
Leros: the Return of the Accumulator Machine

Martin Schoeberl1 and Morten Borup Petersen1

Department of Applied Mathematics and Computer Science
Technical University of Denmark, Kgs. Lyngby, Denmark

masca@dtu.dk, s152999@student.dtu.dk

Abstract. An accumulator instruction set architecture is simpler than an instruc-
tion set of a (reduced instruction set computer) RISC architecture. Therefore, an
accumulator instruction set that does within one instruction less than a typical
RISC instruction is probably more “reduced” than a standard load/store register
based RISC architecture.
This paper presents Leros, an accumulator machine and its supporting C com-
piler. The hypothesis of the Leros instruction set architecture is that it can deliver
the same performance as a RISC pipeline, but consumes less hardware and there-
fore also less power.

Keywords: Embedded Systems · Minimal Processor.

1 Introduction

The invention of the reduced instruction set computer (RISC) [9,12,13] in the early 80’s
was a sort of a revolution. Since then most embedded processors have been designed
as RISC processors, and from the Pentium Pro, the x86, a typical complex instruction
set computer (CISC), uses RISC style instructions internally. Recently the free RISC-V
instruction set [19], also developed at the University of California, Berkeley is gaining
momentum. First silicon implementations are available. Even a many-core architecture
with more than 4096 RISC-V processors on a single die is under development by Es-
peranto [7] and expected to ship mid-2019.

The RISC architecture promises to provide a simpler instruction set that is cheaper
to implement and more natural to pipeline to achieve high performance by a higher
clock frequency and fewer clocks per instructions. A typical RISC architecture has: 32-
bit instructions, 32 registers, operation with two source and one destination register, and
load and store instructions with displacement addressing.

This paper takes the RISC approach one step further and provides an even more
RISCy instruction set: Leros, an accumulator machine. An accumulator instruction set
is even simpler than a RISC instruction set. This processor is named Leros, after the
Greek island Leros.1 Leros is an accumulator machine with direct addressing of 256
memory words. Those 256 words are considered a large register file. Leros implements
basic logic and arithmetic operations with an accumulator and one of the registers or

1The initial version of the processor has been designed on the island Leros: https://www.
leros.gr/en/.

https://www.leros.gr/en/
https://www.leros.gr/en/


2 M. Schoeberl et al.

a constant. Memory is accessed indirectly via an address register. All instructions are
16-bit wide. Leros can be configured to be a 16, 32, or 64-bit architecture. We optimize
Leros for an FPGA, by using an on-chip memory for the large registers file.

The Leros architecture hypothesizes that it will deliver the same performance as a
RISC pipeline, but consumes fewer hardware resources and therefore also less power.
The Leros accumulator architecture will execute more instructions than a RISC archi-
tecture. However, the accumulator architecture compensates this by two facts: (1) The
simple architecture shall allow clocking the pipeline with a higher clock frequency.
(2) The shorter instructions (16 instead of 32 bits) need less instruction memory and
instruction cache.

A further goal of Leros is to be a good target for a C compiler. Therefore, the data
width shall be 32 bits. We present a port of the LLVM [10] C compiler for Leros.

The contributions of this paper are: (1) a definition of a minimal accumulator based
instruction set architecture (ISA), (2) an implementation of that ISA in two simulators
and in an FPGA, and (3) a C compiler ported to target the Leros ISA.

This paper is organized in 7 sections: The following section presents related work.
Section 3 describes the Leros instruction set architecture. Section 4 describes one pos-
sible implementation of the Leros processor. Section 5 introduces the C compiler for
Leros. Section 6 evaluates the architecture, the compiler, and an FPGA implementation
of Leros. Section 7 concludes.

2 Related Work

Many small processor cores for FPGAs have been developed or are developed as assign-
ments for courses in computer architecture. With Leros, we also aim to be an instruction
set definition that can be used in teaching. In this section, we restrict the discussion to a
few successful cores and point out the differences from our Leros design.

