
Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach

Martin Schoeberl1, Pascal Schleuniger1, Wolfgang Puffitsch2, Florian
Brandner3, Christian W. Probst1, Sven Karlsson1, and Tommy Thorn4

1 Department of Informatics and Mathematical Modeling
Technical University of Denmark
masca@imm.dtu.dk, pass@imm.dtu.dk, probst@imm.dtu.dk, ska@imm.dtu.dk

2 Institute of Computer Engineering
Vienna University of Technology, Austria
wpuffits@mail.tuwien.ac.at

3 COMPSYS, LIP, ENS de Lyon
UMR 5668 CNRS – ENS de Lyon – UCB Lyon – Inria
florian.brandner@ens-lyon.fr

4 Unaffiliated Research
California, USA
tommy@thorn.ws

Abstract

Current processors are optimized for average case performance, often leading to a high worst-case execu-
tion time (WCET). Many architectural features that increase the average case performance are hard to be
modeled for the WCET analysis. In this paper we present Patmos, a processor optimized for low WCET
bounds rather than high average case performance. Patmos is a dual-issue, statically scheduled RISC
processor. The instruction cache is organized as a method cache and the data cache is organized as a split
cache in order to simplify the cache WCET analysis. To fill the dual-issue pipeline with enough useful
instructions, Patmos relies on a customized compiler. The compiler also plays a central role in optimizing
the application for the WCET instead of average case performance.

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems – Real-time and
embedded systems
C1.1 Processor Architectures – Single Data Stream Architectures – RISC/CISC, VLIW architectures

Keywords and phrases Time-predictable architecture, WCET analysis, WCET-aware compilation

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

Real-time systems need a time-predictable execution platform so that the worst-case execution time
(WCET) can be estimated statically. It has been argued that we have to rethink computer architecture
for real-time systems instead of trying to catch up with new processors in the WCET analysis
tools [21, 3, 23].

However, time-predictable architectures alone are not enough. If we would only be interested
in time predictability, we could use microprocessors from the late 1970s to the mid-1980s, where
the execution time was accurately described in the data sheets. With those processors it would be
possible to generate exact timing in software, e.g., one of the authors has programmed a wall clock
on the Zilog Z80 in assembler by counting instruction clock cycles and inserting delay loops and
nops at the correct locations.

© Martin Schoeberl et al.;
licensed under Creative Commons License ND

First Workshop on Bringing Theory to Practice: Predictability and Performance in Embedded Systems (PPES 2011).
Editors: Philipp Lucas, Lothar Thiele, Benoit Triquet, Theo Ungerer, Reinhard Wilhelm; pp. 1–10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


2 Towards a Time-predictable Dual-Issue Microprocessor: The Patmos Approach

Processors for future embedded systems need to be time-predictable and provide a reasonable
worst-case performance. Therefore, we present a Very Long Instruction Word (VLIW) pipeline with
specially designed caches to provide good single thread performance. We intend to build a chip-
multiprocessor using this VLIW pipeline to investigate its benefits for multi-threaded applications.

We present the time-predictable processor Patmos as one approach to attack the complexity issue of
WCET analysis. Patmos is a statically scheduled, dual-issue RISC processor that is optimized for real-
time systems. Instruction delays are well defined and visible through the instruction set architecture
(ISA). This design simplifies the WCET analysis tool and helps to reduce the overestimation caused
by imprecise information. Memory hierarchies having multiple levels of caches typically pose a major
challenge for the WCET analysis. We attack this issue by introducing caches that are specifically
designed to support WCET analysis. For instructions we adopt the method cache, as proposed in [18],
which operates on whole functions/methods and thus simplifies the modeling for WCET analysis.
Furthermore, we propose a split cache architecture for data [20], offering dedicated caches for the
stack area, for constants and static data, as well as for heap allocated objects. A compiler-managed
scratchpad memory provides additional flexibility. Specializing the cache structure to the usage
patterns of its data allows predictable and effective caching of that data, while at the same time
facilitating WCET analysis.

