
WCET Driven Design Space Exploration

of an Object Cache

Benedikt Huber
Institute of Computer

Engineering

Vienna University of

Technology

benedikt@vmars.tuwien.ac.at

Wolfgang Puffitsch
Institute of Computer

Engineering

Vienna University of

Technology

wpuffits@mail.tuwien.ac.at

Martin Schoeberl
Department of Informatics and

Mathematical Modeling

Technical University of

Denmark

masca@imm.dtu.dk

ABSTRACT
In order to guarantee that real-time systems meet their timing spec-
ification, static execution time bounds need to be calculated. Not
considering execution time predictability led to architectures which
perform well in the average case, but require very pessimistic as-
sumptions when bounding the worst-case execution time (WCET).

Computer architecture design is driven by simulations of stan-
dard benchmarks estimating the expected average case performance.
The design decisions derived from this design methodology do not
necessarily result in a WCET analysis-friendly design. Aiming
for a time-predictable computer architecture, we propose to em-
ploy WCET analysis techniques for the design space exploration of
processor architectures. We exemplify this approach by a WCET
driven design of a cache for heap allocated objects.

Depending on the main memory properties (latency and band-
width), different cache organizations result in the lowest WCET.
The evaluation reveals that for certain cache configurations, the an-
alyzed hit rate is comparable to the average case hit rate obtained
by measurements. We believe that an early architecture exploration
by means of static timing analysis techniques helps to identify con-
figurations suitable for hard real-time systems.

1. INTRODUCTION
The correctness of (hard) real-time systems depends on whether

they meet their timing specification. In order to provide formal
correctness guarantees, it is hence essential to obtain reliable upper
bounds on the execution time of tasks. Computing the worst-case
execution time (WCET) requires both a precise model of the ar-
chitecture’s timing and static program analysis to build a model of
possible execution traces. As it is usually infeasible to analyze each
execution trace on its own, abstractions of the timing relevant state
of the hardware need to be computed.

Architectures with predictable timing support precise timing anal-
ysis, and consequently allow one to build precise abstractions of
the timing relevant hardware state. Architectural features which
do provide a speedup according to measurements, but which are
intractable to be analyzed precisely, are unfavorable for hard real-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’10 August 19–21, 2010 Prague, Czech Republic
Copyright 2010 ACM 978-1-4503-0122-0/10/08 ...$10.00.

time systems.1 If there is a large gap between the observed and
analyzed execution time, systems need to be over-dimensioned to
provide formal guarantees. This is a waste of resources, not only in
terms of silicon and power, but also in the sense that unnecessarily
complex timing models are difficult to build and verify. Moreover,
if static analysis is not able to provide tight bounds, the chances
that relevant industries accept formal timing verification methods
are decreased.

In order to build predictable architectures, static WCET analysis
should be performed in an early stage of the architecture’s design,
in the same way benchmarks provide guidelines for building archi-
tectures which perform well in average-case measurements. In this
paper, we discuss this methodology on the example of a data cache
designed for predictability, the object cache. Common organiza-
tions of data caches are usually difficult to analyze in a static way.
Standard data caches map the address of a datum to some location
in the cache. But inferring the address of heap-allocated data is
very difficult: The address assigned to an object at creation time
depends on the allocator state and the allocation history. As data
might be shared between threads, the address is not necessarily in
control of the analyzed task. Furthermore, in the presence of a com-
pacting real-time garbage collector, the address is modified during
the object’s lifetime. If the cache line depends on the address, it is
therefore intractable to determine whether fields of distinct objects
are mapped to different cache lines. Consequently, it is hard to find
suitable abstractions for the state of the cache, and to obtain precise
execution time bounds.

References in Java are often thought of as pointers, but are actu-
ally higher-level constructs. The JVM has the freedom to decide on
the implementation and the meaning of a reference. Two different
implementations of object references are common: either directly
pointing to the object store or using an indirection to point to the
object store. This indirection is commonly named handle. With
an indirection, relocation of an object by the garbage collector is
simple, because only a single pointer needs to be updated. With a
direct reference to the store of the object field access is faster, but
relocation of an object needs to update all references to the object.
Early implementations of a JVM used the indirection, but current
optimized JVMs prefer direct pointers. For a real-time JVM, com-
paction of the heap is mandatory and the constant time operation of
updating a single location is preferable.

In this paper, we investigate the design of an object cache that
uses handles as indices into the cache. As the cache is directly

1While any deterministic feature can be modeled accurately, with-
out suitable abstractions the state space becomes too large to ex-
plore every possible behavior. Similar effects occur during testing,
where a large state space makes exhaustive testing impossible.

indexed by handles, the indirection is eliminated on a cache hit.
Handles can be reused when the object they have been pointing
to is garbage. In this case, the corresponding entry in the object
cache has to be invalidated, as otherwise fields of the dead object
would be interpreted as cached fields of the new object. Caching
the translation of an object identifier to the actual object address
is similar to a translation loookahead buffer (TLB) for a virtual
memory system. It can be implemented as part of the object cache
or as a stand alone cache. When the object cache performs well, the
pressure on an efficient translation cache is reduced; only misses in
the object cache need a translation. Caching of this translation is
not the topic of the paper though.

The proposed object cache is fully-associative, which implies
that the cache analysis does not need to know the address of a
handle. How does this organization help to increase predictabil-
ity? Suppose it is known that some method operates on a set of
k ≤ N objects, where N is the associativity of the object cache. The
analysis is now able to infer that within this method, each handle
will be a cache miss at most once. With a standard data cache, in
contrast, this is impossible without knowing the memory address
of each handle.