PicoBlaze is an 8-bit processor for Xilinx FPGAs [21]. PicoBlaze is optimized for
resource usage and therefore restricts the maximum program size to 1024 instructions
and data to 64 bytes. PicoBlaze can be implemented with one on-chip memory and 96
logic slices in a Spartan-3 FPGA. PicoBlaze provides 16 8-bit registers and executes
one instruction in two clock cycles.

The central theme behind Leros is similar to PicoBlaze. However, we target a pro-
cessor that is useful with a C compiler. Thus, the resource consumption of Leros is
slightly higher as PicoBlaze. The PicoBlaze code is at a low level of abstraction com-
posed out of Xilinx primitive components. Therefore, the design is optimized for Xilinx
FPGAs and practically not portable. Leros is written in vendor agnostic Chisel [2] and
compiles unmodified for Altera and Xilinx devices.

The SpartanMC is a small microcontroller with an instruction and data width of
18 bits [8]. The authors optimized this width for FPGAs that contain on-chip memo-
ries that can be 18-bit wide (the additional bits are initially for parity protection). The
processor has two operand instructions with 16 registers and is implemented in a three-
stage pipeline. The register file uses on-chip memory and a sliding register window is
used to speed up function calls (similar to the SPARC architecture). SpartanMC per-



Leros: the Return of the Accumulator Machine 3

forms comparably to the 32-bit RISC processors LEON-II [6] and MicroBlaze [22] on
the Dhrystone benchmark.

Compared to the SpartanMC, we further optimized Leros for FPGAs using fewer
resources. Leros simplifies the access to registers in on-chip memory by implementing
an accumulator architecture instead of a register architecture. Although an accumulator
architecture is, in theory, less efficient, the resulting maximum achievable clock fre-
quency may offset the higher instruction count.

Intel (former Altera) provides the Nios II [1] processor, which is optimized for Intel
FPGAs. Nios is a 32-bit RISC architecture with an instruction set similar to MIPS [9]
with three register operations. The sizes of its instruction and data caches are config-
urable.

Although Nios II represents a different design from Leros, it is a clear competitor,
as one can configure Nios for different resource consumption and performance targets.
Three different models are available: the Fast core is optimized for high performance,
the Standard core is intended to balance performance and size, and the Economy core is
optimized for smallest size. The smallest core needs less than 700 logic elements (LEs).
It is a sequential implementation, and each instruction takes at least six clock cycles.
Leros is a smaller, accumulator-based architecture, and with a pipelined implementation
of Leros, most instructions can execute in a single clock cycle.

The Supersmall processor [15] is optimized for low resource consumption (half of
the Nios economy version). This is achieved by serializing ALU operations to single bit
operations. The LE consumption is comparable to Leros.

The Ultrasmall MIPS project [11] extends the Supersmall architecture. The main
difference is the change of the ALU serialization to perform two-bit operations each
cycle instead of single bits. Therefore, a 32-bit operation needs 16 clock cycles to com-
plete. The Ultrasmall processor consumes 137 slices in a Xilinx Spartan-3E, which is
84 % of the resource consumption of Supersmall. The serialization of the ALU opera-
tions results in an average of 22 clock cycles per instructions. According to the authors,
“Ultrasmall is the smallest 32-bit ISA soft processor in the world”. We appreciate this
effort of building the smallest 32-bit processor. With Leros, we aim similar for a small
32-bit processor.

Wolfgang Puffitsch developed the Ø processor.2 It is an accumulator machine aim-
ing at low resource usage. The bit width of the accumulator (and register width) is con-
figurable. An instance of an 8-bit Ø processor executing a blinking function consumes
176 LEs and 32 memory bits.

An early processor targeting FPGAs is the DOP processor [3]. DOP is a 16-bit stack
oriented processor with additional registers, such as address registers and a work regis-
ter. As the work register is directly connected to the ALU, DOP is similar to Leros an
accumulator oriented architecture. The authors do not provide resource consumptions
for the DOP design.

Lipsi is a processor that aims to be one of the smallest processors available for an
FPGA [18]. Lipsi is small as it can use just a single block RAM for instructions and data.
Therefore, each instruction executes in at least two clock cycles. The datapath of Lipsi
is 8-bit. The aims of Lipsi and Leros are similar to build small embedded processors.

