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Abstract
To derive safe bounds on worst-case execution times (WCETs), all components of a computer
system need to be time-predictable: the processor pipeline, the caches, the memory controller,
and memory arbitration on a multicore processor. This paper presents a solution for time-
predictable memory arbitration and access for chip-multiprocessors. The memory network-on-
chip is organized as a tree with time-division multiplexing (TDM) of accesses to the shared
memory. The TDM based arbitration completely decouples processor cores and allows WCET
analysis of the memory accesses on individual cores without considering the tasks on the other
cores. Furthermore, we perform local, distributed arbitration according to the global TDM
schedule. This solution avoids a central arbiter and scales to a large number of processors.
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1 Introduction

The trend in processor design is to increase performance by including more and more pro-
cessing cores in a single chip. This has been accompanied by a shift from bus-based in-
terconnects to some form of packet switched networks-on-chip (NoC), because chip-wide
single-cycle communication has become infeasible. Typically the on-chip processors share
an external memory for large shared data structures and for program code. A dedicated
NoC is often used for this communication. The NoC and the shared memory are shared
resources and in general purpose processors they are a source of timing interferences between
tasks executing on different processor cores.

To enable static worst-case execution time (WCET) analysis of applications executing
on a multicore processor, both the individual processor cores and the shared memory system
(including the NoC) need to be time-predictable [19]. This paper presents the design for
timing predictability of the memory interconnect for a chip-multiprocessor. The presented
memory system offers time-composability where the execution times of different tasks exe-
cuting on different processor cores are independent of each other.

Figure 1 shows the multicore platform, as it is developed in the T-CREST project.
Several processor cores, the Patmos processors [22], are connected to two NoCs: (1) a core
NoC for message passing between processor-local scratchpad memories [7, 21, 24], and (2)
a memory NoC – the focus of this paper – that connects all processor cores to the shared,
external memory via the memory controller.

The main idea of the presented design is to use TDM scheduling from end to end,
such that read or write transactions towards the shared memory are transmitted from the

© Martin Schoeberl, David VH Chong, Wolfgang Puffitsch, and Jens Sparsø;
licensed under Creative Commons License CC-BY

14th International Workshop on Worst-Case Execution Time Analysis (WCET 2014).
Editor: Heiko Falk; pp. 53–62

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2014.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


54 A Time-predictable Memory Network-on-Chip

Multicore

Processor
core

Processor
core

Processor
core

Processor
core

Memory
controller

Core-to-core NoC

Memory NoC

Memory

Figure 1 Multicore architecture with several processor cores connected to two NoCs: one for
core-to-core message passing and one for access to the shared, external memory.

initiating processor core to the memory without any dynamic arbitration or buffering. Only
the processor-local memories (caches and/or scratchpad-memories) buffer any data. By
injecting transactions according to a global schedule, they can be propagated in a pipelined
fashion even without flow control. The TDM slots and the TDM schedule are defined by
the sequence of equally sized read or write transactions towards the memory.

Compared to implementations that use source rate control and dynamic arbitration, the
use of TDM results in both a simple hardware implementation and a straightforward WCET
analysis. Furthermore, executing this global TDM schedule distributed at the processor cores
results in distributed arbitration that scales well with increased number of processor cores.
Compared to other TDM memory arbiters we consider pipelining in the design and account
for the pipeline delays in the timing parameters. This is the contribution of the paper.

The paper is organized in 6 sections: Section 2 presents related work. Section 3 presents
the design of the memory NoC and Section 4 the resulting timing of memory transactions
and TDM slotting. Section 5 presents the implementation and evaluation of the memory
NoC in an FPGA. Section 6 concludes.