Aside from the hardware implementation of Patmos, we also present a sketch of the software
tools envisioned for the development of future real-time applications. Patmos is designed to facilitate
WCET analysis, its internal operation is thus well-defined in terms of timing behavior and explicitly
made visible on the instruction set level. Hard to predict features are avoided and replaced by more
predictable alternatives, some of which rely on the (low-level) programmer or compiler to achieve
optimal results, i.e., low actual WCET and good WCET bounds. We plan to provide a WCET-aware
software development environment tightly integrating traditional WCET tools and compilers. The
heart of this environment is a WCET-aware compiler that is able to preserve annotations for WCET
analysis, actively optimize the WCET, and exploit the specialized architectural features of Patmos.

The processor and its software environment is intended as a platform to explore various time-
predictable design trade-offs and their interaction with WCET analysis techniques as well as WCET-
aware compilation. We propose the co-design of time-predictable processor features with the WCET
analysis tool, similar to the work by Huber et al. [9] on caching of heap allocated objects in a
Java processor. Only features where we can provide a static program analysis shall be added to
the processor. This includes, but is not limited to, time-predictable caching mechanisms, chip-
multiprocessing (CMP), as well as novel pipeline organizations. Patmos is open-source under a
BSD-like license.

The presented processor is named after the Greek island Patmos, where the first sketches of the
architecture have been drawn; not in sand, but in a (paper) notebook. If you use the open-source
design of Patmos for further research, we would suggest that you visit and enjoy the island Patmos.
Consider writing a postcard from there to the authors of this paper.

The paper is organized as follows: In the following section related work on time-predictable
processor architectures and WCET driven compilation is presented. The architecture of Patmos is
described in Section 3, followed by the proposal of the software development tools in Section 4. The
experience with initial prototypes of the processor and a compiler backend is reported in Section 5
and the paper is concluded in Section 6.

2 Related Work

Edwards and Lee argue: “It is time for a new era of processors whose temporal behavior is as easily
controlled as their logical function" [3]. A first simulation of their PRET architecture is presented in



M. Schoeberl et al. 3

[12]. PRET implements a RISC pipeline and performs chip-level multi-threading for six threads to
eliminate data forwarding and branch prediction. Scratchpad memories are used instead of instruction
and data caches. The shared main memory is accessed via a time-division multiple access (TDMA)
scheme, called memory wheel. The ISA is extended with a deadline instruction that stalls the current
thread until the deadline is reached. This instruction is used to perform time-based, instead of
lock-based, synchronization for accesses to shared data. Furthermore, it has been suggested that the
multi-threaded pipeline explores pipelined access to DRAM memories [2]. Each thread is assigned
its own memory bank.

Thiele and Wilhelm argue that a new research discipline is needed for time-predictable embedded
systems [23]. Berg et al. identify the following design principles for a time-predictable processor:
“... recoverability from information loss in the analysis, minimal variation of the instruction timing,
non-interference between processor components, deterministic processor behavior, and comprehensive
documentation" [1]. The authors propose a processor architecture that meets these design principles.
The processor is a classic five-stage RISC pipeline with minimal changes to the instruction set.
Suggestions for future architectures of memory hierarchies are given in [26].

Time-predictable architectural features have been explored in the context of the Java processor
JOP [19]. The pipeline and the microcode, which implements the instruction set of the Java Virtual
Machine, have been designed to avoid timing dependencies between bytecode instructions. JOP uses
split load instructions to partially hide memory latencies. Caches are designed to be time-predictable
and analyzable [18, 20, 22, 9]. With Patmos we will leverage on our experience with JOP and
implement a similar, but more general, cache structure.

Heckmann et al. provide examples of problematic processor features in [8]. The most problematic
features found are the replacement strategies for set-associative caches. In conclusion Heckmann et
al. suggest the following restrictions for time-predictable processors: (1) separate data and instruction
caches; (2) locally deterministic update strategies for caches; (3) static branch prediction; and (4)
limited out-of-order execution. The authors argue for restriction of processor features. In contrast, we
also provide additional features for a time-predictable processor.