2https://github.com/jeuneS2/oe

https://github.com/jeuneS2/oe


4 M. Schoeberl et al.

However, with Leros, we target a processor that is well suited for a modern C compiler.
Therefore, the default datapath width is 32-bit but is configurable to be 16, 32, or 64
bits.

The first version of Leros [16] was a hardcoded 16-bit accumulator machine. It con-
sisted of a two-stage pipeline, where the pipeline delays are visible in the instruction
definition. Compared to this initial version of Leros, we make a clear definition of the
instruction set architecture, independent from any implementation in this paper. Fur-
thermore, we allow that the bit width is configurable. And we provide a port of the
LLVM C compiler for Leros. The porting of the C compiler also provided feedback
on the instruction set that we changed accordingly. Therefore, the presented version of
Leros is not binary compatible with the early version of Leros.

3 The Leros Instruction Set Architecture

The instruction set architecture, or short ISA, is the most important interface of a pro-
cessor. It defines the language that the processor understands. It is the interface between
the hardware and the compiler. IBM first introduced an ISA with the 360 series of com-
puters. IBM introduced several implementations of the 360 series, with different price
tags, that all implemented the same ISA. Therefore, it was possible to reuse software
and compilers on different computers.

The ISA defines the programmer visible state, e.g., registers and memory, and in-
structions that operate on this state. The processor state that is not visible to the pro-
grammer, e.g., caches, are not part of the ISA. Some parts of a processor, e.g., address
translation and memory protection, are not visible in the user ISA, but only available in
a supervisor mode (usually used by an operating system kernel).

Leros is an accumulator machine. Therefore, the dominant register is the accumula-
tor A. Furthermore, Leros defines a small memory area that can be directly addressed.
We call those 256 memory words registers. Leros performs operations with the ac-
cumulator and those registers. E.g., Adding a register to the accumulator, storing the
accumulator into a register. Basic operations are also available with immediate values,
e.g., adding a constant to A.

Memory operations use an address register, called AR, plus an 8-bit displacement.
All memory accesses use this address register. The load destination is the accumulator,
and the store source is also the accumulator.

All instructions are 16-bit. The data width of Leros is configurable to be: 16, 32, or
64 bits. The default implementation of Leros is 32-bit.

A set of branch instructions perform unconditional and conditional branches de-
pending on A (zero, non-zero, positive, or negative). For larger branch targets, indirect
jumps, and calls, Leros has a jump and link instruction that jumps to the address in A
and stores the address of the next instruction in a register. Furthermore, we define a
system call instruction for operating system calls.

Leros is designed to be simple, but still a good target for a C compiler. The descrip-
tion of the instruction set fits in less than one page, see Table 1. In that table A represents
the accumulator, PC is the program counter, i is an immediate value (0 to 255), Rn a



Leros: the Return of the Accumulator Machine 5

Opcode Function Description

add A = A + Rn Add register Rn to A
addi A = A + i Add immediate value i to A (sign extend i)
sub A = A - Rn Subtract register Rn from A
subi A = A - i Subtract immediate value i from A (sign extend i)
shr A = A >>> 1 Shift A logically right
and A = A and Rn And register Rn with A
andi A = A and i And immediate value i with A
or A = A or Rn Or register Rn with A
ori A = A or i Or immediate value i with A
xor A = A xor Rn Xor register Rn with A
xori A = A xor i Xor immediate value i with A
load A = Rn Load register Rn into A
loadi A = i Load immediate value i into A (sign extend i)
loadhi A31−8 = i Load immediate into second byte (sign extend i)
loadh2i A31−16 = i Load immediate into third byte (sign extend i)
loadh3i A31−24 = i Load immediate into fourth byte (sign extend i)
store Rn = A Store A into register Rn
jal PC = A, Rn = PC + 2 Jump to A and store return address in Rn
ldaddr AR = A Load address register AR with A
loadind A = mem[AR+(i << 2)] Load a word from memory into A
loadindbu A = mem[AR+i]7−0 Load a byte unsigned from memory into A
storeind mem[AR+(i << 2)] = A Store A into memory
storeindb mem[AR+i]7−0 = A Store a byte into memory
br PC = PC + o Branch
brz if A == 0 PC = PC + o Branch if A is zero
brnz if A != 0 PC = PC + o Branch if A is not zero
brp if A >= 0 PC = PC + o Branch if A is positive
brn if A < 0 PC = PC + o Branch if A is negative
scall scall A System call (simulation hook)

Table 1: The Leros instruction set.

register n (0 to 255), o a branch offset relative to PC, and AR an address register for
memory access.