For the hardware designer, it is important to find a tradeoff be-
tween low resource usage and good performance. For average case
performance, the standard methodology is to build a simulator col-
lecting statistics, and run it on a set of benchmarks covering the
expected use cases. As can be seen from the example of standard
data caches, this will not necessarily lead to an analysis-friendly
design. Therefore, we explore another design methodology in this
paper, using WCET analysis techniques to investigate a good cache
design. This complements the average case statistics collected ear-
lier and presented in a technical report [11].2

The rest of the paper is organized as follows. In the following
two sections background on WCET analysis, data cache splitting
and related work on object caches are described. Section 4 dis-
cusses different organizations of the object cache. Section 5 gives
an introduction data cache analysis for WCET calculation, presents
the static analysis for the object cache and discusses pitfalls in
WCET driven architecture evaluation. Section 6 introduces the
evaluation methodology and presents the set of benchmarks used
to evaluate the object cache. The results of the evaluation as well
as the implications for our data cache design are presented. Sec-
tion 7 concludes the paper.

2. BACKGROUND
Computing the WCET of a piece of code amounts to solving the

problem of maximizing the execution time over all possible initial
hardware states and execution traces. WCET analysis is concerned
with two problems: Identifying the set of instruction sequences
which might be executed at runtime (path analysis), and bounding
the time needed to execute basic blocks (low-level analysis).

As it is usually intractable to enumerate all possible execution
traces, an implicit representation that over-approximates the set of
valid execution paths has to be used. The implicit path enumeration
technique (IPET) [8], restricts the set of valid instruction sequences
paths by imposing linear constraints on the execution frequency of
control flow graph (CFG) edges.

In addition to the representation of all execution traces, the ex-
ecution time of basic blocks is needed to compute the WCET. To
obtain precise timings, the set of possible states of hardware com-
ponents such as the data cache needs to be restricted. In particular,

2A paper for that average case statistics of the object cache, based
partly on the technical report, is under submission.

we need to know how often some access to the cache is a hit or
miss.

The most widespread strategy used to calculate the WCET bound
statically relies on dataflow analysis frameworks and integer linear
programming (ILP). It proceeds in several stages: First, the call
graph and control flow graph (CFG) of the task are reconstructed.
Several dataflow analyses are run to gather information on the type
of objects, values of variables, and loop bounds. This is followed by
an analysis of hardware components, most prominently cache and
pipeline analysis. Given the WCET of each basic block, and a set of
linear constraints restricting the set of feasible execution paths, an
ILP solver is used to find the maximum cost. The maximum cost is
an upper bound for the WCET. The solution to the ILP problem as-
signs each basic block an execution frequency. Therefore, one only
obtains a set of worst-case paths, not one valid execution trace. For
the evaluation of the object cache we adapted the WCET analysis
tool WCA [14].

With respect to caching, memory is usually divided into instruc-
tion memory and data memory. This cache architecture was pro-
posed in the first RISC architectures [6] to resolve the structural
hazard of a pipelined machine where an instruction has to be fetched
concurrently to a memory access. This division enabled WCET
analysis of instruction caches.

In former work we have argued that data caches should be split
into different memory type areas to enable WCET analysis of data
accesses [10, 13]. We have shown that a JVM accesses quite differ-
ent data areas (e.g., the stack, the constant pool, method dispatch
table, class information, and the heap), each with different prop-
erties for the WCET analysis. For some areas, the addresses are
statically known; some areas have type dependent addresses (e.g.,
access to the method table); for heap allocated data the address is
only known at runtime.

When accessing statically unknown addresses, it is impossible
to predict which cache line from one way is affected by the access.
From the analysis’ point of view, a n-way set-associative cache is
reduced to n cache lines when all addresses are unknown. Sim-
pler cache organizations than a fully associative cache are therefore
pointless for the analysis. However, such caches are expensive and
must therefore be kept small. In contrast, accesses to datums with
statically known addresses can be classified as hits or misses even
for simple direct-mapped caches. For such a cache, accessing an
unknown address would void information about all other accesses.
Therefore, splitting the cache simplifies the static analysis and al-
lows for a more precise hit/miss classification. For most data areas
standard cache organizations are a reasonable fit. Only for heap al-
located data we need a special organization – the object cache for
objects and a solution that benefits mainly from spatial locality for
arrays. The WCET analysis driven exploration of the object cache
organization is the topic of this paper.

The object cache is intended for embedded Java processors such
as JOP [9], jamuth [15], or SHAP [20]. Within a hardware imple-
mentation of the Java virtual machine (JVM), it is quite easy to dis-
tinguish between different memory access types. Access to object
fields is performed via bytecodes getfield and putfield; array
accesses have their own bytecode and also accesses to the other
memory areas of a JVM. The instruction set of a standard proces-
sor contains only untyped load and store instructions. In that case a
Java compiler could use the virtual memory mapping to distinguish
between different access types.

3. RELATED WORK
One of the first proposals of an object cache [17] appeared within

the Mushroom project [18]. The Mushroom project investigated
hardware support for Smalltalk-like object oriented systems. The
cache is indexed by a combination of the object identifier (the han-
dle in the Java world) and the field offset. Different combinations,
including xoring of the two fields, are explored to optimize the hit
rate. The most effective generation of the hash function for the
cache index was the xor of the upper offset bits (the lower bits are
used to select the word in the cache line) with the lower object
identifier bits. When considering only the hit rate, caches with a
block size of 32 and 64 bytes perform best. However, under the
assumption of realistic miss penalties, caches with 16 and 32 bytes
lines size result in lower average access times per field access. This
result is a strong argument against just comparing hit rates.