Whitham argues that the execution time of a basic block has to be independent of the execution
history [24]. To reduce the WCET, Whitham proposes to implement the time critical functions in
microcode on a reconfigurable function unit (RFU). With several RFUs, it is possible to explicitly
exploit instruction level parallelism (ILP) of the original RISC code – similar to a VLIW architecture.

Superscalar out-of-order processors can achieve higher performance than in-order designs, but
are difficult to handle in WCET analysis. Whitham and Audsley present modifications to out-of-order
processors to achieve time-predictable operation [25]. Virtual traces allow static WCET analysis,
which is performed before execution. Those virtual traces are formed within the program and constrain
the out-of order scheduler built into the CPU to execute deterministically.

An early proposal [17] of a WCET-predictable super-scalar processor includes a mechanism
to avoid long timing effects. The idea is to restrict the fetch stage to disallow instructions from
two different basic blocks being fetched in the same cycle. For the detection of basic blocks in the
hardware, additional compiler inserted branches or special instructions are suggested.

Multi-Core Execution of Hard Real-Time Applications Supporting Analyzability (MERASA) is a
European Union project that aims for multicore processor designs in hard real-time embedded systems.
An in-order superscalar processor is adapted for chip multi-threading (CarCore) [14]. The resulting
CarCore is a two-way, five-stage pipeline with separated address and data paths. This architecture
allows issuing an address and an integer instruction within one cycle, even if they are data-dependent.
CarCore supports a single hard real-time thread to be executed with several non-real-time threads
running concurrently in the background.

In contrast to the PRET and CarCore designs we use a VLIW approach instead of chip-level



4 Towards a Time-predictable Dual-Issue Microprocessor: The Patmos Approach

multi-threading to utilize the hardware resources. To benefit from thread-level applications we will
replicate the simple pipeline to build a CMP system. For time-predictable multi-threading almost all
resources (e.g., thread local caches) need to be duplicated. Therefore, we believe that a CMP system
is more efficient than chip multi-threading.

Compilers trying to take the WCET into account have been subject of intense research. A major
challenge is to keep annotations, intended to aid the WCET analysis, up-to-date throughout the
optimization and transformation phases of the compiler. So far, techniques are known to preserve
annotations for a limited set of compiler optimizations [4, 10] only. A more directe approach to WCET-
aware optimization is offered by the WCC compiler of Falk et al. [13, 5, 6]. Here, optimizations
are evaluated using a WCET analysis tool and only applied when shown to be beneficial. A similar
approach is taken by Zhao et al. [27], where a WCET-analysis tool provides information on the
critical paths which are subsequently optimized. These efforts only represent a first step towards
developing WCET-aware compilation techniques by discarding counter productive optimization
results. A disciplined approach for the design of true WCET-aware optimizations is, however, not
known and still considered an open problem.

3 The Architecture of Patmos

Patmos is a 32-bit, RISC-style microprocessor optimized for time-predictable execution of real-time
applications. In order to provide high performance for single-threaded code, a two-way parallel
VLIW architecture was choosen. For multi-threaded code we plan to build a chip-multiprocessor
system with statically scheduled access to shared main memory [15].

Patmos is a statically scheduled, dual-issue RISC microprocessor. The processor does not stall,
except for explicit instructions that wait for data from the memory controller. All instruction delays
are thus explicitly visible at the ISA-level, and the exposed delays from the pipeline need to be
respected in order to guarantee correct and efficient code. Programming Patmos is consequently more
demanding than for usual processors. However, knowing all delays and the conditions under which
they occur simplifies the processor model required for WCET analysis and helps to improve accuracy.