4 A Leros Implementation

With the Leros ISA, we do not define any specific implementation. Sequential, single
cycle, or pipelined implementations are all proper implementations of the Leros ISA.
The initial Leros 16-bit processor [16] used the pipeline implementation as part of the
ISA definition, which limits the usefulness of an ISA definition. Therefore, we remove
this restriction with the current definition. Instruction dependencies within a pipeline
need to be resolved in hardware (by forwarding or stalling). No pipeline effects shall be
visible in the ISA (except in the execution time of an instruction).



6 M. Schoeberl et al.

As a golden reference, we have implemented a Leros ISA simulator in Scala. The
simulator is a large match/case statement and is implemented in around 100 lines of
code. The simulator also reflects the simplicity of the Leros ISA.

Writing an assembler with an expressive language like Scala is not a big project.
Therefore, we wrote a simple assembler for Leros, which is possible within about 100
lines of code. We define a function getProgram that calls the assembler. For branch
destinations, we need a symbol table, which we collect in a Map. A classic assembler
runs in two passes: (1) collect the values for the symbol table and (2) assemble the
program with the symbols obtained in the first pass. Therefore, we call the assembler
twice with a parameter to indicate which pass it is.

The ISA simulator and the hardware implementation of Leros call the function
getProgram to assemble a program at simulation or hardware generation time.

We have chosen Scala for the simulator and the assembler as we use Chisel, which
is a Scala library, to describe the hardware implementation. We can share constants that
define the instruction encoding between the simulator, the assembler, and the hardware
implementation.

The 256 registers of Leros are similar to the work registers of the TMS9900 CPU,
the processor that was used in the first 16-bit personal computer TI-99/4A.3 The TMS9900
had 16 registers, which are kept in RAM. An implementation of Leros may map those
registers into the main memory and cache it in a data cache. Or it can implement the
registers in on-chip memory, also called scratchpad memory. The Leros ISA does not
define this implementation details. The ISA specification does not assume that the reg-
isters can be read or written with memory load and store instructions.

For testing, we wrote a few test programs in assembler with the convention that at
the end of the test the accumulator shall be 0. Those tests are executed in the software
simulator of Leros and in the hardware simulation in Chisel.

Furthermore, as we implemented the hardware description and the software simu-
lator in the same language, we can do co-simulation. With co-simulation, we compare
after each instruction the content of A between the software simulation and the hard-
ware. Any (relevant) difference/error will eventually show up in A as all data flows
through A.

5 The Leros C Compiler

We implemented a C compiler and accompanying toolchain for the Leros instruction
set with the LLVM compiler infrastructure. A detailed description of the compiler and
tools for Leros can be found in [14].

The LLVM compiler infrastructure is a collection of toolchain applications built
around the LLVM core libraries. The LLVM core is a modular compiler infrastructure,
allowing for separate implementation of front-, optimizer, and backends. We imple-
mented an LLVM backend that targets the Leros instruction set.

3https://en.wikipedia.org/wiki/Texas_Instruments_TI-99/4A

https://en.wikipedia.org/wiki/Texas_Instruments_TI-99/4A


Leros: the Return of the Accumulator Machine 7

5.1 Using LLVM For Accumulator Machines

A difficulty in using LLVM for Leros arises when we directly use the intermediate rep-
resentation (IR) of LLVM. LLVM follows the common notion of compiler IR wherein
the IR should resemble the target instruction set format, to facilitate various steps such
as optimizations and instruction selection. An example LLVM IR sequence may be the
addition of two variables:

%c = add i32 %a, %b

The format of the LLVM IR resembles 3-operand RISC instruction sets, which facili-
tates instruction selection and emission for instruction sets such as ARM and RISC-V.
For Leros, virtually no LLVM IR instructions can be directly matched to Leros instruc-
tions.

