
Locating Performance Bottlenecks in Embedded Java Software with
Calling-Context Cross-Profiling

P. Moret W. Binder A. Villazón D. Ansaloni M. Schoeberl

Abstract

Prevailing approaches to analyze embedded software per-
formance either require the deployment of the software on the
embedded target, which can be tedious and may be impossible
in an early development phase, or rely on simulation, which can
be extremely slow. We promote cross-profiling as an alternative
approach, which is particularly well suited for embedded Java
processors. The embedded software is profiled in any standard
Java Virtual Machine in a host environment, but the generated
cross-profile estimates the execution time on the target. We
implemented our approach in the customizable cross-profiler
CProf, which generates calling-context cross-profiles. Each
calling-context stores dynamic metrics, such as the estimated
CPU cycle consumption on the target. We visualize the gener-
ated calling-context cross-profiles as ring charts, where callee
methods are represented in segments surrounding the caller’s
segment. As the size of each segment corresponds to the rel-
ative CPU consumption of the corresponding calling-context,
the visualization eases the location of performance bottlenecks
in embedded Java software, revealing hot methods, as well as
their callers and callees, at one glance.

1. Introduction
Profiling of embedded Java applications is a tedious task that

requires either a simulator of the embedded target platform or
deployment of the application on that target. Both approaches
have serious drawbacks. Simulation can be prohibitively slow.
Software deployment and profiling on the target platform are
time-consuming, too. Moreover, embedded Java systems of-
ten lack profiling support. In addition, because of resource
constraints, some profiling techniques, such as calling-context
profiling, cannot be applied on the target platform. Calling-
context profiling is an important technique for locating perfor-
mance problems in applications, since it yields detailed profil-
ing data for each executed calling-context. The Calling Con-
text Tree (CCT) [1] is a widely used datastructure for calling-
context profiling, which stores dynamic metrics, such as CPU
cycle consumption, for each calling-context.

In this tool demonstration, we promote cross-profiling [2, 3]
for analyzing the performance of embedded Java software. The
embedded software is profiled in any standard Java Virtual Ma-
chine (JVM) in a host environment, completely decoupled from
the embedded target system. Nonetheless, the generated cross-
profiles represent the execution time metric of the target system.

The host environment is a typical machine for software devel-
opment, providing sufficient resources for memory consuming
profiling techniques, such as CCT construction. We present
the customizable cross-profiler CProf1 [2, 3], which generates
CCTs with the number of method invocations and an estimate
for the CPU cycle consumption on the embedded target for each
calling-context.

As CCTs typically comprise a large number of calling-
contexts, there is need for a condensed visualization that eases
the location of performance problems. As original scientific
contribution, this tool demonstration introduces a new visual-
ization of calling-context cross-profiles as ring charts, where
callee methods are represented in segments surrounding the
caller’s segment. In order to reveal hot methods, their callers,
and callees at one glance, the visualization can size each seg-
ment according to a chosen dynamic metric.

2. The Cross-Profiler CProf

As cross-profiling target, CProf supports embedded Java
systems where accurate CPU cycle estimates are available for
most bytecodes and where instruction cache misses may hap-
pen only upon method invocation and return. Some recent Java
processors, such as the Java Optimized Processor JOP [4], meet
these requirements; JOP has a special instruction cache that
caches whole method bodies.

CProf instruments the beginning of each basic block,
method entry, and method return, in order to update a CPU cy-
cle counter in the corresponding CCT node. Upon basic block
entry, a statically pre-computed cycle estimate for the byte-
codes in the basic block is added to the cycle counter. Method
invocation and return bytecodes are treated specially, since their
cycle consumption depends on the method size and on the state
of the instruction cache. Upon method entry and return, CProf
triggers the invocation of a user-defined cache simulator and
cycle estimator. For more details on CProf, we refer to [2, 3].

3. Visualization of Calling-Context Profiles

CProf supports user-defined profilers to process the col-
lected profiling data. A typical profilers dumps the calling-
context cross-profile in a text file upon JVM shutdown. As a
textual representation of a calling-context cross-profile can be
very large and cumbersome to analyze, we provide a novel vi-
sualization tool for CProf that represents calling-context cross-

1http://www.inf.unisi.ch/projects/ferrari/



profiles as ring charts, where callee methods are represented in
segments surrounding the caller’s segment.

Figure 1(b) shows a conceptual representation of a calling-
context cross-profile for the code sample in Figure 1(a). The
cross-profile, which was generated by CProf using a cache sim-
ulator and cycle estimator for the JOP processor [4], represents
one invocation of method f(). Each calling context stores the
number of method invocations and the aggregated CPU cycle
consumption for the CCT subtree.

Figure 1(c) presents a ring chart visualization where all call-
ing contexts have the same weight. For instance, the segments
representing the callees of f() (i.e., g(int) and h()) have the
same size and completely surround the segment of f(). This
representation gives a condensed view of the overall CCT, but
does not convey the dynamic metrics collected for each context.

In order to ease locating performance problems, we support
a different visualization, where each segment is sized according
to a chosen dynamic metric. Figure 1(d) shows the correspond-
ing ring chart, where segments are sized according to CPU cy-
cle estimates. Here, the segments representing the calles of
method f() have different size and do not completely surround
the segment of f(). The execution of the callee g(int) con-
sumes about 76% of the CPU cycles consumed by the overall
execution of f(), whereas the callee h() (of method f()) con-
tributes only little to the overall cycle consumption of f(). The
part of the segment representing f() that is not surrounded by
callee segments represents the CPU cycle contribution of f()
excluding its callees.

Our tool not only supports different visualizations according
to different dynamic metrics, it also allows, amongst others, for
navigation in the CCT (i.e., selection of any calling-context to
be displayed as root), for limitation of the CCT depth, and for
marking calling-contexts with special properties (e.g., particu-
lar package, class, or method names).

4. Conclusion

In this tool demonstration, we present CProf, a configurable
cross-profiler for embedded Java processors. CProf yields
calling-context cross-profiles, providing dynamic metrics, such
as CPU cycle consumption, separately for each calling con-
text. We introduce a new visualization of calling-context cross-
profiles as ring charts, where each calling context corresponds
to a ring segment. In order to reveal hot methods, their callers,
and callees at one glance, ring segments can be sized according
to a chosen dynamic metric.

This tool demonstration is accompanied by a methodologi-
cal paper introducing cross-profiling for processor architecture
design space exploration.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware per-
formance counters with flow and context sensitive profiling. In
PLDI 1997, 85–96.

[2] W. Binder, M. Schoeberl, P. Moret, and A. Villazón. Cross-
profiling for embedded Java processors. In QEST 2008, 287–296.

[3] W. Binder, A. Villazón, M. Schoeberl, and P. Moret. Cache-aware
cross-profiling for Java processors. In CASES 2008, 127–136.

[4] M. Schoeberl. A Java processor architecture for embedded real-
time systems. Journal of Systems Architecture, 54/1–2:265–286,
2008.

void f() {
for (int i = 1; i <= 10; ++i) {

h();
g(i);

}
}
void g(int i) { for (int j = 1; j <= i; ++j) h(); }
void h() { return; }

(a) Example code

(b) Generated CCT (conceptual representation)

h()

g(int)

f()

h()

(c) CCT visualization: calling-contexts with equal weight

h()

g(int)

f() h()

(d) CCT visualization: calling-contexts weighted by estimated
CPU cycle consumption

Figure 1. Example calling-context cross-profile
and its visualization (assuming method f() is in-
voked once)

2


