
Hardware Locks with Priority Ceiling Emulation for
a Java Chip-Multiprocessor

Tórur Biskopstø Strøm

Department of Applied Mathematics

and Computer Science

Technical University of Denmark

torur.strom@gmail.com

Martin Schoeberl

Department of Applied Mathematics

and Computer Science

Technical University of Denmark

masca@dtu.dk

Abstract—According to the safety-critical Java specification,
priority ceiling emulation is a requirement for implementations,
as it has preferable properties, such as avoiding priority inversion
and being deadlock free on uni-core systems.

In this paper we explore our hardware supported implementa-
tion of priority ceiling emulation on the multicore Java optimized
processor, and compare it to the existing hardware locks on the
Java optimized processor.

We find that the additional overhead for priority ceiling
emulation on a multicore processor is several times higher than
simpler, non-premptive locks, mainly due to slow access to shared
memory. We also find that PCE is mostly viable with large critical
sections.

I. INTRODUCTION

Priority ceiling emulation (PCE) is a popular locking proto-

col for real-time systems. It allows preemption whilst prevent-

ing priority inversion and for uni-core systems it also prevents

deadlocks. The safety-critical Java specification (SCJ) [1]

requires that all implementations support PCE. As we target

SCJ with our Java chip-multiprocessor, we explore the imple-

mentation of PCE in this paper. However, the protocol is more

complex on multicore systems, so the theoretical benefits of

the protocol might not be viable in practice.
The current draft of the SCJ specification [1] (p. 143) spec-

ifies that locks shared between threads running on different

cores need to have a priority so that synchronized methods

execute non-preemptively.
On a multicore system locking is usually implemented

with the help of a compare-and-set instruction that operates

atomically. However, supporting this instruction in a time-

predictable way for shared memory becomes expensive; the

worst-case execution time (WCET) for this instruction will be

high. Therefore, direct on-chip hardware support for locking

avoids the high execution time of external memory access.
We explored hardware support for locking in a Java multi-

core processor [2] with a single global lock and a locking unit

in parallel to the single global lock [3]. From that starting point

we integrated those two components into the Java locking unit

(JLU). We use this JLU as a basis for our implementation of

PCE on the JOP multicore processor. We analyze the worst-

case execution time (WCET) of our PCE implementation and

compare it to that of the global lock and JLU without PCE.

We also compare benchmark results for the three locks.

The paper is organized as follows: Section II gives back-

ground information on locking and Section III presents the

Java locking unit. Section IV describes our implementation

of priority ceiling emulation and the necessary changes to

the hardware locks. Section V analyses the implementation

performance. Section VI presents related work. Section VII

concludes the paper.

II. PRIORITY CEILING EMULATION

When two or more computing routines share a stateful

resource, and modification of the state is not implicitly atomic,

it is necessary to ensure atomicity by other means. A common

approach is to use synchronization locks, however these are

subject to deadlocks and priority inversion.

There exist several protocols to alleviate the problems of

deadlocks and priority inversion. Lui Sha et al. [4] describe

the original priority ceiling protocol, which aims to prevent

priority inversion and deadlocks. Under this protocol each

lock has a priority assigned that is at least as high as the

highest priority of any thread accessing it. If a thread owns

a lock and another thread tries to acquire the same lock,

the owning thread’s priority is temporarily raised to that of

the lock, preventing the other thread from executing until the

owner has released the lock.

A simpler and, at least in our experience with uni-core

systems, more common variation of this protocol is priority

ceiling emulation [5] (PCE). With PCE a system raises a

thread’s priority to the lock’s ceiling priority as soon as the

thread acquires the lock, instead of waiting until there is

contention. Other threads on the same core that would acquire

the same lock are thereby prevented from executing until the

owning thread has released the lock.

Although locking is well understood on uni-core systems,

this is not the case for multicore systems, which schedule

threads according to partitions. A single global partition allows

all threads to execute on all cores, whereas a fully partitioned

system fixes threads to specific cores. There also exist systems

that mix the two partitioning methods.

Some of the benefits that locking protocols can provide on

uni-core systems disappear when using multicore. Such is the

case with dead-locks, where two threads on different cores

2015 IEEE 18th International Symposium on Real-Time Distributed Computing

1555-0885/15 $31.00 © 2015 IEEE

DOI 10.1109/ISORC.2015.33

268

���� ���� ��������

�	
��
	 ���

�� ��

���
	�����
��	�

����

Fig. 1. A JOP CMP system with the JLU

���� ���� ��������

��������	
����

������
�������

�������������

�������������

������

������

��������

�������
�	�
���������
��

���

��

�
�

�
�

�
�

�
��
�

Fig. 2. The Java Locking Unit

can acquire two locks in opposite order, as the priority of

each thread has no meaning to the opposing core.