A dedicated cache for heap allocated data is proposed in [16].
Similar to our proposed object cache, the object layout is handle
based. The object reference with the field index is used to address
the cache – it is called virtual address object cache. Cache configu-
rations are evaluated with a simulation in a Java interpreter and the
assumption of 10 ns cycle time of the Java processor and a memory
latency of 70 ns. For different cache configurations (up to 32 KB)
average case field access times between 1.5 and 5 cycles are re-
ported. For most benchmarks the optimal block size was found to
be 64 bytes, which is quite high for the relatively low latency (7
cycles) of the memory system. The proposed object cache is also
used to cache arrays, whereas our object cache is intended for nor-

mal objects only. Array accesses favor a larger block size to benefit
from spatial locality. Object access and array access are quite dif-
ferent from the WCET analysis point of view. The field index for an
object access is statically known, whereas the array index usually
depends on a loop iteration.

Wright et al. propose a cache that can be used as object cache
and as conventional data cache [19]. To support the object cache
mode the instruction set is extended with a few object oriented in-
structions such as load and store of object fields. The object layout
is handle based and the cache line is addressed with a combina-
tion of the object reference (called object ID) and part of the offset
within the object. The main motivation of the object cache mode is
in-cache garbage collection of the youngest generation.

The object caches proposed so far are optimized for average case
performance. It is common to use a hash function by xoring part
of the object identifier with the field offset in order to equally dis-
tribute object within the cache. However, this hash function defeats
WCET analysis of the cache content. In contrast, our proposed ob-
ject cache is designed to maximize the ability to track the cache
state in the WCET analysis.

Design space exploration based on WCET analysis is presented
in [5]. Given a reference application, the best processor and mem-
ory configuration can be selected based on the calculated WCET.
The authors present a simplified version of the aiT WCET anal-
ysis tool to speedup the evaluation. In contrast to this approach,
we do not want to select the best architecture for an application,
but use WCET analysis techniques to provide a detailed analysis of
the object cache performance, aiming to find a suitable design for
embedded hard real-time systems. We use the WCET analysis tool
WCA [14], which supports Java for a Java processor.

4. THE OBJECT CACHE
The object cache architecture is optimized for WCET analysis

instead of average case performance. To track individual cache
lines symbolically, the cache is fully associative. Without know-

ing the address of an object, all cache lines in one way map to a
single line in the analysis. Therefore, the object cache contains
just a single line per way. Instead of mapping blocks of the main
memory to those lines, whole objects are mapped to cache lines.
The index into the cache line is the field index. To compensate for
the resulting small cache size with one cache line per way, we also
explore quite large cache lines. To reduce the resulting large miss
penalty we also consider to fill only the missed word into the cache
line. To track which words of a line contain a valid entry, one valid
bit per word is added to the tag memory.

The object cache is a data cache with cache lines indexed by
unique object identifiers (the Java reference). The object cache is
thus similar to a virtually-addressed cache, except that the cache
index is unique and therefore there are no aliasing issues (differ-
ent object identifiers map to different objects). In our system, the
tag memory contains the pointer to the handle (the Java reference)
instead of the effective address of the object in memory. This sim-
plifies changing the address of an object during the compacting
garbage collection. For a coherent view of the object graph be-
tween the mutator and the garbage collector, the cached address of
an object needs to be updated or invalidated after the move. The
cached fields, however, are not affected by changing the object’s
address, and can stay in the cache. Furthermore, the object cache
reduces the overhead of using handles. If an access is a hit, the cost
for the indirection is zero – the address translation has been already
performed.

The object cache is organized to cache one object per cache line.
If an object needs more space than available in one cache line, fields
with higher indices are not cached. The decision not to cache fields
with higher field indices than words in the cache line simplifies the
tag memory and the hit detection. If we would allow that different
fields of one object can map to the same word in the cache line,
we would need an additional tag entry per field. To compensate
for possible misses with large objects, we explore quite long cache
lines. The cost for the cache line is less then the cost of the tag
memory, as all tags have to be compared in parallel, but the cache
line needs only be read out. For an implementation in an FPGA
this means that the tag memory has to implemented with discrete
registers, but the cache lines can be implemented in standard on-
chip memory blocks.

As objects thus cannot cross cache lines, the number of words
per cache line is one important design decision to be taken. To
avoid that less frequently accessed fields are cached, a compile time
optimization may rearrange the order of object fields. Both bench-
marking results and the results of the static analysis may be used to
classify the access frequency of fields. We investigate two different
behaviors on a cache miss: The first is to fill the whole cache line
on a miss, loading all fields into the cache at once. This might be
attractive if the memory has a longer latency for the first word ac-
cessed. The second option is to only load the missed field, which
requires an additional tag bit for each word. It would also be possi-
ble to consider tradeoffs between these two extremes, e.g., loading
four words on a cache miss, though this is not explored here.

Figure 1 outlines the differences between a fully associative data
cache, and object caches with word and line fill. While the fully
associative cache in Figure 1(a) uses the actual address as tag, the
object caches use the handle. When filling the whole cache line, it
is not necessary to keep the indirection pointer in the cache (Fig-
ure 1(b)). Once an object is cached, the indirection is resolved im-
plicitly. For an object cache with word fill policy (Figure 1(c)), each
word requires a valid flag, and the indirection must also be cached
to allow for efficient loading of words that are not yet cached.

V

V

V

V

VTags

Address

Data

re
p

la
ce

m
e

n
t

valid?