The modeling of memory hierarchies with multiple levels of caches is critical for practical WCET
analysis. Patmos simplifies this tasks by offering caches that are especially designed for WCET
analysis. Accesses to different data areas are quite different with respect to WCET analysis. Static
data, constants, and stack allocated data can easily be tracked by static program analysis. Heap
allocated data on the other hand demands for different caching techniques to be analyzable [9].
Therefore, Patmos contains several data caches, one for each memory area. Furthermore, we will
explore the benefits of compiler managed scratchpad memory.

The primary implementation technology is in a field-programmable gate array (FPGA). Therefore,
the design is optimized within the technology constraints of an FPGA. Nevertheless, features such as
preinitialized on-chip memories are avoided to keep the design implementable in ASIC technologies.

3.1 Instruction Set

The instruction set of Patmos follows the conventions of usual RISC machines such as MIPS. All
instructions are fully predicated and take at most three register operands. Except for branch and
accesses to main memory using loads or stores, all instructions can be executed by both pipelines.

The first instruction of an instruction bundle contains the length of the bundle (32 or 64 bits).
Register addresses are at fixed positions to allow reading the register file parallel to instruction
decoding. The main pressure on the instruction coding comes from constant fields and branch offsets.
Constants are supported in different ways. A few ALU instruction can be performed with a sign-
extended 12-bit constant operand. Two instructions are available to load 16 bits into the lower (with



M. Schoeberl et al. 5

     RF     M$

IRPC

+

Dec

    S$

SP

    D$

     RF

+

Figure 1 Pipeline of Patmos with fetch, decode, execute, and memory/write back stages.

sign extension) or upper half of a register. Furthermore, a 32-bit constant can be loaded into a register
by using the second instruction slot for the constant. Branches (conditional and unconditional) are
relative with a 22-bit offset. Function calls to a 32-bit address are supported by a register indirect
branch and link instruction.

To reduce the number of conditional branches and to support the single-path programing
paradigm [16], Patmos supports fully predicated instructions. Predicates are set with compare
instructions, which itself can be predicated. A complete set of compare instructions (two registers
and register against 0) is supported. The optimum number of concurrently live predicates is still not
settled, but will be at least 8.

Access to the different types of data areas are explicitly encoded with the load and store in-
structions. This feature helps the WCET analysis to distinguish between the different data caches.
Furthermore, it can be detected earlier in the pipeline which cache will be accessed.

3.2 Pipeline

The register file with 32 registers is shared between the two pipelines. Full forwarding between the
two pipelines is supported. The basic features are similar to a standard RISC pipeline. The (on-chip)
memory access and the register write back is merged into a single stage. The data cache is split into
different cache areas. The distinction between the different caches is performed with typed load and
store instructions.

Figure 1 shows an overview of Patmos’ pipeline. To simplify the diagram, forwarding and external
memory access data paths are omitted and not all typed caches are shown. The method cache (M$),
the register file (RF), the stack cache (S$), the data cache (D$), and the scratchpad memory (SP)
are implemented in on-chip memories of an FPGA. All on-chip memories of Patmos use registered
input ports. As the memory internal input registers can not be accessed, the program counter (PC) is
duplicated with an explicit register. The instruction fetched from the method cache is stored in the
instruction register (IR) and also used in the register file to fetch the register values during the decode
stage.

For a dual-issue RISC, the RF needs four read ports and two write ports. Current FPGAs offer
on-chip memories with one read and one write port. Additional read ports can be implemented by
replicating the RF on several on-chip memories. However, to implement the dual write ports, the RF
needs to be double clocked. To save resources, double clocking is also used for the read ports. The



6 Towards a Time-predictable Dual-Issue Microprocessor: The Patmos Approach

resulting RF needs only two block RAMs. As read during write at the same address in the on-chip
memories of current FPGAs either delivers the old value on the read or an undefined value the RF
contains an internal forwarding path.

At the execution stage up to two operations are executed and the address for a memory access is
calculated. Predicates are set on a compare instruction. The last stage writes back the results from the
execution stage or loads data from one of the data cache areas.