The method for matching the LLVM IR during instruction selection has been to
implement a 3-operand version of the Leros instruction set, denoted as the Leros pseudo
instruction set. An example expansion of a Leros pseudo instruction is as follows:

%c = add %a %b load %a

add %b

store %c

Having mappings such as shown above allows for instruction selection with the ease
enjoyed by the 3-operand upstream backends of LLVM. After scheduling, SSA opti-
mizations and register allocation the Leros pseudo instructions are expanded to their
corresponding sequence of Leros machine instructions. Whilst incurring a code-size
overhead, the method does not require any modifications to the DAG which is provided
as the input for the backend as well as the built-in scheduler, SSA optimization- and
register allocation passes, which are desired to be left as default to minimize implemen-
tation time as well as the possibility for compiler issues.

5.2 Accumulator Optimizations

A consequence of the pseudo instruction set is an overhead in the size of the compiled
programs, mainly due to redundant instructions which are a side-effect of the pseudo
instruction set. Therefore, we implemented various optimizations to detect and modify
code sequences where a program may reuse the accumulator content. An example is
the removal of redundant load and stores. Figure 1 shows an example of Leros machine
code after pseudo instruction expansion. We can see that the intermittent load- and store
to %tmp is redundant, and the compiler may remove it if the register %tmp is dead after
the load %tmp instruction.

As of this writing, we have implemented three optimization passes in the backend:

Redundant loads: Identifies code sequences as shown in figure 1 where a register is
loaded wherein the value of the register is already present in the accumulator.

Redundant stores: Identifies code sequences as shown in figure 1 where a register is
used to store an intermediate result. Redundant store instructions are identified and
removed by reverse traversal of a basic-block, checking register liveness and usage.



8 M. Schoeberl et al.

%tmp = add i32 %a %b

%d = add i32 %a %tmp

load %a

add %b

store %tmp

load %tmp

add %a

store %d

load %a

add %b

add %a

store %d

Fig. 1: Left: the LLVM IR sequence, center: expanded pseudo instructions, and right:
an optimal sequence.

Redundant ldaddr: All ldind and stind instructions emit a ldaddr instruction, re-
sulting in code sequences where multiple ldaddr instructions will load an unmod-
ified value into the address register. This pass mimics the redundant store pass,
tracking the usage of the register which is currently loaded into the address register
and removes ldaddr instructions if deemed redundant.

5.3 Further Optimizations

Some pseudo instruction expansions require the use of bit masks. An example is the
expansion of arithmetic right shift instructions. In this, the bitmask 0x80000000 is
required for sign-extending a (logically right shifted) value. The compiler generates
immediate values through subsequent loadi# instructions.

Given that the compiler knows the required set of constants for instruction expan-
sion at compile time, these constant can be stored in registers. The abundance of regis-
ters in Leros allows for using some of the registers for constants. With this, we define
some constant registers for Leros, which the start function initializes. These constant
registers are furthermore able to be referenced during instruction selection.

For custom inserters in which more instructions are required to express the action
than what the compiler emits as function call overhead, we should move these to a
runtime library. Using library functions addresses the current issue of identical pseudo
instruction expansions being repeated multiple times throughout code. Furthermore,
given that these runtime functions will be often called the addresses of these functions
may be kept in registers. The expected effect of this is a slight performance decrease
given the call overhead but a significant reduction in code size.

5.4 Toolchain

By leveraging the LLVM compiler infrastructure, a number of different tools have been
integrated with support for the Leros instruction set. Clang is used as the C frontend of
choice, as well as being a compiler driver for the remainder of the toolchain. LLVMs
lld linker has been modified with support for the Leros relocation symbols, and shall
be used in place of system linkers like gold. Furthermore, LLVM provides a slew of
binary utilities akin to the GNU Binutils collection of applications such as llvm-dis,
the LLVM disassembler, llvm-readelf, the LLVM ELF reader with support for Leros
relocation flags, llvm-objcopy, llvm-objdump and others.



