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ABSTRACT
Cyber-physical systems in IIoT and Fog computing can use a variety
of standards to guarantee real-time communication, based on en-
hanced switches with quality-of-service, audio-video bridging, time-
triggered Ethernet and time-sensitive networking features. However,
such real-time enabled network switches often come at a high design
and maintenance cost.

This paper explores the feasibility of source time-triggered com-
munication over a standard Ethernet switch without enhanced ca-
pabilities and demonstrates the minimum requirements of a system
needed to enable time-triggered communication.

To achieve deterministic communication and synchronous op-
eration of the tasks, the worst-case execution time of the tasks is
analyzed and a static schedule is defined. We use the IEEE 1588
Precise Time Protocol to provide a global time reference for the
network devices and time-triggered messages are scheduled at the
source nodes. The communication is implemented and evaluated on
a scalable synthetic cyber-physical system test-case composed of
three nodes: a time server node and two application nodes that con-
trol a servo motor and exchange a time-triggered message containing
the duty cycle of the pulse-width modulation signal.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-physical
systems; Real-time system architecture; • Networks → Network
experimentation; Network protocols;
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1 INTRODUCTION
Emerging technologies in the field of industrial control and automa-
tion such as Fog computing and Industrial Internet-of-Things (IIoT)
commonly incorporate or interface with distributed cyber-physical
systems (CPS) that require deterministic machine-to-machine and
machine-to-cloud communication [18, 22]. CPS networks are often
composed of a set of sensor, actuation and monitoring devices that
exchange time-critical information using some type of real-time
communication protocol e.g., the time-triggered protocol TTP [7].
These real-time communication protocols support time-triggered
(TT) communication based on a cooperative schedule and a network-
wide synchronized notion of time [16].

TT communication has been investigated in a variety of protocols
such as [2, 10], but in modern industrial and automotive networks,
Ethernet is the preferred choice and is often provided by proprietary
industrial Ethernet protocols such as PROFINET and EtherCAT [1].
Recently the increasing need for efficient systems interoperability
and support for mixed-criticality traffic has given rise to two main
advances in time-predictable Ethernet communication standards,
the TTEthernet [6] and the IEEE 802.1 Time Sensitive Networking
(TSN) task group [12].

TTEthernet was first introduced to allow for TT senders to operate
over the same standard Ethernet links with event-based senders with-
out interference and with guaranteed constant transmission delay
and bounded jitter. TSN emerged from the automotive Ethernet ap-
plication of the Audio-Video Bridging (AVB) and is in the process of
developing a set of fully deterministic standards for local-area Ether-
net networks that cover a range of topics from time synchronization
using the IEEE 801.1ASrev standard to the IEEE 802.1Qbv, which
allows for deterministic communication of time-triggered traffic. A
close comparison of these two protocols is presented in [23].

Both standards describe the implementation aspects of end-system
nodes and network switches as well as define non-functional require-
ments such as network routing, traffic flow, and topology. In [13]
the authors investigated these non-functional real-time network re-
quirements and described the necessary network planning to achieve
bounded end-to-end communication in distributed CPS over TSN
networks. In [19] the design of a custom TTEthernet switch is pre-
sented and compared against a commercial off-the-shelf switch. It
is shown that the delays and jitter in the transmission time caused
by a standard Ethernet switch’s best-effort policy can lead to frames
arriving outside of the receive-time window of a TT recipient.

Although TTEthernet and TSN have evolved as the main stan-
dards in the area of TT communication, their implementation comes
at a high cost of design complexity and maintenance. This paper
investigates the feasibility of time-triggered communication over
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Figure 1: CPS test case network

a standard Ethernet switch without support for real-time network-
ing. We explore the minimum requirements of a network composed
of standard Ethernet switches and the design decisions needed for
source scheduled TT communication, from an implementation point-
of-view. We make use of hardware-based network time synchroniza-
tion and worst-case execution time (WCET) analyzable software,
and we measure the worst-case network propagation delay to create
a static TT network and task schedule. To evaluate our approach we
define and implement a test case of a distributed CPS application
that allows us to check the correct transmission of TT messages
and the synchronized operation of the tasks running on the network
nodes.

2 THE TEST CASE
Figure 1 presents the network and communication flows of our test
case CPS application. The network is composed of three network
nodes, a time server that provides a global network time reference
and two application nodes named, Server and Client.

Both of the application nodes drive a servo motor using pulse-
width modulation (PWM). The PWM signal has a period of 20 ms
and a duty cycle varying between 5% and 10% as shown in Figure
2. The duty cycle is increased by 1% on the Server and transmitted
as a TT message to the Client with the goal of creating a synchro-
nized rotation of the servos distributed on the two nodes. Both the
Server and the Client, perform a PTP slave synchronization loop
and also periodically report the application status on a HEX display.
In summary, the two application nodes execute the following four
tasks:

(1) ctrl_task, sends or receives the TT message containing the
duty cycle

(2) act_task, controls the PWM signal of the servo motor
(3) report_task, reports the current clock offset from the PTP

master
(4) sync_task, involves handling the time synchronization proto-
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Figure 2: Servo motor control PWM signal

3 IMPLEMENTATION
This section presents the platform architecture of the nodes and
describes the implementation of the application and the TT schedule.