The PC manipulation depends on three pipeline stages, as sketched with the dashed line in
Figure 1. At the fetch stage the single bit that determines the instruction length is fed to the PC
multiplexer. Unconditional branches are detected at the decode stage and the branch offset is fed
to the multiplexer from IR. The predicate for a conditional branch is available as a result from the
execution stage and the PC multiplexer also depends on the write back stage.

3.3 Memory and Caches

Access to main memory is done via a split load, where one instruction starts the memory read and
another instruction explicitly waits for the result. Although this increases the number of instructions
to be executed, instruction scheduling can use the split accesses to hide memory access latencies
deterministically. For instruction caching a method cache is used where full functions/methods are
loaded at call or return [18]. This cache organization simplifies the pipeline and the WCET analysis
as instruction cache misses can only happen at call or return instructions. For the data cache a split
cache is used [20]. Data allocated on the stack is served by a direct mapped stack cache, heap
allocated data in a highly associative data cache, and constants and static data in a set associative
cache. Only the cache for heap allocated data and static data needs a cache coherence protocol for a
CMP configuration of Patmos. Furthermore, a scratchpad memory can also be used to store frequently
accessed data. To distinguish between the different caches, Patmos implements typed load and store
instructions. The type information is assigned by the compiler (e.g., the compiler already organizes
the stack allocated data). To simplify Figure 1, only the stack and data cache are shown as an example
of the split cache.

4 Software Development with Patmos

The architecture design of Patmos adopts ideas from the RISC and VLIW design-philosophies. In
particular, the idea that architecture design is interdependent on the software development environment.
The first RISC machines made some architectural constraints visible on the instruction set level in
order to push complexity from the hardware design to the software tools or programmer. The VLIW
philosophy took this idea even further and assigned the compiler a central role in exploiting the
available hardware resources in the best possible way [7].

We make the case that this architecture philosophy is particularly suited to address the problems
encountered in today’s real-time system design. Time-predictable architectures following this ap-
proach, such as Patmos, not only unveil optimization potential to the compiler, but more importantly
provide the opportunity for developing more accurate program analyses, e.g., in order to derive tighter
bounds for the WCET. The compiler and the program analysis tools are thus first class citizens of
the real-time system engineer’s toolbox and need to be accounted for in the architecture design. As
a side-effect the use of high-level programming languages is facilitated or even favored, since the
necessary software tools are readily provided.



M. Schoeberl et al. 7

4.1 WCET-aware Compilation

The Patmos approach relies on a strong compiler in order to optimally exploit the available hardware
resources. Traditionally, compilers seek to optimize the average execution time by focusing the effort
on frequently executed hot paths. For other, rarely executed, code paths a performance degradation is
usually acceptable. This view of a compiler and its optimizations is not valid in our context. But,
what is the compiler supposed to optimize then? And how could such a compiler look like?

The WCET is an important metric in order to determine whether a real-time program can be
scheduled and meets its deadlines. The actual WCET is in fact rarely known but instead approximated
by a WCET bound, which is usually provided by a program analysis tool independent from the
compiler. The WCET or its bound are suitable candidates as a primary optimization goal for our
compiler. Their optimization, however, poses some difficult problems that need to be addressed in the
future, opening up a new field for compiler researches and architecture designers.

Foremost, the compiler has to be aware of the WCET. We will consequently integration the WCET
analysis tools tightly with the compiler. In practice, we expect synergetic effects from this integration,
as both tools usually share a great deal of infrastructure. Most importantly, the WCET analysis
is likely to profit from additional information that is available from the compiler throughout the
translation process from a high-level input program to its machine form. The preservation of relevant
information required by the WCET analysis, in particular annotations provided by the programmer, is
a major challenge that has only been solved for selected code transformations [10].