(a) Fully associative cache

V

V

V

V

VTags Data

re
p

la
ce

m
e

n
t

valid?

Handle

(b) Object cache with line fill

V

V V V V

V

V V V V

V

V V V V

V

V V V V

V

re
p
la

ce
m

e
n
t

Tags

Handle

DataIndirection valid?

(c) Object cache with word fill

Figure 1: Comparison of a fully associative cache and object cache variants

For comparison, we also investigate the performance of a field

cache. In this case, cache lines are indexed by both the object
identifier and the index of a field. This kind of a cache needs less
memory space, but a higher associativity to achieve the same per-
formance. As highly-associative caches are expensive, while larger
cache lines are relatively cheap, we did not expect the field cache to
be a viable alternative. However, the field cache, though expensive,
marks the best result achievable with a given cache size, and is thus
a good metric to compare the object cache configurations against.

To simplify static cache analysis we chose to organize the cache
as write through cache. Write back is harder to analyze statically,
as on each possible miss another write back needs to be accounted
for. Furthermore, a write-through cache simplifies the cache co-
herence protocol for a chip multiprocessor (CMP) system [7]. In
the evaluation, we assume that the cache line is not allocated on
a write. Furthermore, synchronization, which usually requires a
cache flush, has not been considered in the evaluation either.

The object cache is only used for objects and not for arrays. This
is because arrays tend to be larger than objects, and their access
behavior rather exposes spatial locality, in contrast to the temporal
locality of accesses observed for objects. Therefore, we believe that
a cache organized as a small set of prefetch buffers is more adequate
for array data. As on the one hand arrays use a different set of
bytecodes and are thus distinguishable from ordinary objects, but
on the other hand have a structure similar to objects, this decision
does not restrict our choices for further exploration.

5. DATA CACHE ANALYSIS
The challenge in many static program analyses is to find a way

to merge information from different paths in a precise yet effi-
cient way. For caches, this amounts to taking the union of data
that may be in the cache, and the intersection of data that must
be in the cache. If the address of a datum accessed is known, the
analysis is able to infer that after accessing it, one known cache
line will change, and all others will remain unchanged. For in-
struction caches, the cache block accessed at some instruction is
always known statically. Intuitively, this is the reason that classify-
ing whether some cache access is a cache hit or a cache miss works
quite well for instruction caches.

If one out of a set of possible memory addresses is potentially
accessed by an instruction, the analysis has to assume that more
than one cache line is affected. More importantly, it is unknown to
the analysis which cache line contains the data after the cache has
been updated. Therefore, if it cannot be shown that all of the ad-
dresses accessed have been in the cache before, the analysis cannot
classify an access to a datum with unknown address as cache hit.

For data cache accesses, the address accessed cannot always be
determined precisely. Consequently, a hit or miss classification of
cache accesses does not work well here. Instead, a persistence anal-
ysis [3] should be used for data caches. An access is locally persis-

tent within some scope (program fragment, e.g. basic block, loop
or method), if the access might be a cache miss the first time, and
from there on is guarantueed to be a cache hit. For fully-associative
caches using a first-in first-out (FIFO) replacement strategy, persis-
tence is slightly weaker. For FIFO replacement, cache accesses can
be classified as miss once, i.e. one cache access, though not neces-
sarily the first one, will be a cache miss.

5.1 Object Cache Analysis
The details of the object cache analysis are not the focus of this

paper, but some insights into its workings are necessary to inter-
pret the evaluation results. As a consequence of the fact that the
dataflow analysis abstracts the actual program, we do not always
know the exact object a variable points to, but only have a set of
objects the variable may point to at hand. Therefore, we perform
a persistence analysis instead of a hit/miss classification, and try
to identify scopes where accesses to an object are persistent. A
particularly simple criteria for persistency in an object cache with
associativity N is that at most N distinct objects are accessed within
one scope. The main challenge for the analysis is thus to identify
the number of distinct objects possibly accessed in a scope.

With this form of persistence analysis it is irrelevant if the re-
placement policy is LRU or FIFO. With classic cache analysis,
FIFO replacement results in less hit classifications than LRU re-
placement [4].

In our analysis framework, we first perform a context sensitive
receiver type analysis, which computes an approximation to the set
of virtual methods possibly invoked at some instruction. Next, we

perform a value analysis, which tries to restrict the set of possi-
ble values of (integer) variables, and a loop bound analysis, which
restricts the number of loop iterations.

For the object cache analysis, we perform a symbolic Points-

To analysis for each program fragment of interest. The analysis
assigns a set of object names to each use site of a variable with
reference type. The name of an object is represented by an ac-
cess path [2], consisting of a root name, and a sequence of field
names. The root names used in the analysis of a virtual method
scope include the implicit this parameter, the names of the refer-
ence type parameters passed to the method, and the names of all
static fields with reference type that may be accessed when execut-
ing the method. The effect of a getfield instruction is to append
the accessed field to the access paths assigned to the receiver ob-
ject. For an aaload instruction, which loads a reference from an
array, the access paths are modified depending on the possible val-
ues of the index in the analyzed scope. Examples of access paths
thus include this, this.f1.f2 and staticField.f1[0]. The
special name �, denoting the union of all names, is assigned to an
object if either the analysis is not able to infer a meaningful set of
object names, or the number of names exceeds a fixed threshold.