3.1 Platform Architecture
The Server and Client nodes executing the tasks described in Sec-
tion 2 are implemented on the open-source processor Patmos [15].
Patmos is a time-predictable, dual-issue, RISC processor that has
been designed with focus on WCET analysis. Patmos uses spe-
cial WCET-optimized instruction and data caches along with private
scratchpad memories. An LLVM-based [9] toolchain, which includes
the WCET analysis tool platin [4], supports Patmos.

As described in [16], it is necessary to achieve accurate time
synchronization among cooperative network nodes before executing
any distributed TT operations. We use the IEEE 1588v2 Precise
Time Protocol (PTP) [11] to synchronize time over the network. The
time server node acts as a time master while the application nodes
act as PTP slaves.

To implement the TT communication over a general purpose
Ethernet switch we make the following three assumptions: (1) all
network devices have a common sense of time, (2) all network
devices are cooperative senders and know the TT schedule and the
resulting network activity, and (3) route paths between nodes are
fixed with constant propagation delays.

3.2 Application Scheduling
The two application nodes initially execute a synchronization loop
for a pre-specified number of clock cycles to synchronize their clocks
to the global time reference provided by the PTP master that is
configured on the time server node.

After the initial synchronization is complete, each application
node proceeds to execute the static schedule defined in Figure 3
by polling the synchronized network time. The tasks have a pe-
riod of 20 ms (constrained by the hard real-time requirement of
the servo motor) and the schedule is composed of three sequential
tasks, ctrl_task, act_task, and report_task followed by a period
of clock synchronization tasks sync_task. This task sequence allows
achieving the minimum clock offset between the nodes during the
exchange of a TT message and a network synchronous generation
of the PWM signals. In our implementation, the synchronized PTP
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clock is used to generate the PWM signal in software as shown in
Listing 1. This design choice allows for accurate synchronization of
the distributed PWM signals in both the Server and Client nodes.

Listing 1: Software-based PWM signal using the IEEE 1588
clock
void exec_act_task(float dutyCycle){

pwmTimer = get_ptp_usecs();

*gpio_ptr = 0x1;

while(get_ptp_usecs()-pwmTimer < HIGH_TIME(dutyCycle)

-72){;}

*gpio_ptr = 0x0;

}

To compensate for network propagation delays, the propagation
delay of the network is measured during the initial PTP synchro-
nization cycle by taking into consideration that a PTP packet has
a maximum size of 54 bytes and that the transmitted TT message
containing the duty cycle has a constant size of 46 bytes. We use the
maximum delay observed to offset the schedule of the Client node.
Moreover, the Client node’s ctrl_task receive-time window is set
to the WCET of the Server node’s ctrl_task. Figure 3 (a) presents
the network activity and the reserved PTP and TT slots. These time
slots should be respected by other potential network users to avoid
delaying any on-going transmission of TT messages that could lead
to them being received by the Client outside the receive-time win-
dow. Figures 3 (b) & (c) present the respective task schedules for the
Server and Client nodes.

Without a PTP-capable switch that can act as a boundary clock,
PTP slave nodes synchronize their clocks from a single Ethernet
interface on the Linux laptop that acts as a PTP master. As the
PTP master broadcasts SYNC and FOLLOW_UP messages it re-
ceives DELAY_REQ messages from both nodes simultaneously to
which it can only reply to one leading to un-replied messages from
the PTP slaves. To mitigate this issue, during the synchronization
task period, if a node gets successfully synchronized it stops and
goes silent to allow for other network nodes to complete their PTP
synchronization.

The WCET of the respective application nodes tasks is calculated
using the tool platin [4] and is presented in the Table 1 and Table 2.
The WCET presented for the act_task does not include the blocking
wait time of the PWM signal (with a duration of HIGH_TIME()), i.e.
it corresponds only to the clock cycles for executing the instructions.

Table 1: WCET Analysis of Server node periodic tasks

Task
WCET

Clock Cycles Time (100 MHz)
ctrl_task 8396 83.96 µs
act_task 24752 247.52 µs
report_task 202 2.02 µs
sync_task 29066 29.525 µs

3.3 Source Access
The presented test-case application is implemented on the open-
source project T-CREST [20] and the developed software application
can be found at https://github.com/t-crest/patmos/ tree/master/c/

Table 2: WCET Analysis of Client node periodic tasks

Task
WCET

Clock Cycles Time (100 MHz)
ctrl_task 8123 81.23 µs
act_task 24752 247.52 µs
report_task 202 2.02 µs
sync_task 29066 29.525 µs

apps/poorman-tte. The PTP hardware-assist unit that was used for
the time synchronization is hosted at https://github.com/t-crest/
patmos/ tree/master/hardware/src/main/scala/ptp1588assist

4 EVALUATION
This section describes the experimental setup of our CPS demo net-
work and presents the evaluation results of the clock synchronization
and TT communication.