In addition, a new approach to compilation is needed that focuses on optimizing the critical
paths of a program instead of its hot paths [6, 27]. However, the critical paths may change during
the optimization process, either because the previous critical path has been sped-up or because the
optimization adversely affected another path slowing it down. This gives rise to phase-ordering
problems throughout the optimization process. The problem here is to decide which code regions are to
be optimized and in which order. In addition, optimizations may adversely effect each other, such that
the relative ordering of optimizations needs to be accounted for in a WCET-aware compiler. Defining
a sound optimization strategy for a WCET-aware compiler is still considered to be an open problem.
A key insight is that a time-predictable architecture is mandatory for defining such an optimization
strategy. It becomes otherwise impossible to asses the impact of a given transformation on the
WCET, resulting in the application of undesirable optimizations, inefficient code, and consequently
conservative WCET-bounds.

4.2 Exploiting Patmos’ Features

Some design decisions for Patmos are based on a pragmatic assumption that the engineer best knows
the system under development. It is thus important to enable the programmer to fine tune the system.
Care has been taken that those features are accessible from high-level programming languages. The
typed memory loads and stores are a good example of such a feature, which allows the programmer
to explicitly assign variables and data structures to specific storage elements. The typed memory
operations are a natural match to named address spaces in Embedded C, an extension of the traditional
C language. The computation of tight WCET bounds is simplified, since the target memory is
apparent from the operation itself. The tedious tracking of possible pointer ranges is thus avoided.

The stack cache provides a time-predictable and analyzable way to reduce the penalty for accessing
objects residing on the stack frame of the current function. For most functions it is trivial for the
compiler to immediately exploit the stack cache. Special care has to be taken that function-local
variables accessible through pointers are not placed in the cache, because the cache’s memory is
not accessible using regular memory operations. Those variables need to be kept in a shadow stack
residing in general purpose memory. Note that other variables of the same function are nevertheless



8 Towards a Time-predictable Dual-Issue Microprocessor: The Patmos Approach

assigned to the stack cache.
Exploiting the method cache is more involved and requires a global analysis of the complete

real-time program, including all external modules and libraries linked to it. Using a regular call
graph we can determine function calls potentially leading to conflicts in the cache and adopt the
placement of the involved functions accordingly. Similar techniques have successfully been applied
in the context of scratchpad memories and overlay memories [5]. The design of Patmos’ method
cache, however, combines the predictability of a static code layout in a scratchpad memory with the
flexibility of a cache.

The predicated instructions supported by Patmos allow the elimination of branches. This idea
was first applied for wide-issue VLIW machines in order to keep the parallel execution units busy
and avoid the expensive branch penalty. The single-path programing paradigm [16] adopts the very
same idea to compute tighter WCET bounds. While it is true that for a given single-path program the
WCET bound is generally closer to the actual WCET, the absolute WCET and its computable bound is
not guaranteed to be better than for regular programs. The problem arises from the blind elimination
of branches independent from their relevance to the final WCET. We thus propose WCET-aware
if-conversion and global scheduling in order to eliminate branches and exploit the parallel execution
units of Patmos to actively reduce the absolute WCET.

5 Evaluation

To evaluate Patmos we are working in parallel on the following pieces: a SystemC simulation model,
a VHDL-based FPGA implementation, a port of the GNU Binutils and the LLVM compiler [11].

A VHDL hardware prototype was implemented to get an idea on the speed of the system and
to evaluate the feasibility of a time division multiplexed register file. For that reason two parallel
RISC pipelines, with common instruction fetch stage and shared register file and data cache were
implemented. The single pipelines are based on a load/store architecture that uses write back.

Modern FPGAs contain extensive memory resources in terms of block RAMs. Those SRAM-
blocks can often be clocked with frequencies higher than 500 MHz. The register file in a VLIW
architecture requires a multi-port RAM that provides simultaneous access to four read and two write
ports. Previous soft core implementations have shown that the resulting system clock frequency is far
below the clocking capabilities of block RAMs. For that reason it seems natural to access memory
time division multiplexed. This allows making use of the fast clocking capabilities of the block RAMs
and is less hardware resource demanding than a classical multi-port memory implementation.