Note that PCE still prevents priority inversion on multicore

systems, as long as resource sharing between scheduling do-

mains is non-preemptive, which is the case with SCJ. Sharing

locks across partitions does not enable lower priority threads

within the same core(s) from preempting higher priority

threads, which is the requirement to prevent priority inversion.

III. THE JAVA LOCKING UNIT

We explore the PCE multicore locking and the hardware

support for it on the Java processor JOP [6]. We have chosen

JOP because the hardware is open source and relatively easy

to extend. The runtime of JOP also includes a first prototype of

SCJ level 0 and level 1 [7]. Furthermore, a chip-multiprocessor

(CMP) version of JOP is available [2]. Note that the hardware

support for locks is not JOP specific and possibly even usable

in non-Java multicore systems.

Figure 1 shows our configuration. Several JOP cores connect

to the shared memory via an arbiter. In addition to the arbiter,

there is the Java locking unit (JLU). Figure 2 shows an

overview of the JLU’s structure. The JLU maps into the I/O

space for each core and contains a set of registers that represent

lock “entries”. Each entry consists of a flag indicating whether

the entry is empty, a word (32-bit in the case of JOP) with a

lock’s address, and a counter to track the number of times a

core acquires the lock. When requesting a lock, a core writes

a lock’s address to the unit and the unit checks if the lock’s

address already exists in the entries. If so, another core already

owns the lock and the JLU enqueues the current core in a

FIFO residing in a local on-chip memory. Otherwise the JLU

registers the lock in an empty entry and registers the requesting

core as the owner. Requests are handled in round-robin order.

Before requesting a lock, a thread disables its core’s in-

terrupts. In addition, during the JLU’s processing of either

an acquisition or release, the JLU blocks the core’s write

request on the interconnect. This stalls the core until the

request is complete and the core has acquired/released the

lock, effectively making the thread spin-wait at top priority. If

the core releases its final lock the thread enables interrupts.

Requesting a lock in the JLU has a low overhead. While

waiting for a lock, a thread non-preemptively spin-waits.

While owning a lock, a thread non-preemptively executes the

critical section. The JLU locking can therefore be considered a

degenerated form of PCE, hereafter referred to as DPCE. The

main difference between PCE and DPCE is that PCE allows

preemption when there are locks with ceiling priorities that

are lower than some thread priorities.

According to the SCJ specification, critical sections, pro-

tected by locks that are shared between cores, have to run at

top priority, as priorities between scheduling partitions have

no meaning. This means that DPCE behaves like PCE except

when a lock is not shared between cores and has a ceiling

priority that is lower than at least one other thread on the core

that does not access the lock.

IV. PCE IMPLEMENTATION

As in standard Java, SCJ allows each object to serve as a

lock. In addition, SCJ allows the ceiling priority of each lock

to be configurable. It is therefore necessary to register and

remember the priority of object’s throughout their lifetime.

However, SCJ requires that each lock priority not explicitly

set uses a system default priority, so PCE implementations

need only register an object’s priority when that priority is

other than the default.

There are multiple options to maintain a object/priority

mapping, e.g., a hash map, a table, the object header, etc. As

a quick and efficient solution we found unused space in JOP’s

object header alongside the scope levels. This header field is

32 bits long, which we split into two 16 bit words, with one

maintaining scope levels and the other maintaining an object’s

(potential) ceiling priority. This limits both the scopes and the

priorities to 65536 levels. However, we find this to be more

than adequate for most, if not all, solutions. If the priority field

is zero, the ceiling of the object is not set, so if a thread uses

the object as a lock, the ceiling will be the system default.

The JLU implements DPCE, meaning that threads always

spin wait at top priority. It is therefore necessary to make some

269

changes to the JLU before it supports proper PCE.

The JLU only maintains queues of cores waiting for locks

and therefore doesn’t distinguish between threads on each

core. It is therefore an issue if two threads on the same core

try to request the same lock, as the JLU would only enqueue

the core once. However, from PCE we know that threads

requesting the same lock should not have a priority higher than

the ceiling of the lock. Therefore, other threads on the same

core trying to acquire the same lock will not be scheduled as

long as one of the threads is holding the lock.

To support preemption, we have modified the JLU’s locking

procedure. Instead of disabling interrupts until a core releases

all its locks, interrupts are only disabled for the duration of a

request, i.e., the core immediately owns the lock, the JLU has

enqueued the core or the core released the lock. Furthermore,

we add a request port to the JLU that returns the state of a

lock, i.e., whether the current core is the owner or not. A thread

can thereby spin in software (preemptively) while checking if

it has become the owner.