Leros: the Return of the Accumulator Machine 9

int test(int A, int B, int C)

test.c

test.c;0;5;1;2;4;1;2;8;2

test(0,2,2) test(0,2,4) test(0,2,6) test(0,3,2) 
test(0,3,4) test(0,3,6) test(1,2,2) test(1,2,4) 
test(1,2,6) test(1,3,2) test(1,3,4) test(1,3,6)
test(2,2,2) test(2,2,4) test(2,2,6) test(2,3,2) 
test(2,3,4) test(2,3,6) test(3,2,2) test(3,2,4)
test(3,2,6) test(3,3,2) test(3,3,4) test(3,3,6)
test(4,2,2) test(4,2,4) test(4,2,6) test(4,3,2)
test(4,3,4) test(4,3,6)

Test specification Test vector
host
exec.

leros-sim

=

Fig. 2: The test suit compiles and executes the test specification (source file and input
ranges) for all combinations of the input ranges on the host- and target systems, with
host results serving as golden references.

For simpler simulators as well as executing Leros code on hardware the llvm-objdump
tool may be used to extract the .text and .data segment of the compiled program,
yielding a flat binary which may be executed from address 0x0, removing the need for
a simulater reading ELF files or some hardware to interpret ELF files.

6 Evaluation

6.1 Automated Test Suite

While LLVM contains many fuzzing tools used for verifying that a backend can select
all instructions of the LLVM IR, it cannot check the semantics of the produced code.
We developed an automated test suite to check the semantics of the generated code. The
test suite compiles the programs with a host compiler and with our compiler for Leros
and executes them on the host and in the Leros simulator. The test compares then the
outputs of the two runs.

The test suite is a Python script which given a test specification file may control
the host and Leros compilers as seen in figure 2. Each line in the test specification file
contains a reference to a test file as well as a range and step for all input arguments.
The test source file is compiled for the host system as well as using the Leros compiler,
whereafter the program is executed using the set of all combinations of arguments.
All test programs return a value. The test suit compares the test return value of the
host and simulator execution. The test suite has proved a valuable asset in identifying
issues and verifying the correctness of instruction expansion and optimization passes.
Furthermore, it functions as a regression test suite allowing for fewer errors to propagate
to the source repositories.

6.2 Leros ISA Performance

To validate the compiler as well as generate indicators of the efficacy of the ISA, we
use the CoreMark benchmark [4]. CoreMark is a synthetic benchmark designed for
embedded systems which aims to be an industry standard benchmark for embedded
systems, replacing the older DhryStone benchmark [20].



10 M. Schoeberl et al.

50 75 100 125 150
0

10

20

30

40

50

Frequency (MHz)

Sc
or

e
(I

te
ra

tio
ns

/s
)

Leros CoreMark score

-O0

-O1

-O0 -O1∗† -O1† -O1

20

40

60

65.3

28.1
24.73 22.19

16.5
9

Optimization level

Si
ze

(k
B
)

CoreMark .text section size

Leros
RISC-V

Fig. 3: Leros CoreMark results

Figure 3 shows the Leros CoreMark score and ELF .text section size for various
optimization levels.
The CoreMark scores generated from the Leros simulator assumes a memory access
time of 1 cycle and an IPC of 1. The Leros CoreMark score is comparable to other low-
end embedded devices, such as the STMicroelectronics STM32L053 [5]. This device
is based on the Arm Cortex-M0+ architecture and manages a score of 39.91 at a clock
frequency of 16 MHz.

In Figure 3 we can see a significant code size difference between Leros and the
RISC-V compilation. We can find several factors for this overhead. An accumulator-
based instruction set as Leros will usually require more instructions to execute an action
than a 3-operand instruction set (such as RISC-V). A single RISC instruction may need
up to three instructions (load, op, store) in an accumulator machine.

The custom inserters used by Leros incurs an overhead through the requirement to
emit many instructions, in place of what a single instruction in RISC-V can express,
e.g., arbitrary shifts and sign-extended loads.

In general, code size will correlate to the efficacy of the instruction set. For CISC
instruction sets code size will be smaller compared to the semantically equivalent code
produced for a RISC instruction set. The same pattern shows for Leros in comparison
to RISC-V, wherein Leros is arguably more RISC than RISC-V.