On the downside, using multiple clocks in a pipeline implies timing problems that might require
a slowdown of the system clock frequency. Simulation on the hardware model showed that the
performance of the system greatly depends on the quality of the clocks. When the two clocks were
derived from an accurate PLL unit, a maximum pipeline clock frequency of more than 200 MHz on a
Xilinx Virtex 5 (speed grade 2) can be reached. The ALU unit remained the critical path.

It can be concluded that the use of double-clocked block RAM for the register file in VLIW
architectures is an appropriate solution to exploit the available resources of modern FPGAs. The
promising results motivate to pursue the chosen track and to implement the remaining functionality
of the Patmos soft core.

As compiler we adapted LLVM [11] to support the instruction set of Patmos. For most parts of
the compiler backend, the proposed architecture can be treated as plain RISC architecture. Due to
the open-source nature of LLVM, it is possible to reuse code from existing backends with similar
characteristics. A first rough port for Patmos has been implemented within a few days, by picking
appropriate code from the other backends. A feature that differs from other instruction sets is the
splitting of memory accesses. However, LLVM provides means to customize the instruction selection



M. Schoeberl et al. 9

in the backend appropriately, without changing the core code.
Where a VLIW does differ significantly from a RISC architecture is instruction scheduling. Two

instructions can be scheduled per cycle, and appropriate markers to separate instruction bundles have
to be inserted. Due to the simplicity of the proposed architecture, we believe that one of the existing
instruction schedulers in LLVM can be reused for our architecture with modest customization.

6 Conclusion

In this paper we presented the time-predictable processor Patmos. We believe that future embedded
real-time systems need processors designed to minimize the WCET and implement architectural
features that are WCET analyzable. To provide good single thread performance Patmos implements a
statically scheduled, dual-issue pipeline. With a first prototype we have evaluated the feasibility to
implement a dual-issue processor in an FPGA without hurting the maximum clock frequency. Patmos
will serve as platform for future research on co-development of time-predictable architecture features
and their WCET analysis.

References

1 Christoph Berg, Jakob Engblom, and Reinhard Wilhelm. Requirements for and design of a pro-
cessor with predictable timing. In Lothar Thiele and Reinhard Wilhelm, editors, Perspectives
Workshop: Design of Systems with Predictable Behaviour, number 03471 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2004. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany.

2 Stephen A. Edwards, Sungjun Kim, Edward A. Lee, Isaac Liu, Hiren D. Patel, and Martin Schoe-
berl. A disruptive computer design idea: Architectures with repeatable timing. In Proceedings of
IEEE International Conference on Computer Design (ICCD 2009), Lake Tahoe, CA, October 2009.
IEEE.

3 Stephen A. Edwards and Edward A. Lee. The case for the precision timed (PRET) machine. In
DAC ’07: Proceedings of the 44th annual conference on Design automation, pages 264–265, New
York, NY, USA, 2007. ACM.

4 Jakob Engblom. Worst-case execution time analysis for optimized code. In In Proceedings of the
10th Euromicro Workshop on Real-Time Systems, pages 146–153, 1997.

5 Heiko Falk and Jan C. Kleinsorge. Optimal static WCET-aware scratchpad allocation of program
code. In DAC ’09: Proceedings of the Conference on Design Automation, pages 732–737, 2009.

6 Heiko Falk and Paul Lokuciejewski. A compiler framework for the reduction of worst-case execu-
tion times. Real-Time Systems, pages 1–50, 2010.

7 Joseph A. Fisher, Paolo Faraboschi, and Young Cliff. Embedded Computing: A VLIW Approach to
Architecture, Compilers and Tools. Morgan Kaufmann (Elsevier), 2005.

8 Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The influence
of processor architecture on the design and results of WCET tools. Proceedings of the IEEE,
91(7):1038–1054, Jul. 2003.

9 Benedikt Huber, Wolfgang Puffitsch, and Martin Schoeberl. WCET driven design space exploration
of an object caches. In Proceedings of the 8th International Workshop on Java Technologies for
Real-time and Embedded Systems (JTRES 2010), pages 26–35, New York, NY, USA, 2010. ACM.

