
period counter, all the NIs start using the new schedule.

This approach to reconfiguration supports instant switching
from one schedule to another, synchronously across all NIs.
This allows virtual circuits that persist across a mode change
to be mapped to different paths, without any interference on
the data flow.

V. RECONFIGURATION OF THE COMPUTATION RESOURCES

The reconfiguration of the computation resources in the
T-CREST platform uses DPR to reconfigure, at run-time, the
resources of the platform dedicated to computational tasks.

In this section, we provide the background information
regarding DPR, we describe the hardware platform with DPR
support and our reconfiguration approach, and we finally show
an application example and evaluation.

A. DPR Background

DPR allows the modification of an operating FPGA. Partial
bit-files can be loaded into the FPGA to reconfigure selected re-



gions, without compromising the integrity and the functionality
of those parts of the device not affected by the reconfiguration.

Therefore, a system that uses DPR can be conceptually
considered as divided in two main parts: a static part and a
dynamic part. The static part is configured only once at boot-
time with a full bit-file. The dynamic part, which may consist of
several independent reconfigurable regions, can be reconfigured
multiple times during run-time with different partial bit-files.

For Xilinx FPGAs, the system implemented on the static part
can perform the reconfiguration of the logic implemented on the
dynamic part of the system through the internal configuration
access port (ICAP) [26] . The ICAP provides access to the
configuration memory. The ICAP interface is a streaming
interface that receives partial bit-files as input. The address of
the FPGA configuration memory and the control signals are not
directly available on the interface, all the control information
needed to manage the reconfiguration, such as commands,
frame address, etc., are encoded into the bit-file, together with
the data to be written into the configuration memory. The ICAP
interface also provides information about the current state of
the reconfiguration and communicates when the reconfigurable
region is successfully reconfigured. An additional interface
is also needed that connects the static part with the dynamic
part in order to decouple the reconfigurable regions during
reconfiguration.

The current FPGA technology introduces some limitations
on the smallest size and on the shape of a reconfigurable
region. The smallest reconfigurable region is called base region
and it corresponds to the smallest addressable segments of
the FPGA configuration memory space. Depending by the
reconfigurable element type, the base region in Virtex-6 FPGAs
is equivalent to 80 slices, or to 16 digital signal-processing
elements (DSP), or to 8 blocks of RAM (BRAM). Moreover,
the reconfigurable region must always be rectangular shaped.
This topological constrain, combined with the fact that the base
regions containing DSPs and BRAMs are uniformly distributed
in the FPGA chip, may lead to an over-inclusion of resources
into a reconfigurable area.

B. DPR Granularity and Reconfiguration Latency

When considering exploiting DPR to support mode changes,
two issues must be considered: (1) What functionality is it
relevant to implement in a DPR-region? (2) How long does
it take to perform the DPR? We have identified three classes
of DPR granularity: fine, medium, and coarse, as illustrated in
Figure 4.

Fine-grain DPR involves reconfiguring a fraction of a
processor node, for example by adding or removing hardware
support for certain instructions. This involves several hundred
slices in the FPGA. Medium-grain DPR involves reconfiguring
a complete processor node. This is for example relevant when
a processor node is a (stateless) hardware accelerator that is
shared and accessed through the Argo NoC, and it involves
several thousand slices. Coarse-grain DPR involves even larger
areas, for example adding or removing stateful hardware
accelerators for compute-intensive operations (e.g., fast Fourier
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Fig. 4. Example of the three DPR granularities in a multi-core platform based
on a network-on-chip. Fine-grain DPR corresponds to small modifications in
the CPU architecture, medium-grain to the modification of an entire core, and
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TABLE I
CALCULATED RECONFIGURATION LATENCIES FOR THREE DIFFERENT

RECONFIGURABLE REGION SIZES IN A XILINX VIRTEX-6 FPGA.

DPR Hardware resources Bit-file Recon.
granul. Slices DSP BRAM (Bytes) latency

Fine 160 0 0 11 664 ∼ 29µs
Medium 2 560 64 32 611 712 ∼ 1.5 ms
Coarse 12 840 256 140 3 074 112 ∼ 7.6 ms

transformation, encryption/decryption etc.). This involves tens
of thousands of slices.

The reconfiguration is performed by the ICAP controller
through the ICAP interface. For the Xilinx Virtex-6 FPGA, the
ICAP interface can be configured to have a data width of 1,
2, or 4 bytes and an operation frequency up to 100 MHz. The
time to perform a DPR depends on the amount of data to be
transferred over the ICAP interface and a constant time for set-
up and activation of the DPR. Table I shows the bit-file size and
the reconfiguration latency for the three levels of granularity,
assuming the widest possible interface (4 bytes) and the fastest
possible clock (100 MHz). The hardware resources for the
medium-grain DPR shown in Table I are enough to implement
a processing node of the T-CREST platform containing the
Patmos processor.

The utilization of fine-grain reconfiguration may deliver
significant theoretical speed-up, because small hardware modifi-
cations may allow the hardware to be adapted to the application
needs very rapidly, which can be used at task level instead of
at mode level.