2 Related Work

The design of time-predictable multicore systems is attracting increasing interest. Cullman
et al. discusses some high-level design guidelines [3]. To simplify WCET analysis (or even
make it feasible) the architecture shall be timing compositional. That means that the archi-
tecture has no timing anomalies or unbounded timing effects [12]. The Patmos processor,
used in the proposed time-predictable multicore, fulfills those properties. For multicore sys-
tems the authors of [3] argue for bounded access delays on shared resources. This is in our
opinion best fulfilled by a TDM based arbitration scheme, as presented in this paper.

From a structural point of view, communication between processor cores and external
memory is different from inter-core communication. While the former follows a many-to-one
communication pattern, the latter requires many-to-many communication. Consequently,
approaches to make many-to-many communication predictable [5, 13, 24] are not directly
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comparable to the work presented in this paper.
The proposed memory NoC is similar to “mesh-of-trees” NoCs [2,17] with a single tree.

These NoCs perform 2:1 arbitration in the nodes of the trees such that a request that is
blocked by a request on the other input will win arbitration in the next cycle. Therefore,
arbitration follows a distributed round-robin scheme.

Different arbitration schemes for a time-predictable memory access of a processor and
a video controller are evaluated in [15]. The work has been extended to build a time-
predictable multicore version of the Java processor JOP [16]. A TDM based memory ar-
bitration is used and the WCET of individual bytecodes of the Java processor take the
possible positions within the TDM schedule into account. Therefore, some latency intro-
duced by TDM arbitration can be hidden. In contrast to our distributed TDM memory
arbiter, the JOP TDM arbiter was designed to include the read response within the TDM
slot. This design limits the possibility to pipeline the arbiter.

The initial memory connection in the T-CREST project is the so-called Bluetree [6].
Bluetree is a tree of 2:1 multiplexers where the default behavior is that one of the inputs has
priority over the other. To avoid starvation of the lower priority input, a counter controls the
maximum number of priority messages when a low priority message is pending. This design
is optimized to deliver good average-case performance and guarantee worst-case responses.
Compared to the Bluetree, our design is not work conserving, but has a shorter worst-case
latency guarantee, considering all other parameters the same.

An approach close to our work is presented in [18]. The proposed multicore system is
also intended for tasks according to the simple task model [9]. The local cache loading for
the processor cores is performed from a shared main memory. Similar to our approach, a
TDM based memory arbitration is used.

The memory wheel of the PRET architecture [11] is also a form of TDM arbitration.
PRET’s memory wheel arbitrates between the six hardware threads of processor rather than
between different processor cores. Therefore, scalability is not a major concern.

Gomony at al. argue for coupling the NoC TDM slotting with the TDM arbitration
within a memory controller [4]. This is in line with our argument. However, compared to
their design we completely avoid buffering in the NoC and in the memory controller.

Schranzhofer et al. [23] present a timing analysis for TDM arbitration. They model the
case where memory accesses are allowed only at the beginning and end of a task, the case
where accesses are allowed at any time, and a hybrid of these two cases. Kelter et al. [8] also
present a timing analysis for TDM arbitration. They compare several variants that trade off
precision and analysis effort. They find that their approach can lead to significantly lower
WCETs for timing-composable systems than for non-composable systems.

Most TDM based designs consider equal slots for all processor cores. However, it is easy
to envision a schedule where some cores get more than one slot per TDM period. One can
optimize this allocation with the WCET of the individual tasks running on the different
processor cores. However, it has been shown that this rather coarse grain optimization is
not very efficient [25].

3 Memory Network-on-Chip Design

Figure 2 shows the memory NoC design. As this NoC serves a many-to-one communication
flow between several processor cores and a single memory controller, it is organized as a
tree. Each processor core is connected via a standard interface, the open core protocol
(OCP) [14], to the network interface (NI). The NIs are connected by a tree of merge circuits
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Figure 2 The distributed TDM based memory NoC.

downstream towards the memory interface (MI) and back upstream for the return data. The
MI is connected to the on-chip memory controller, which itself is connected to the external
memory.