Objects allocated within the analyzed scope are assigned a unique
name depending on the allocation site, if the corresponding new in-
struction is only executed once in the the analyzed scope. Other-
wise, � is assigned as object name. One complicating factor are
aastore instructions and putfield instructions with reference
type, as they might change the object corresponding to one or more
access paths. To this end, the analysis maintains alias sets, which
are modified by aastore / putfield instructions, and merged into
the set of possible access paths associated with an object. The set
of objects affected by these instruction is currently computed based
on the object’s type. Finally note that the analysis is local, i.e. the
analysis results depend on the scope the analysis acts on.

Given the results of the object reference analysis, the next task is
to find out how many distinct objects are accessed within one scope.
This is another optimization problem solvable using IPET: Maxi-
mize the number of field accesses, with the constraint that each
object is accessed at most once. If this number can be shown to be
less than the associativity of the cache, the scope is a persistence
region: Each handle access will be a cache miss at the first access
only (LRU cache) or at most one miss (FIFO replacement). This
knowledge is included in the timing model by adding pseudo CFG
nodes modeling the cache misses, and constraints restricting the
execution frequency of this cache miss nodes.

Though the object reference analysis is more localized and easier
than an address analysis, it has its weaknesses, as does every static
analysis. In this case, the problems concern the positive effects of
aliasing on the object cache performance. If two different access
path are known to always point at the same object, they will map to
the same cache line. A typical example is a tree-like data structure
with both children and parent references. We believe that taking the
results of a must-alias analysis into account should help to improve
the analyzed hit rate for this examples. In general, however, it is
intractable to always determine precise must alias information.

5.2 Possible Pitfalls in WCET Analysis Based
Architecture Evaluation

There is an important difference between exploring the timing of
an architecture using average case benchmarking and worst-case
timing analysis. For a given machine code representation of a
benchmark, timings obtained for different architectures all relate
to the same instruction sequence. Even when using different com-
pilers for different architectures, the frequency of different instruc-

tions and cache access patterns stays roughly the same. WCET
analysis, however, computes the maximum time the benchmark
needs on any path. As a consequence, changing one timing param-
eter of the architecture does not only change the WCET, but may
also lead to a completely different worst-case path. This may cause
the designer to draw the wrong conclusions when investigating one
component of the architecture, e.g. the data cache.

As an example, consider investigating a set-associative instruc-
tion cache by means of WCET analysis. For one particular bench-
mark and a given associativity, assume there are two execution
traces with roughly the same WCET. On one path, cache miss costs
due to cache conflicts make up a significant fraction of the WCET,
while in the second one, cache costs do not influence the WCET at
all.

Increasing the associativity of the cache, to a lower the number
of cache conflicts, the first path will become significantly cheaper
to execute. But the WCET will stay roughly the same, as the sec-
ond path is now the dominating worst-case path. The designer
might conclude that increasing the associativity has little effect on
the execution time, if she is not aware that the worst-case path has
changed. In general, while absolute comparisons (X is better than

Y) are valid, relative comparisons (X is twice as good as Y) have
to be analyzed carefully to avoid drawing wrong conclusions. This
problem is well known amongst computer architecture designers
aiming to minimize the worst-case timing delay in chip designs,
but does not occur in simulation-based architecture evaluation.

We investigate the cache on its own, isolating it as far as possible
from other characteristics of the target. Therefore, we do not suffer
from the problem that a different worst-case path changes the rela-
tive contribution of e.g. arithmetic to load/store instructions. Still,
it should be kept in mind that switching the worst-case path might
distort relative comparisons.

As the analysis assumes the worst possible cache state when en-
tering a scope, embedding the scope in a larger context cannot in-
crease the costs for object accesses. Consider the case where an
object is accessed only once within a scope. The analysis then has
to assume a cache miss within this scope. However, when embed-
ding the scope in a larger context, it may be possibly to classify this
access as cache hit, because the object may have been accessed in
the larger context.

6. DESIGN SPACE EXPLORATION
The WCET analysis results will guide the design of the object

cache. In the following section the evaluation methodology is ex-
plained and different cache organizations are analyzed with five dif-
ferent embedded Java benchmarks.

6.1 Evaluation Methodology
For the evaluation of the object cache we consider several differ-

ent system configurations: (1) the main memory is varied between
a fast SRAM memory and a SDRAM memory with a higher la-
tency; (2) uniprocessor and a 8 core chip-multiprocessor are con-
sidered. Finally we explore the difference between single word and
full cache line loads on a cache miss. To compare the WCET analy-
sis results with average case measurements the same configurations
as in [11] are used.

The best cache configuration is dependent on the properties of
the next level in the memory hierarchy. Longer latencies favor
longer cache lines to spread the latency over possible hits due to
spatial locality. Therefore, we evaluate two different memory con-
figuration that are common in embedded systems: static memory
(SRAM) and synchronous DRAM (SDRAM). For the SRAM con-
figuration we assume a latency of two cycles for a 32 bit word read

Table 1: Miss penalty for a memory read operation in clock
cycles

8 core CMP

1 CPU min. max.

SRAM 1w 2 2 17
SRAM 2w 4 4 35
SRAM 4w 8 8 71
SDRAM 1w 12 12 107
SDRAM 2w 14 14 125
SDRAM 4w 18 18 162

access. As an example of the SDRAM we select the IS42S16160B,
the memory chip that is used on the Altera DE2-70 FPGA board.
The latency for a read, including the latency in the memory con-
troller, is assumed to be 10 cycles. The maximum burst length is 8
locations. As the memory interface is 16 bit, four 32 bit words can
be read in 8 clock cycles. The resulting miss penalty for a single
word read is 12 clock cycles, for a burst of 4 words 18 clock cycles.
For longer cache lines the SDRAM can be used in page burst mode.
With page burst mode, up to a whole page can be transferred in one
burst. For shorter bursts the transfer has to be explicitly stopped by
the memory controller. We assume the same latency of 10 clock
cycles in the page burst mode.