C. Hardware Platform with DPR Support

In a multi-core platform with DPR support, multiple indepen-
dent reconfigurable regions dedicated to different processors
may coexist. For example, every processor node can have a
dynamic section used to accelerate the execution of specific
tasks. Or one or more dynamic sections can be connected to the
message-passing NoC and be accessible (shared) by multiple
processors. However, the current FPGA technology allows
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only the reconfiguration of one region at a time. Therefore,
our approach to support DPR is to have a single processor of
the multi-core platform, called reconfiguration master, which
manages the reconfiguration during a mode change.

Figure 5 shows a block diagram of a multi-core platform
based on this approach. The platform consists of a reconfigu-
ration master processor Mrec and N slave processors (S1, S2,
..., SN) connected through a message-passing network-on-chip.
Each slave processor is provided with a reconfigurable region
and a shared reconfigurable region is also connected to the NoC;
for example, to the Argo NoC in the T-CREST platform [?].
The reconfiguration master is connected to the ICAP interface
through the ICAP controller and it can modify the content of
the FPGA reconfiguration memory. The arrows in Figure 5
indicate the dependency. Therefore, by writing a partial bit-file
into this memory, the hardware system implemented on the
FPGA is dynamically modified.

The LogiCORE IP XPS HWICAP [27] is a widely used
ICAP controller provided by Xilinx. The detailed architecture
of this controller is unknown, and therefore it is not suitable for
applications where time-predictability is a strong requirement.
Moreover, it implements functionalities that are not required in
our approach. For example, it provides a FIFO-based reading
functionality that allows a processor to read the content of
specific segment of the FPGA configuration memory. Therefore,
we are currently developing an ICAP controller that allows
loading partial bit-files in a time-predictable manner.

Our ICAP controller is a minimal hardware component
that enables a processor to write into the FPGA configuration
memory through the ICAP interface. When the master processor
starts a reconfiguration, the controller loads a partial bit-file,
pre-stored in a dedicated memory, into the FPGA configuration
memory in a predictable time interval.

D. Reconfiguration Approach

As previously mentioned, in the T-CREST platform a
reconfiguration is associated to an operation mode change.
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τ2 τ3

t t+T’

M1 M2MC12

τrec

t+T’+Trec_3 t+T’+Trec_3+T’’
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Fig. 6. Time diagram for an example of the mode-level DPR model. The
tasks τ1, τ2, and τ3 run on the slave processor S1. The reconfiguration is
performed by the reconfiguration master Mrec. The last row shows how the
reconfigurable region is shared.

Every mode consists of a set of tasks and a set of resources,
such as co-processors, hardware accelerators, digital signal
processors, implemented on the dynamic part of the FPGA.

In hard real-time systems, the usage of hardware accelerators
and co-processors leads to a simplification of the WCET
analysis and reduces its pessimism (overestimation of the
WCET), because analysis of hardware used to implement
software-equivalent tasks is often easier to perform than
analysis of a pure software solution.

If the reconfiguration is triggered by a mode change that is
part of the normal operation of the system, this can be statically
scheduled at compile time. If the reconfiguration is in response
to external events, the processors that need the reconfiguration
can issue a request to the reconfiguration master Mrec. In any
case, a reconfiguration associated with a mode change can be
modeled as a task that belongs to a mode change scenario
executed by the reconfiguration master Mrec.

As an example, Figure 6 shows a time diagram of the tasks
execution during a mode change between the two modes M1

and M2. M1 consists of the tasks τ1 and τ2, while M2 consists
of the tasks τ1 and τ3. Tasks τ1, τ2, and τ3 run on the slave
processor S1 of the architecture presented in Figure 5 and
share its reconfigurable region. We assume that τ2 and τ3
need different resources to be implemented on the shared
reconfigurable region and that the periodic execution of τ1
cannot be suspended during the mode change.

In the time diagram of Figure 6, we can observe that during
the mode change scenario MC12, task τ1 continues to run
and task τrec, which performs the reconfiguration process, is
executed by the reconfiguration master Mrec. The value Trec 3

is the time that the task τrec needs to reconfigure the region
with the hardware needed by task τ3. The last row of the
diagram shows which task is the user of the reconfigurable
region. The solid color represents when the reconfigurable
region is under reconfiguration.

The reconfiguration time Trec nm of a generic mode change
τnm, n,m ∈ N1, is the time needed to perform a reconfiguration
from a system point of view. Since the reconfiguration takes
place in the transition between two modes, which must happen
in bounded time, the reconfiguration time must be known to
provide execution-time guarantees.
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Fig. 7. The 2-by-2 T-CREST platform configuration for the evaluation with
medium-grain DPR. The master processor Mrec uses the ICAP controller to
manage the reconfigurable region.

In our approach, the reconfiguration is associated to a mode
change; this implies that the set of tasks and their computational
requirement are known at compile time. Therefore, the exact
value of Trec nm can also be calculated at compile time for
every allowed mode change.