The memory NoC supports burst read and write transactions. For single word/byte
writes, write enable signals for individual bytes are supported. When the external memory
is a DRAM device that needs refresh, a refresh circuit is added to the memory NoC at
the same level as a processor core. Therefore, refresh consumes one TDM slot, but has no
further influence on the memory access timing.

Each core local NI executes the core relevant part of the global TDM schedule. When
the time slot for a core arrives and a memory transaction is pending, the NI acknowledges
the transaction to the processor core and the transaction data freely flows down the network
tree. No flow control, arbitration, or buffering (except pipeline registers to improve clock
frequency) is performed along the downstream path. The memory request arrives at the MI
and is translated back to an OCP transaction request to the memory controller. Here OCP
handshaking is generated, but the TDM schedule is organized such that it is guaranteed
that the memory controller and the memory are ready to accept the transaction.

On a read transaction, the result is returned from the memory to the memory controller
and from there back upstream to the processor cores. The returning to the processor cores
can be a simple broadcast to all processors, which itself can be pipelined. Alternatively, it
can be organized as a broadcast tree as shown in Figure 2. Due to the pipelining, several
read requests might be on the fly in the memory NoC, memory controller, and memory.
Therefore, a processor might see a read return from a former read request by a different
processor after sending the read request.

To identify the correct return data there are two possibilities: (1) either tag the memory
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Table 1 Timing parameters for the memory interface, the memory controller, and the memory
NoC.

Parameter Meaning

tb Burst transfer length
tr2b Read command to read burst delay
tb2e Write burst to command end delay
trd = tr2b + tb Read transaction timing (at the memory interface)
twr = tb + tb2e Write transaction timing (at the memory interface)
tctrlrd, tctrlwr Non-pipelinable time delays in the memory controller
tslot = max(trd + tctrlrd, twr + tctrlwr) Minimum slot length

N Number of processor cores
T = N × tslot TDM period (with equal memory bandwidth)
Ldown Memory NoC and controller downstream latency
Lup Memory NoC and controller upstream latency

twcrd = T − 1 + Ldown + tslot + Lup Worst-case read transaction time
twcwr = T − 1 + tslot Worst-case write transaction time
tbcrd = Ldown + tslot + Lup Best-case read transaction time
tbcwr = tslot Best-case write transaction time

transaction with the core number or (2) use time to distinguish between the early and false
and the correct read responses. With a tagged transaction and pipelining in the memory
controller and memory, the memory controller needs to organize a short queue of the tags of
outstanding read requests. As a positive side effect, this information can be used to send the
return information only to the originally requesting processor core along the upstream tree,
saving power in the other paths. Using time to distinguish between read returns is possible
with the static TDM schedule and simple to implement in the local NI. The NI knows the
latency for the read request and simply ignores any receiving data until this latency has
passed.

For a write transaction there are two options for the handshake between the processor
core and the memory NoC: (1) just post the write data and generate the write acknowl-
edgement locally or (2) wait for the write and the write acknowledgment from the memory
controller. Just posting the write lets the processor pipeline continue to execute code and
hides the memory NoC latency. As the memory NoC does not reorder any memory transac-
tions there is no issue with memory consistency. If the memory and/or controller supports
error return codes (e.g., on a parity error) waiting for the response enables error signaling
with an exception in the processor core.

The design is configurable with 4 parameters: (1) the level of downstream pipelining, (2)
the maximum time for a memory transaction (i.e, the TDM slot length), (3) the additional
latency within the memory controller, and (4) the level of upstream pipelining. The pipeline
levels influence downstream and upstream latencies.

4 Pipelined Access Timing and Slot Length

We are mainly interested in the worst-case access time for a memory transaction (cache
miss). For some scenarios, it might also be interesting what the best-case access time is. For
WCET analysis, where we look at a sequence of memory accesses with operations in between,
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Figure 3 Access latency, TDM slot length, and slot shifting due to pipelineing

we are interested in how much of the access latency can be overlapped with execution and
therefore hidden.