Comparing −O1∗† to −O1†, the accumulator optimization passes manage a code
size reduction of 12.75%. Comparing −O1† to −O1, the introduction of constant regis-
ters shows a further decrease of 10.82%. These are significant reductions in code size.
We expect to decrease further when we implement more accumulator optimizations and
build a runtime library for the custom inserters.

∗No accumulator optimizations
†No constant registers



Leros: the Return of the Accumulator Machine 11

The successful compilation and execution of the CoreMark benchmark show that
the Leros ISA is a valid C target.

6.3 Leros in Teaching

The simplicity of Leros makes it a good candidate for teaching an introductory class
in computer architecture. The description of the Leros ISA fits in less than one page in
this paper format, see Table 1. Therefore, one can quickly memorize the ISA. A simple
exercise for a lab would be the implementation of a Leros software simulator and then
explore the usage of the instructions from compiled C programs. In a larger project, for
students with hardware design knowledge, implementing Leros in an FPGA would be a
good project, as the infrastructure (C compiler, assembler, and simulator) are available.

Leros is used in a Chisel textbook [17] as a medium sized project in one of the
last chapters. That chapter contains a detailed description of the hardware designed in
Chisel and simulator and assembler in Scala. Leros serves as an example of the power-
ful combination of Chisel and the general purpose language Scala. E.g., an assembler,
written in Scala, is executed as part of the hardware generation process.

6.4 Source Access

The Leros processor, compiler, and other related repositories are available in open
source at https://github.com/leros-dev.

7 Conclusion

In this paper, we present a minimal instruction set architecture (ISA): the Leros accu-
mulator machine. The idea behind this ISA is the same as the one for a RISC instruction
set: provide just basic instructions and let the more complex functions be done by the
compiler. Leros takes that step further and defines an even simpler ISA than a RISC
processor, which shall still be a useful target for C.

That simple ISA leads to the simple implementation of simulators and hardware in
an FPGA. We have ported the LLVM compiler to support Leros. Besides serving as a
small embedded processor, the simplicity of Leros makes it also a good example for an
introductory course in computer architecture. Leros also serves as a running example in
a final chapter of a digital design textbook in Chisel.

References

1. Altera Corporation: Nios II processor reference handbook. Available from http://www.
altera.com/literature/lit-nio2.jsp (May 2011), version NII5V1-11.0

2. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avizienis, R., Wawrzynek, J.,
Asanovic, K.: Chisel: constructing hardware in a scala embedded language. In: The 49th
Annual Design Automation Conference (DAC 2012). pp. 1216–1225. ACM, San Francisco,
CA, USA (June 2012)

https://github.com/leros-dev
http://www.altera.com/literature/lit-nio2.jsp
http://www.altera.com/literature/lit-nio2.jsp


12 M. Schoeberl et al.

3. Danecek, J., Drapal, F., Pluhacek, A., Salcic, Z., Servit, M.: Dop—a simple processor for cus-
tom computing machines. Journal of Microcomputer Applications 17(3), 239 – 253 (1994).
https://doi.org/10.1006/jmca.1994.1015

4. EEMBC: Coremark - an eembc benchmark (2018 (accessed December 12-12-2018)),
https://www.eembc.org/coremark/

5. EEMBC: Coremark benchmark score - stmicroelectronics stm32l053 (2018 (ac-
cessed November 12-12-2018)), https://www.eembc.org/benchmark/reports/

benchreport.php?suite=CORE&bench_scores=1689

6. Gaisler, J.: A portable and fault-tolerant microprocessor based on the SPARC v8 architecture.
In: DSN ’02: Proceedings of the 2002 International Conference on Dependable Systems and
Networks. p. 409. IEEE Computer Society, Washington, DC, USA (2002). http://doi.
ieeecomputersociety.org/10.1109/DSN.2002.1028926

7. Gwennap, L.: Esperanto makes out RISC-V. Tech. rep., The Linley Group, Microprocessor
Report (December 2018)

8. Hempel, G., Hochberger, C.: A resource optimized processor core for FPGA based SoCs. In:
Kubatova, H. (ed.) Proceedings of the 10th Euromicro Conference on Digital System Design
(DSD 2007). pp. 51–58. IEEE (2007)