E. Application Example and Evaluation

The architecture used for this application example is a 2-by-2
T-CREST platform section implemented on the Xilinx Virtex-6
FPGA (ML605 development board). The platform has four
processing nodes and a hardware accelerator accessible by the
master core Mrec, as shown in Figure 7. The ICAP controller
is connected to Mrec and to a bit-file memory. The border
interface, which is also driven by Mrec, consists of registers
with enable. The hardware accelerator is a double-precision
floating-point unit, generated with FloPoCo [28], that performs
addition and multiplication.

For this example, we focus only on the non-gray elements
in Figure 7, since the test application using the hardware
accelerator is also executed by the reconfiguration master Mrec.

The test application has two modes of operation, M1 and M2.
M1 consists of a series of N double-precision floating-point
additions, and M2 consists of a series of M double-precision
floating-point multiplications. These operations are performed
by the hardware accelerator. The application starts in the mode
M1 and executes the additions series. When finished, it changes
to mode M2 for the multiplications; then it repeats to mode
M1.

This simple application emulates a behavior that can be found
in real-case applications. For example, a matrix product consists
of a series of additions, followed by a series of multiplications;
the same applies to the calculation of fast Fourier transforms,
where the transformed array is calculated with a series of
additions and multiplications, followed by a series of divisions
for normalization.

The evaluation compares two test-cases, TCstd and TCdpr,
in terms of hardware resource utilization and execution time.
The TCstd test-case executes the test application on a platform
that does not support partial reconfiguration, while the TCdpr

TABLE II
HARDWARE RESOURCE UTILIZATION FOR THE XILINX VIRTEX-6 FPGA

IMPLEMENTATION OF THE TWO TEST CASES TCstd AND TCdpr .

Entity Slices DSP BRAM

Patmos processor 2459 4 24

FP Adder 523 0 0
FP Multiplier 449 12 0
OCP/FPU adapter 197 0 0

TCstd total 1 169 12 0

ICAP ctrl. 32 0 0
Border logic 20 0 0
Reconfig. region 532 12 0

TCdpr total 584 12 0

TABLE III
EXECUTION TIMES, EXPRESSED IN CLOCK CYCLES, USED FOR THE

EVALUATION FOR THE TWO TEST-CASES AND THEIR RATIO FOR DIFFERENT
VALUES OF N.

N Texe std Texe dpr Texe std /Texe dpr

100 4 209 49 909 0.084
1 000 42 009 87 709 0.479
10 000 4 200 009 4 245 709 0.989

test-case executes it on a platform that supports reconfiguration.
This means that for the first test-case, the adder and the
multiplier need to be both simultaneously implemented on
the FPGA. For the second test-case, the processor needs
to reconfigure the dynamic region during a mode change,
alternatively implementing the adder or the multiplier.

Table II shows the FPGA hardware resource utilization in
terms of Virtex-6 slices, DSP, BRAM for a Patmos processor
and for the entities of the two test cases. The bit-file memory
is not included in the comparison, since it is possible to store
the bit-files in off-chip memory, without affecting the hardware
resource utilization.

The results in Table II show that the total resources needed
to implement the reconfigurable region and the reconfiguration
infrastructure for the TCdpr are roughly the 50% of the
resources needed to implement the static hardware accelerator
for the case TCstd. This hardware reduction comes at the
cost of having to perform the reconfiguration between modes,
which slows down the program execution. The size of the
partial bit-files for the TCdpr test-case are 182 764 bytes each.

In terms of execution times, we have measured the execution
times of a section of the test application, for varying numbers
of iterations of N. The application section considered for the
execution time measurement includes the mode M1 and the
mode-change scenario. For the case TCstd, we have measured
the execution time Texe dpr of the mode M1 for the TCdpr

test-case. Analogously, for the case TCdpr, we have measured
the execution time Texe std of the mode M1 that takes into



account also the reconfiguration time overhead, by including
the duration of the mode change scenario.

Table III shows the execution times, expressed in clock
cycles, of a section of the test application, for different values
of N. It is possible to observe that for N greater than 105, the
ratio becomes very close to 1 (0.989). This means that if the
execution time of a mode is long enough, the reconfiguration
time overhead in a mode change is negligible with respect to
the duration of the mode itself.

VI. CONCLUSION

In this paper we have provided an overview of run-time
reconfiguration in hard real-time systems, especially focusing
on the T-CREST platform. We have explored the usage of
run-time reconfiguration associated to mode changes of real-
time multi-mode applications that have different computation
and communications requirements for different modes. Our
approach to reconfiguration allows the hardware platform and
the software infrastructure to reconfigure the provided resources
at run-time in order to support mode changes.

The reconfiguration of the inter-process communication is
achieved through the reconfiguration of the message-passing
NoC Argo by modifying the bandwidth and latency of the
communication channels between the cores of the platform.
The reconfiguration of computation resources, such as co-
processors and hardware accelerators, is achieved using DPR.
We have discussed the challenges related to the use of DPR,
and we have shown its usage with an application example of the
reconfigurable features using the T-CREST multi-core platform
on the Xilinx Virtex-6 FPGA. We have shown that if the
reconfiguration time overhead in a mode change is negligible
with respect to the duration of the mode itself, the usage of
DPR can lead to a more efficient usage of the FPGA resource,
while maintaining comparable computational performance.
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