Furthermore, a single processor configuration and a CMP config-
uration of 8 processor cores are compared. The CMP configuration
is according to an implementation of a JOP CMP system on the
Altera DE2-70 board. As shared caches severly complicate cache
analysis (or even make it impossible), each core is assumed to have
its own object cache. The memory access is arbitrated in TDMA
mode with a minimum slot length s to fulfill a read request accord-
ing to the cache line length. For n CPUs the TDMA round is n× s

cycles. The effective access time depends on the phasing between
the access request and the TDMA schedule. In the best case, the ac-
cess is requested at the begin of the slot for the CPU and is tmin = s

cycles. In the worst case, the request is issued just in the second
cycle of the slot and the CPU has to wait a full TDMA round till
the start of the next slot:

tmax = n× s−1+ s = (n+1)× s−1

In contrast to [11] we use the worst-case access time for the miss
penalty. Table 1 shows the memory access times (miss penalty) for
the different configurations.

6.2 The Benchmarks
For the evaluation of different object cache configurations we

used five different benchmarks. Lift is a tiny, but real world, em-
bedded application. It controls a lift in an automation factory. The
next two benchmarks have two different implementations of JOP’s
TCP/IP stack at their core. Both UdpIp and Ejip are artificial clien-
t/server applications exchanging data via the TCP/IP stack. Al-
though the client and server code are artificial, the TCP/IP stack,
which contains most of the code, is also used in industrial applica-
tions. The benchmarks are part of the embedded Java benchmark
JemBench [12].

The fourth application we use, the trading benchmark, is based
on the demo application presented in [1].3 It emulates a finan-
cial transaction system, which must react to market changes within

3We thank Eric Bruno and Greg Bollella for open-sourcing this
demo application. It is available at http://www.ericbruno.com.

a bounded amount of time. One thread receives the market up-
dates, while a second thread continuously checks whether any sell
or buy orders should be placed. For the evaluation, we chose the
method OrderManager.checkForTrade(), which performs the
core functionality of the trader thread.

The final application (Cruise Control) chosen for evaluation is a
cruise control that controls the throttle and brake of a simple car
model. The application reads speed sensor messages from each
wheel and target speed messages from a higher-level control sys-
tem. One thread per wheel filters the speed messages. A speed
manager thread fuses the filtered wheel speeds and provides the
current speed and the target speed to the actual control algorithm.
The thread to dispatch messages to the individual threads for fur-
ther processing is the most interesting thread for our analysis, as it
accesses a number of objects while parsing the raw message and
translating it to an internal representation.

6.3 Evaluation
Figures 2–6 illustrate the miss penalty per field access as derived

from the WCET analysis. The horizontal axis is labeled with the as-
sociativity of the cache configuration. N0 is the cache miss penalty
if no cache is used at all, Nk groups samples with associativity k.
Different colors of the bars correspond to different cache line con-
figurations. Cache configurations with a line size of j words are
denoted by L j. The suffix − f ill indicates that full line fill was as-
sumed.

Table 2 displays the detailed analysis results for the UDP/IP
benchmark. To save space, only the most interesting results of one
table are included here. The complete tables are available in an
accompanying technical report [11]. The results are shown for a
cache configuration with single word fill on a miss, complete line
fill on a miss, and as a reference a cache configuration for single
words, as we have presented it in [13].

From the results we can see that the maximum analyzable hit rate
without line fill is between 46 % and 93 % [11]. This hit rate can
be achieved with a moderate associativity between 2 and 16 way,
depending on the program.

When the cache is configured with full line fill the hit rate nat-
urally is increased as some fields that are later used will be loaded
on the line fill. Longer lines result in higher hit rates. However, the
miss penalty also increases and so the miss cycles per field access.
The best configuration depends on the relation between latency and
bandwidth of the main memory. For a main memory with a short
latency, as represented by the SRAM configuration, individual field
loads on a miss give a better miss cycles per access rate than filling
the whole cache line.

For the SDRAM memory the optimal line size and whether in-
dividual fields should be filled is not so clear. There is at least one
configuration for every benchmark, where a line fill configuration
with 8 to 32 bytes per line (depending on the benchmark) performs
better than the individual field fill. However, there is no single line
size, which gives better results on line fill than on word fill for all
benchmarks. Moreover, the performance gained using the optimal
line fill configuration is relatively small. Choosing the line size op-
timal for one benchmark, results in a higher miss penalty for other
benchmarks than using a word fill configuration. This result is a
little bit different from average-case measurements with DaCapo
application benchmarks [11]. With the DaCapo benchmarks single
field fill was always more efficient than loading whole cache lines,
which indicates only small spatial locality in heap allocated objects.
For these reasons, we lean slightly towards filling only individual
fields even with a SDRAM main memory.

7. CONCLUSION
In this paper, we discussed the use of WCET analysis techniques

for computer architecture exploration. Using static timing analysis
in an early design stage helps to identify whether it will be possible
to derive precise execution time bounds. For real-time systems, it
is therefore a good complement to simulation based evaluation.

We have applied this approach to the design of the object cache,
a data cache for heap allocated objects. The results have been com-
parable to the results obtained using simulations before, indicating
that the cache design indeed enables precise WCET analysis.