9. Hennessy, J.L.: VLSI processor architecture. Computers, IEEE Transactions on C-33(12),
1221–1246 (Dec 1984). 10.1109/TC.1984.1676395

10. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Optimization
(CGO’04). pp. 75–88. IEEE Computer Society (2004)

11. Nakatsuka, H., Tanaka, Y., Chu, T.V., Takamaeda-Yamazaki, S., Kise, K.: Ultrasmall: The
smallest mips soft processor. In: 2014 24th International Conference on Field Programmable
Logic and Applications (FPL). pp. 1–4 (Sept 2014). 10.1109/FPL.2014.6927387

12. Patterson, D.A.: Reduced instruction set computers. Commun. ACM 28(1), 8–21 (1985).
http://doi.acm.org/10.1145/2465.214917

13. Patterson, D.A., Sequin, C.H.: RISC I: A reduced instruction set VLSI computer. In: Pro-
ceedings of the 8th annual symposium on Computer Architecture. pp. 443–457. ISCA ’81,
IEEE Computer Society Press, Los Alamitos, CA, USA (1981)

14. Petersen, M.B.: A compiler backend and toolchain for the leros architecture. B.sc.eng. thesis,
Technical University of Denmark (2019)

15. Robinson, J., Vafaee, S., Scobbie, J., Ritche, M., Rose, J.: The supersmall soft processor.
In: Programmable Logic Conference (SPL), 2010 VI Southern. pp. 3 –8 (march 2010). 10.
1109/SPL.2010.5483016

16. Schoeberl, M.: Leros: A tiny microcontroller for FPGAs. In: Proceedings of the 21st Inter-
national Conference on Field Programmable Logic and Applications (FPL 2011). pp. 10–14.
IEEE Computer Society, Chania, Crete, Greece (September 2011)

17. Schoeberl, M.: Digital Design with Chisel. TBD V 0.1 (2018), available at https://
github.com/schoeberl/chisel-book

18. Schoeberl, M.: Lipsi: Probably the smallest processor in the world. In: Architecture of
Computing Systems – ARCS 2018. pp. 18–30. Springer International Publishing (2018).
10.1007/978-3-319-77610-1_2

19. Waterman, A.: Design of the RISC-V Instruction Set Architecture. Ph.D. thesis, EECS De-
partment, University of California, Berkeley (Jan 2016)

20. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Communications
of the ACM (1984). 10.1145/358274.358283

21. Xilinx: PicoBlaze 8-bit embedded microcontroller user guide (2010)
22. Xilinx Inc.: MicroBlaze processor reference guide (2008), version 9.0

https://doi.org/https://doi.org/10.1006/jmca.1994.1015
https://doi.org/10.1006/jmca.1994.1015
https://www.eembc.org/coremark/
https://www.eembc.org/benchmark/reports/benchreport.php?suite=CORE&bench_scores=1689
https://www.eembc.org/benchmark/reports/benchreport.php?suite=CORE&bench_scores=1689
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/DSN.2002.1028926
http://doi.ieeecomputersociety.org/10.1109/DSN.2002.1028926
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/DSN.2002.1028926
http://doi.ieeecomputersociety.org/10.1109/DSN.2002.1028926
https://doi.org/10.1109/TC.1984.1676395
10.1109/TC.1984.1676395
https://doi.org/10.1109/FPL.2014.6927387
10.1109/FPL.2014.6927387
https://doi.org/http://doi.acm.org/10.1145/2465.214917
http://doi.acm.org/10.1145/2465.214917
https://doi.org/10.1109/SPL.2010.5483016
10.1109/SPL.2010.5483016
https://doi.org/10.1109/SPL.2010.5483016
10.1109/SPL.2010.5483016
https://github.com/schoeberl/chisel-book
https://github.com/schoeberl/chisel-book
https://doi.org/10.1007/978-3-319-77610-1_2
10.1007/978-3-319-77610-1_2
https://doi.org/10.1145/358274.358283
10.1145/358274.358283