One of the issues with PCE is the necessity to track priorities

as a thread acquires different locks, so that the thread gets the

priorities in reverse order as it releases the locks. To support

this functionality we implemented priority “bread crumbs”.

Each thread contains an array index as well as a priority array

and a lock count array, both with length k + 2, where k is

the number of locks with a priority other than the default. k
is found by registering all ceiling modifications and counting

the number of different priorities.

V. EVALUATION

For the evaluation we compare the PCE implementation

with JOP’s multicore global lock and also with the unmodified

hardware locks (the JLU) on the Altera DE2-70 board.

The number of lock entries in the hardware unit is config-

urable, but we used the default configuration with 32 entries.

Previous tests have shown that the number of entries does not,

or minimally, affect the performance and only affect the size

of the hardware.

Our performance analysis consists of 2 parts: WCET anal-

ysis of the locking routines using JOP’s WCET tool, and

benchmarks using JemBench [8].

Table I shows the WCET analysis results for the differ-

ent locking routines. For the global lock and JLU analy-

sis we manually counted the number of microcode steps

for monitorenter and monitorexit. We also counted the

number of hardware cycles used by the global lock and

JLU by analyzing the hardware state machines. For the PCE

analysis we similarly had to analyze microcode, as well as

counting cycles in the statemachine. Additionally, we had

to analyze the two software routines, f monitorenter and

f monitorexit, that read, track and update the priorities.

The results show that the additional complexity of PCE has

quite a negative impact on the locking/unlocking performance.

The WCET increase relative to the core count is understand-

able, as some of the software steps have to access shared

memory and therefore have to go through the arbiter. With a

TABLE I
WCET IN CLOCK CYCLES FOR EACH LOCKING UNIT AND ITS

CORRESPONDING LOCKING ROUTINE

Cores

1 2 4 8

monitorenter

Global Lock 19 19 19 19
JLU 28 33 43 63
PCE 615 876 1382 2374

monitorexit

Global Lock 20 20 20 20
JLU 23 28 38 58
PCE 570 801 1255 2163

TABLE II
BENCHMARK RESULTS, ITERATIONS/SECOND

Cores

1 2 4 8

NQueens N=9, L=3

Global lock 29 57 103 143
JLU 29 56 102 143
PCE 28 53 96 125

AES N=4, L=N/A

Global lock 87 140 127 89
JLU 87 139 127 89
PCE 86 138 126 88

Increment N=48, L=1

Global lock 34 28 29 16
JLU 34 31 52 66
PCE 26 24 41 55

Increment N=48,L=100

Global lock 0.79 0.48 0.35 0.22
JLU 0.79 0.72 1.22 1.52
PCE 0.78 0.72 1.21 1.52

WCET that is at least 20 times higher than the JLU or global

lock, a theoretically schedulable task set with PCE might not

be practically schedulable.

Table II shows the benchmarking results. N is the number of

runnables generated in the benchmark and L is the benchmark

specific load. We only included benchmarks that actually used

locks. In addition, Increment is not part of the standard

JemBench suite, but added by us to have a benchmark that

heavily relies on locking. In Increment, every runnable locks

on each runnable and increments its counter L times. A high

L therefore corresponds to a large critical section.

The results show that PCE is worse than both the JLU

and the global lock, when there is little contention, such as

for NQueens and AES. However, PCE is better than the

global lock in Increment where there is heavy contention.

In addition, whereas the non-preemptive JLU is generally

preferred, PCE becomes a viable alternative when the critical

sections become large and PCE’s overhead is comparatively

low, as seen for Increment L = 100.

270

VI. RELATED WORK

We are not the first to implement PCE for SCJ. The

Hardware near Virtual Machine [9] is a uni-core platform

that implements SCJ and PCE. When an application sets the

priority of an object, the system creates a monitor object

and sets a reference to it in the lock object’s header. The

monitor object contains the specified priority and a field for the

acquiring handler’s priority. When a handler acquires the lock

the system saves its priority in the monitor and the handler

gets the monitor’s priority (if it is higher). When the handler

releases the lock, the handler regains its old priority. This

means that a handler can acquire locks with different priorities,

but when releasing a higher priority lock it will regain the

priority of the last lock. We have the same support in our

implementation, although our solution differs somewhat, as

explained in Section IV. In the future we might choose to

implement the monitor object solution, as this is more elegant.

However, this is not enough on multicore systems, where the

system needs to maintain a queue for threads on other cores

waiting for the same lock.

Yodaiken [10] argues against priority inheritance on the

grounds that it adds complexity and is inefficient. This is

similar to our issue with PCE, although we admit that the

issues can be far more prominent in priority inheritance than

in PCE.