4.1 Experimental Setup
The presented CPS application is deployed on an experimental
setup where the nodes are on the FPGA-based research platform T-
CREST [14], which is implemented on two FPGA DE 2-115 Terasic
boards equipped with an Altera Cyclone IV.

The time server (PTP master) is implemented on a Linux laptop,
configured with the linuxptp package, that runs the ptp4l executable
using the configuration presented in Listing 2.

Listing 2: PTP4l configuration file
[global]

verbose 1

delay_mechanism E2E

logAnnounceInterval 12

logSyncInterval -8

hybrid_e2e 1

twoStepFlag 1

time_stamping hardware

[enp0s31f6]

Both FPGA boards use a PLL to generate an internal system clock
at a frequency of 100 MHz. Since the presented implementation
makes use of FPGA technology combined with a standard Ethernet
PHY, both nodes use a PTP hardware-assist unit [8] IP core to enable
accurate clock synchronization. This IP core is similar in operation
to commercial devices such as the Texas Instruments PHYTER [21].

The IEEE 1588-2008 clock of the PTP hardware-assisted unit is
configured with a resolution of 20 ns. The network is communicating
through an HP ProCurve 1700-8 [5] Ethernet switch at a bandwidth
of 100 Mbps. The Ethernet MAC controller of T-CREST is config-
ured with a single frame buffer leading to a tightly timed system, i.e.,
if a frame is not read by the processor in time and another Ethernet
frame arrives it will be overwritten and missed.

4.2 Clock Synchronization
To evaluate the clock synchronization, of the two application nodes,
the pulse-per-second (PPS) signals of the PTP hardware-assist units
were connected to an oscilloscope that was set to trigger on the rising
edge of the Server node’s PPS. Figure 4 presents the comparison
of the PPS signals produced by the respective Server (yellow) and

https://github.com/t-crest/patmos/tree/master/c/apps/poorman-tte
https://github.com/t-crest/patmos/tree/master/c/apps/poorman-tte
https://github.com/t-crest/patmos/tree/master/hardware/src/main/scala/ptp1588assist
https://github.com/t-crest/patmos/tree/master/hardware/src/main/scala/ptp1588assist
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Figure 3: Client/Server node task scheduling and network activity

Client (purple) IEEE 1588-2008 hardware clocks after the initial
synchronization with the PTP master. The PPS relative offset is
measured varying from −124.5 ns to 9.53 ns.

Figure 4: Comparison of PPS between PTP slave network nodes.
Relative worst-case clock offset is measured at −124.5 ns

4.3 Time-Triggered Communication
The first results from the evaluation of the TT communication re-
vealed that a receiving node should take into consideration for its
schedule both the propagation delay of the switch and the WCET
of the transmission task on the sending node to accurately tune its
receive-time window. Otherwise, packets could arrive outside the
expected time window of the receiver node and thus lead to missed
frames. The worst case propagation delay for a single PTP packet
of 54 bytes was measured at ≈23 µs. Furthermore, it was measured
that non-cooperative nodes that transmitted during the sync_task
duration greatly degraded the synchronization quality leading to

either missed-packets on the receiver or miss-aligned PWM signal
generation between the two nodes.

The presented time-triggered task schedule leads to a network
activity that allows other cooperative senders to communicate dur-
ing the silent time of the TT nodes, i.e. during the execution of
internal tasks such as act_task and report_task. This closely re-
sembles what is often described in real-time networking as a porosity
schedule and its usage and design are discussed in [17].

5 CONCLUSION AND FUTURE WORK
This paper explored the engineering challenges of time-triggered
communication and distributed task scheduling over a general pur-
pose Ethernet switch. We implemented a synthetic CPS application
and evaluated the design in an experimental setup composed of three
nodes: a time server and two actuation nodes that control two servo
motors. TT messages were exchanged from the server node to the
client node controlling the duty cycle of two PWM signals. We de-
fined a static schedule, we measured the worst-case network latency,
we performed a formal WCET analysis and combined with the use of
PTP and the IEEE 1588-2008 hardware clock to trigger the schedule
execution allowed us to accurately synchronize the control of the
two servo motors across our network and the time-triggered message
communication.

Although we were able to evaluate the presented experimental
TT communication scheme and gather first results on the negative
effects of non-cooperative traffic on the TT flows, more work is
needed in measuring the Client node’s miss-rate and the achieved
time synchronization [3] quality depending on the injected network
traffic. Moreover, we plan to integrate the developed CPS test-case
into a TSN network and based on the work presented in [13] we
plan to investigate the design requirements of an end-system node
that supports TT traffic. We plan to repeat the experiment within a
TTEthernet network and conclude a set of software and hardware
components for an end-system node needed to successfully achieve
TT communication in real-time Ethernet networks.
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