Table 1 shows all timing parameters, which are in clock cycles. Timing parameters with
a lower case t in the name denote non-pipeline delays and parameters with an upper case
L delays that can be pipelined. E.g., the bursting of data via the pins of the memory chips
cannot be pipelined, but the burst of data traveling in the memory NoC can be pipelined.

Memory read and write transactions at the memory chip take tb clock cycles for the
burst transfer of the data and some additional latency for a read command to process (tr2b)
and a write command to finish (tb2e). Due to some inefficiency in the memory controller,
additional delays on read or write transaction (tctrlrd and tctrlwr) may be introduced that
cannot be hidden by pipelining. The combination of those memory and controller delays
determines the minimum TDM slot length tslot.

The slot length tslot and the number of processing cores determine the TDM period T .1
The memory NoC (and the memory controller) introduce additional latency that needs to
be added for the worst-case access time (twcrd and twcwr). However, even with a low number
of processing cores the TDM period T is the main contributor to the access latency.

Figure 3 shows two read transactions by cores 0 and 1 in a configuration with four cores.
The accesses of the cores are delayed until the respective slot arrives; this delay may be up
to T − 1 cycles. From the core’s network interface to the memory, a latency of Ldown cycles
is added. Accessing the memory requires tslot cycles. Transmitting the data back to the
core adds Lup more cycles. The sum of these times determines the access latency observed
at a core. The minimum TDM slot length depends however only on the maximum time the
memory requires to serve a transaction.

Figure 3 shows that pipelining shifts the TDM slots in time along the path from the
processor cores to the memory and back. Therefore, a core’s slot starts at different times in
different parts of that path. When the timing of the (SDRAM) memory controller is known
(e.g., in [10]), the read and write commands can be sent from the client in the exact right

1 Assuming equal bandwidth for all processing cores. Optimizing the bandwidth of the individual cores
for the WCET has not been very beneficial [25].
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point in time so they travel trough the network, arrive at the memory controller, and then
arrive at the SDRAM bus without any flow control or buffering (except pipeline registers).

For WCET analysis the timings for individual cache misses are: twcrd for a cache line
fill and twcwr for a cache line write back. Compared to a round-robin arbitration, the
constant time between two possible accesses can be used to tighten WCET bounds for a
sequence of accesses. The time spent executing instructions that do not access memory (or
are guaranteed hits) between two accesses can be subtracted from the TDM period T .

5 Implementation and Evaluation

We have implemented three different memory arbiters: (1) a round-robin arbiter, (2) a
centralized TDM arbiter, and (3) the distributed TDM arbiter as described in Section 3.
We used the high-level hardware description language Chisel [1], which allows the generation
of Verilog code for logic synthesis. To evaluate the arbiter rather than the processor cores,
we connected the arbiters to test driver cores (4, 8,. . . , 128), together with a PLL, and a
memory controller. The design was synthesized and constrained to run at 200 MHz with
Altera Quartus II. As target device we chose the Cyclone IV FPGA used on Altera’s DE-115
development board (part number EP4CE115F29C7N).

All arbiters use the OCP communication interface used in T-CREST project. For a
multicore with N cores, it has N OCP slave interfaces that receive data from the processor
cores and one OCP master interface that sends data to the memory controller. To make
the arbiter reusable, it is configurable with five parameters: number of cores, address width,
data width, burst length, and controller delay. Additional parameters like slot length and
period are derived from these parameters.

For a multicore with N cores, each core is given an id, 0, 1, . . . N − 1. Based on the
number of cores, a specific time slot is defined for each core in the TDM based arbiters. The
slot length is defined as tslot = max(trd + tctrlrd, twr + tctrlwr), which is the amount of clock
cycles for a read or write burst. The slot length and the number of cores is configurable.
In a complete memory access period, T = N × tslot, each processing core has a chance for
either a read or write burst. At each core a counter is used to generate the according single
cycle enable signal.