Yodaiken also argues that instead of using priority inheri-

tance to solve the issue of priority inversion, the solution is

either to: (1) Make the resource related operations atomic and

fast, or (2) remove the contention or (3) priority schedule the

operations. With regards to (1) the author argues that RTLinux

programmers use the pthread spin lock operation to

disabled interrupts and, in the case of multicore systems,

let threads spin while waiting for a lock. This solution is

equivalent to the DPCE behavior of non-preemptive spinning.

Brandenburg et al. [11] extend the LInux Testbed for MUl-

tiprocessor Scheduling in Real-Time systems (LITMUSRT)

with resource sharing and then empirically evaluate lock-

free execution, wait-free execution, spin-based locking, and

suspension-based locking. They do this under the Flexible

Multiprocessor Locking Protocol (FMLP). They conclude that

systems should avoid suspension when threads share resources

across partitions. This supports the SCJ specification, which

requires that all locks shared across partitions should lock non-

preemptively. However, they also conclude that suspending is

never preferable to spinning, and this will most likely always

be the case unless a system spends at least 20% of its time in

critical sections. In our paper we analyze DPCE and PCE, used

for spinning and suspending respectively. We similarly argue

that the simplicity of DPCE can render the theoretical benefits

of PCE void when one adds the actual locking overhead to the

analysis.

VII. CONCLUSION

We have described our implementation of priority ceiling

emulation with hardware support. The added complexity of

supporting priority modifications on locking adds as much

as 20 times the number of cycles to the overall locking

performance compared to only using the hardware locks.

This can result in a theoretically schedulable task set being

practically un-schedulable when switching to priority ceiling

emulation. We also find that PCE is mostly usable with large

critical sections which offset PCE’s overhead.

SOURCE ACCESS

Our implementation of PCE is open source and available at

https://github.com/torurstrom/jop.git on the pce branch.

ACKNOWLEDGMENTS

This work was partially funded by the European Union’s

7th Framework Programme under grant agreement no. 288008:

Time-predictable Multi-Core Architecture for Embedded Sys-

tems (T-CREST).

REFERENCES

[1] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Henties,
J. J. Hunt, J. O. Nielsen, K. Nilsen, M. Schoeberl, J. Vitek,
and A. Wellings, Safety-Critical Java Technology Specification,
Draft, Java Community Process Std., 2014. [Online]. Available:
https://github.com/scj-devel/doc/blob/master/scj-0-100.pdf

[2] C. Pitter and M. Schoeberl, “A real-time Java chip-multiprocessor,”
ACM Trans. Embed. Comput. Syst., vol. 10, no. 1, pp. 9:1–34, 2010.
[Online]. Available: http://www.jopdesign.com/doc/jopcmp tecs.pdf

[3] T. B. Strøm, W. Puffitsch, and M. Schoeberl, “Chip-multiprocessor
hardware locks for safety-critical Java,” in Proceedings of the 11th
International Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2013). Karlsruhe, DE: ACM, October
2013, pp. 38–46. [Online]. Available: http://www.jopdesign.com/doc/
cmphwlocks.pdf

[4] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: an
approach to real-time synchronization,” Computers, IEEE Transactions
on, vol. 39, no. 9, pp. 1175–1185, 1990.

[5] A. Burns and A. J. Wellings, Real-Time Systems and Programming
Languages: ADA 95, Real-Time Java, and Real-Time POSIX, 3rd ed.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[6] M. Schoeberl, “A Java processor architecture for embedded real-time
systems,” Journal of Systems Architecture, vol. 54/1–2, pp. 265–286,
2008. [Online]. Available: http://www.jopdesign.com/doc/rtarch.pdf

[7] M. Schoeberl and J. R. Rios, “Safety-critical Java on a Java
processor,” in Proceedings of the 10th International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES 2012).
Copenhagen, DK: ACM, October 2012, pp. 54–61. [Online]. Available:
http://www.jopdesign.com/doc/jopscj.pdf

[8] M. Schoeberl, T. B. Preusser, and S. Uhrig, “The embedded Java
benchmark suite JemBench,” in Proceedings of the 8th International
Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES 2010). New York, NY, USA: ACM, August 2010, pp. 120–127.
[Online]. Available: http://www.jopdesign.com/doc/jembench.pdf

[9] H. Søndergaard, S. E. Korsholm, and A. P. Ravn, “Safety-critical Java for
low-end embedded platforms,” in Proceedings of the 10th International
Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES 2012). Copenhagen, DK: ACM, October 2012.

[10] V. Yodaiken, “Against priority inheritance,” 2004.
[11] B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev, and J. H.

Anderson, “Real-time synchronization on multiprocessors: To block
or not to block, to suspend or spin?” in Real-Time and Embedded
Technology and Applications Symposium, 2008. RTAS’08. IEEE. IEEE,
2008, pp. 342–353.

271