10 Raimund Kirner, Peter Puschner, and Adrian Prantl. Transforming flow information during code
optimization for timing analysis. Real-Time Systems, 45(1–2):72–105, June 2010.

11 Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization (CGO’04),
pages 75–88. IEEE Computer Society, 2004.



10 Towards a Time-predictable Dual-Issue Microprocessor: The Patmos Approach

12 Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A. Lee.
Predictable programming on a precision timed architecture. In Erik R. Altman, editor, Proceedings
of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES 2008), pages 137–146, Atlanta, GA, USA, October 2008. ACM.

13 Paul Lokuciejewski, Heiko Falk, and Peter Marwedel. WCET-driven cache-based procedure pos-
itioning optimizations. In The 20th Euromicro Conference on Real-Time Systems (ECRTS 2008),
pages 321–330. IEEE Computer Society, 2008.

14 Jörg Mische, Irakli Guliashvili, Sascha Uhrig, and Theo Ungerer. How to enhance a superscalar
processor to provide hard real-time capable in-order smt. In 23rd International Conference on
Architecture of Computing Systems (ARCS 2010), pages 2–14, University of Augsburg, Germany,
February 2010. Springer.

15 Christof Pitter. Time-predictable memory arbitration for a Java chip-multiprocessor. In Proceed-
ings of the 6th International Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES 2008), 2008.

16 Peter Puschner. Experiments with WCET-oriented programming and the single-path architecture.
In Proc. 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems,
Feb. 2005.

17 Christine Rochange and Pascal Sainrat. Towards designing WCET-predictable processors. In
Proceedings of the 3rd International Workshop on Worst-Case Execution Time Analysis, WCET
2003, pages 87–90, 2003.

18 Martin Schoeberl. A time predictable instruction cache for a Java processor. In On the Move to
Meaningful Internet Systems 2004: Workshop on Java Technologies for Real-Time and Embedded
Systems (JTRES 2004), volume 3292 of LNCS, pages 371–382, Agia Napa, Cyprus, October 2004.
Springer.

19 Martin Schoeberl. A Java processor architecture for embedded real-time systems. Journal of
Systems Architecture, 54/1–2:265–286, 2008.

20 Martin Schoeberl. Time-predictable cache organization. In Proceedings of the First International
Workshop on Software Technologies for Future Dependable Distributed Systems (STFSSD 2009),
pages 11–16, Tokyo, Japan, March 2009. IEEE Computer Society.

21 Martin Schoeberl. Time-predictable computer architecture. EURASIP Journal on Embedded Sys-
tems, vol. 2009, Article ID 758480:17 pages, 2009.

22 Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. Towards time-predictable data caches
for chip-multiprocessors. In Proceedings of the Seventh IFIP Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems (SEUS 2009), number LNCS 5860, pages 180–191.
Springer, November 2009.

23 Lothar Thiele and Reinhard Wilhelm. Design for timing predictability. Real-Time Systems, 28(2-
3):157–177, 2004.

24 Jack Whitham. Real-time Processor Architectures for Worst Case Execution Time Reduction. PhD
thesis, University of York, 2008.

25 Jack Whitham and Neil Audsley. Time-predictable out-of-order execution for hard real-time sys-
tems. IEEE Transactions on Computers, 59(9):1210–1223, 2010.

26 Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Christian
Ferdinand. Memory hierarchies, pipelines, and buses for future architectures in time-critical em-
bedded systems. IEEE Transactions on CAD of Integrated Circuits and Systems, 28(7):966–978,
2009.

27 Wankang Zhao, William Kreahling, David Whalley, Christopher Healy, and Frank Mueller. Im-
proving WCET by applying worst-case path optimizations. Real-Time Systems, 34:129–152, 2006.


	Introduction
	Related Work
	The Architecture of Patmos
	Instruction Set
	Pipeline
	Memory and Caches

	Software Development with Patmos
	WCET-aware Compilation
	Exploiting Patmos' Features

	Evaluation
	Conclusion