We have evaluated different object cache configurations with five
non-trivial application benchmarks and it is possible to analyze
guaranteed hits between 46 % and 93 %. The results with a high
latency memory show that object field accesses have a low spa-
tial locality. The hits came mainly from temporal locality. Only
some dedicated cache line sizes benefit from a full line fill, but not
a single configuration works well for all benchmarks. Therefore,
we argue to better fill only individual words on a miss and provide
long cache lines to fill most of the object fields.

We believe that applying WCET analysis techniques to evalu-
ate computer architecture features is worth the effort. We will use
the insights obtained so far for the implementation of JOP’s split
cache architecture. We will further investigate the potential and
shortcomings of this technique, and plan to apply it to obtain quan-
titative comparisons of other components.

Acknowledgements
The research leading to these results has received funding from the
European Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement number 216682 (JEOPARD) and 214373
(Artist Design).

8. REFERENCES
[1] Eric J. Bruno and Greg Bollella. Real-Time Java

Programming: With Java RTS. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2009.

[2] A. Deutsch. A storeless model of aliasing and its abstractions
using finite representations of right-regular equivalence
relations. In Computer Languages, 1992., Proceedings of the

1992 International Conference on, pages 2–13, Apr 1992.
[3] Christian Ferdinand and Reinhard Wilhelm. On predicting

data cache behavior for real-time systems. In LCTES ’98:

Proceedings of the ACM SIGPLAN Workshop on Languages,

Compilers, and Tools for Embedded Systems, pages 16–30,
London, UK, 1998. Springer-Verlag.

[4] Daniel Grund and Jan Reineke. Precise and efficient
FIFO-replacement analysis based on static phase detection.
In Proceedings of the 22nd Euromicro Conference on

Real-Time Systems (ECRTS 2010), July 2010.
[5] Stefana Nenova and Daniel Kästner. Worst-case timing

estimation and architecture exploration in early design
phases. In Niklas Holsti, editor, 9th Intl. Workshop on

Worst-Case Execution Time (WCET) Analysis, Dagstuhl,
Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany.

[6] David A. Patterson. Reduced instruction set computers.
Commun. ACM, 28(1):8–21, 1985.

[7] Wolfgang Puffitsch. Data caching, garbage collection, and
the Java memory model. In Proceedings of the 7th

International Workshop on Java Technologies for Real-Time

and Embedded Systems (JTRES 2009), pages 90–99, New
York, NY, USA, 2009. ACM.

[8] Peter Puschner and Anton Schedl. Computing maximum task
execution times – a graph-based approach. Journal of

Real-Time Systems, 13(1):67–91, Jul. 1997.
[9] Martin Schoeberl. A Java processor architecture for

embedded real-time systems. Journal of Systems

Architecture, 54/1–2:265–286, 2008.
[10] Martin Schoeberl. Time-predictable cache organization. In

Proceedings of the First International Workshop on Software

Technologies for Future Dependable Distributed Systems

(STFSSD 2009), pages 11–16, Tokyo, Japan, March 2009.
IEEE Computer Society.

[11] Martin Schoeberl, Benedikt Huber, Walter Binder, Wolfgang
Puffitsch, and Alex Villazon. Object cache evaluation.
Technical report, Technical University of Denmark, 2010.

[12] Martin Schoeberl, Thomas B. Preusser, and Sascha Uhrig.
The embedded Java benchmark suite JemBench. In
Proceedings of the 8th International Workshop on Java

Technologies for Real-time and Embedded Systems (JTRES

2010), Prague, Czech Republic, August 2010. ACM Press.
[13] Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber.

Towards time-predictable data caches for
chip-multiprocessors. In Proceedings of the Seventh IFIP

Workshop on Software Technologies for Future Embedded

and Ubiquitous Systems (SEUS 2009), number LNCS 5860,
pages 180–191. Springer, November 2009.

[14] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev
Pedersen, and Benedikt Huber. Worst-case execution time
analysis for a Java processor. Software: Practice and

Experience, 40/6:507–542, 2010.
[15] Sascha Uhrig and Jörg Wiese. jamuth: an IP processor core

for embedded Java real-time systems. In Proceedings of the

5th International Workshop on Java Technologies for

Real-time and Embedded Systems (JTRES 2007), pages
230–237, New York, NY, USA, 2007. ACM Press.

[16] N. Vijaykrishnan and N. Ranganathan. Supporting object
accesses in a Java processor. Computers and Digital

Techniques, IEE Proceedings-, 147(6):435–443, 2000.
[17] Ifor Williams and Mario Wolczko. An object-based memory

architecture. In Proceedings of the Fourth International

Workshop on Persistent Object Systems, pages 114–130,
Martha’s Vineyard, MA (USA), September 1990.

[18] Ifor W. Williams. Object-Based Memory Architecture. PhD
thesis, Department of Computer Science, University of
Manchester, 1989.

[19] Greg Wright, Matthew L. Seidl, and Mario Wolczko. An
object-aware memory architecture. Sci. Comput. Program,
62(2):145–163, 2006.

[20] Martin Zabel, Thomas B. Preusser, Peter Reichel, and
Rainer G. Spallek. Secure, real-time and multi-threaded
general-purpose embedded Java microarchitecture. In
Prceedings of the 10th Euromicro Conference on Digital

System Design Architectures, Methods and Tools (DSD

2007), pages 59–62, Lübeck, Germany, Aug. 2007.