For the centralized TDM arbiter, a finite state machine (FSM) controls the local TDM
arbitration. When the enable signal is asserted, the FSM will transfer the memory access
request of the corresponding node into the memory tree. The FSM has only three states:
idle, read, and write.

For the distributed TDM arbiter, the arbitration is divided into N local arbiters. Each
local arbiter has a counter for the TDM slot counting. The outputs of all local arbiters are
fed to a tree of OR gates and into pipeline registers before reaching the memory controller.
On the return path from the memory controller, this data is broadcasted to all the local
arbiters. Two pipeline registers on the downstream path and one on the upstream path are
enough to keep the critical path short enough for a 200 MHz operating frequency.2

Figure 4 shows the maximum frequency (Fmax) of each arbiter. The centralized arbiters
(round-robin and central TDM) lead to slower clock frequency when increasing the number
of processing cores. The simple round-robin arbiter can be clocked faster than the central
TDM arbiter. In contrast, the maximum frequency of the distributed TDM arbiter remains
relatively close to the input frequency (200 MHz), even as the number of nodes increases

2 A RISC style processor core can be clocked at about 100 MHz in this FPGA family.
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Figure 4 Maximum frequency (Fmax) for different arbiters and number of processor cores

Table 2 Logic cell counts for different arbiters and different number of processor cores

Number of processor cores 4 8 16 32 64 128

Round-robin 139 324 614 1267 2549 5114
Centralized TDM 235 446 969 1943 3893 7764
Distributed TDM 470 980 1894 3827 7575 10277

exponentially. The distributed TDM arbiter has the shortest critical path since the datap-
aths from each node to the memory, through the arbiter, are independent of each other and
broken up with pipeline registers.

Table 2 shows the resource consumption of each arbiter in terms of logic cell (LC) count
on the FPGA. To set the number in relation, a RISC style processor pipeline consumes about
2000–5000 LCs. The centralized TDM arbiter requires more logic cells than the round-robin
arbiter.

The distributed TDM arbiter replicates some logic (e.g., the counters for the TDM slots)
at the client side. Therefore, it consumes more resource, but also allows the highest clock
frequency. Each client side component consumes about 30 LCs. However, the memory tree,
made up of OR gates, consumes a large number of LCs. For every 4 cores, a 4-input look-up
table (LUT) is needed for every bit of the OCP signals. As a rough estimate, about 55 logic
cells are needed for the OR-gate tree per node. With a back-of-an-envelope calculation the
LCs needed for the 128-core multicore can be estimated as: 30 LC per core * 128 + 55 LC
per OR-gate tree * 128 = 10880. This confirms the synthesized results shown in Table 2.

Compared to centralized TDM arbitration, as used in [11] and [16], our pipelined design
with the distributed arbitration at the individual nodes scales better with more nodes. The
additional cost is moderate. The cost per node is in the range of 120 LCs, where a RISC
style processor node itself consumes between 2000 and 5000 LCs.

6 Conclusion

Computer systems for real-time systems need to be time-predictable to allow static WCET
analysis. For multicore processors with shared memory the access to this shared memory
needs to be time-predictable as well. A time-division multiplexing (TDM) arbiter is time-
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predictable. It allows calculating the WCET of a task executing on one processor core
independent from other tasks executing on other cores. This paper presented a TDM mem-
ory network-on-chip with distributed arbitration and pipelining to achieve a high throughput
through the interconnect. The additional latency through pipelining does not influence the
slot length of the TDM schedule. The TDM schedule and the knowledge of the pipelined
interconnect is the input for the WCET analysis of memory accesses for a multicore proces-
sor.
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Source Access
The source of the described memory NoCs is open source under the simplified BSD li-
censes and available at GitHub within the Patmos project: https://github.com/t-crest/
patmos. Details on the build process can be found in the Patmos reference handbook [20].
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