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0.
0

0.
5

1.
0

1.
5

2.
0

L4
L8
L16
L32

(a) SRAM, word fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
2

4
6

8
10

12

L4
L8
L16
L32
L4−fill
L8−fill
L16−fill
L32−fill

(b) SDRAM, word and line fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
50

10
0

15
0 L4

L8
L16
L32
L4−fill
L8−fill
L16−fill
L32−fill

(c) SDRAM / 8-core CMP, word and line fill

Figure 2: Lift benchmark

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0.
0

0.
5

1.
0

1.
5

2.
0

L4
L8
L16
L32

(a) SRAM, word fill

N0 N2 N4
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
5

10
15 L4

L8
L16
L32
L4−fill
L8−fill
L16−fill
L32−fill

(b) SDRAM, word and line fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
50

10
0

15
0

20
0

L4
L8
L16
L32
L4−fill
L8−fill
L16−fill
L32−fill

(c) SDRAM / 8-core CMP, word and line fill

Figure 3: UDP/IP benchmark

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0.
0

0.
5

1.
0

1.
5

2.
0

L4
L8
L16
L32

(a) SRAM, word fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
5

10
15

20
25

L4
L8
L16
L4−fill
L8−fill
L16−fill

(b) SDRAM, word and line fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
10

0
20

0
30

0
40

0

L4
L8
L16
L4−fill
L8−fill
L16−fill

(c) SDRAM / CMP, word and line fill

Figure 4: EJIP benchmark

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0.
0

0.
5

1.
0

1.
5

2.
0

L4
L8
L16
L32

(a) SRAM, word fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
2

4
6

8
10

12
14

L4
L8
L16
L32
L4−fill
L8−fill
L16−fill
L32−fill

(b) SDRAM, word and line fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
50

10
0

15
0

20
0

L4
L8
L16
L32
L4−fill
L8−fill
L16−fill
L32−fill

(c) SDRAM / CMP, word and line fill

Figure 5: Order Manager benchmark

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0.
0

0.
5

1.
0

1.
5

2.
0

L4
L8
L16

(a) SRAM, word fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
2

4
6

8
10

12

L4
L8
L16
L4−fill
L8−fill
L16−fill

(b) SDRAM, word and line fill

N0 N2 N4 N8
Associativity

C
ac

he
 M

is
s

C
yc

le
s

0
50

10
0

15
0 L4

L8
L16
L4−fill
L8−fill
L16−fill

(c) SDRAM / CMP, word and line fill

Figure 6: Cruise Control Benchmark

Table 2: Object cache hit rate and miss penalty per field access for the UDP/IP benchmark.
Field access cost per access

Cache Uniprocessor 8 core CMP

Type Size Line Assoc. Hit rate SRAM SDRAM SRAM SDRAM

word fill 0 B 128 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 0.00 % 2.00 12.00 17.00 161.00
8 B 8 B 1 way 25.00 % 1.50 9.00 12.75 120.75

16 B 16 B 1 way 58.33 % 0.83 5.00 7.08 67.08
32 B 32 B 1 way 54.17 % 0.92 5.50 7.79 73.79
64 B 64 B 1 way 54.17 % 0.92 5.50 7.79 73.79
8 B 4 B 2 way 2.08 % 1.96 11.75 16.65 157.65

16 B 8 B 2 way 27.08 % 1.46 8.75 12.40 117.40
32 B 16 B 2 way 60.42 % 0.79 4.75 6.73 63.73
64 B 32 B 2 way 62.50 % 0.75 4.50 6.38 60.38

128 B 64 B 2 way 62.50 % 0.75 4.50 6.38 60.38
16 B 4 B 4 way 2.08 % 1.96 11.75 16.65 157.65
32 B 8 B 4 way 27.08 % 1.46 8.75 12.40 117.40
64 B 16 B 4 way 60.42 % 0.79 4.75 6.73 63.73

128 B 32 B 4 way 66.67 % 0.67 4.00 5.67 53.67
256 B 64 B 4 way 66.67 % 0.67 4.00 5.67 53.67

line fill 0 B 128 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 0.00 % 2.00 12.00 17.00 161.00
8 B 8 B 1 way 29.17 % 1.75 8.83 14.71 114.04

16 B 16 B 1 way 70.83 % 1.58 4.50 12.96 46.96
32 B 32 B 1 way 66.67 % 5.33 8.67 43.00 101.67
64 B 64 B 1 way 66.67 % 10.67 14.00 85.67 197.67
8 B 4 B 2 way 2.08 % 1.96 11.75 16.65 157.65

16 B 8 B 2 way 31.25 % 1.54 8.42 13.02 110.69
32 B 16 B 2 way 72.92 % 1.04 3.75 8.60 43.60
64 B 32 B 2 way 79.17 % 3.33 5.42 26.88 63.54

256 B 128 B 2 way 79.17 % 13.33 15.42 106.88 243.54
16 B 4 B 4 way 2.08 % 1.96 11.75 16.65 157.65
32 B 8 B 4 way 31.25 % 1.54 8.42 13.02 110.69
64 B 16 B 4 way 72.92 % 1.04 3.75 8.60 43.60

256 B 64 B 4 way 83.33 % 5.33 7.00 42.83 98.83
512 B 128 B 4 way 83.33 % 10.67 12.33 85.50 194.83

single field 0 B 4 B 0 way 0.00 % 2.00 12.00 17.00 161.00
4 B 4 B 1 way 0.00 % 2.00 12.00 17.00 161.00
8 B 4 B 2 way 4.17 % 1.92 11.50 16.29 154.29

16 B 4 B 4 way 62.50 % 0.75 4.50 6.38 60.38
32 B 4 B 8 way 66.67 % 0.67 4.00 5.67 53.67
64 B 4 B 16 way 66.67 % 0.67 4.00 5.67 53.67

