
1

Fast, Interactive Worst-Case Execution Time
Analysis With Back-Annotation

Trevor Harmon, Martin Schoeberl Member, IEEE, Raimund Kirner Member, IEEE, Raymond Klefstad,
K.H. (Kane) Kim Fellow, IEEE, and Michael R. Lowry

Abstract—For hard real-time systems, static code analysis is
needed to derive a safe bound on the worst-case execution time
(WCET). Virtually all prior work has focused on the accuracy
of WCET analysis without regard to the speed of analysis. The
resulting algorithms are often too slow to be integrated into the
development cycle, requiring WCET analysis to be postponed
until a final verification phase.

In this paper we propose interactive WCET analysis as a
new method to provide near-instantaneous WCET feedback to
the developer during software programming. We show that
interactive WCET analysis is feasible using tree-based WCET
calculation. The feedback is realized with a plugin for the Java
editor jEdit, where the WCET values are back-annotated to the
Java source at the statement level. Comparison of this tree-
based approach with the implicit path enumeration technique
(IPET) shows that tree-based analysis scales better with respect
to program size and gives similar WCET values.

Index Terms—Real time systems, performance analysis, soft-
ware performance, software reliability, software algorithms,
safety

I. INTRODUCTION

HARD real-time and safety-critical computer systems
have to fulfill strict timing guarantees. Missed deadlines

may have catastrophic consequences. To verify that all dead-
lines are met, the worst-case execution time (WCET) of all
tasks needs to be known. WCET places an upper bound on
the execution time of a given software task. The idea behind
WCET is to make timeliness a property that can be formally
verified through code analysis, rather than simply measured
through experimentation. It yields a provably correct bound
rather than an educated guess.

Most WCET related research has been devoted to improving
the accuracy of WCET estimates, which by definition are
conservative in nature. The literature attacks the problem by
modeling the lengthy pipelines [1], multi-level caches [2],
memory hierarchies [3], branch target buffers [4], and other
sources of unpredictability in modern processors [5], [6].

Despite these efforts, WCET analysis is seldom performed
in industry or even ignored entirely [7], [8]. Formal tools

Manuscript received January 10, 2011; revised July 19, 2011. Accepted for
publication November 3, 2011.

Copyright c©2012 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

The majority of this work was conducted at the University of California,
Irvine, with funding provided by the National Science Foundation’s Grad-
uate Research Fellowship Program. The work was also supported by an
appointment to the NASA Postdoctoral Program at the Ames Research Center,
administered by Oak Ridge Associated Universities through a contract with
NASA.

N
u

m
b

e
r

o
f

m
e

as
u

re
m

e
n

ts
Execution time

Unmeasured
execution
times True maximum

execution time

Maximum
execution
time as

measured

Measurement distribution

Fig. 1. This histogram of execution time for a fictional real-time task
illustrates the weakness of measurement when making claims of predictability.
Performance testing may produce a data distribution like the shown one here,
leading the developer to underestimate the maximum latency of the task.

and techniques for WCET analysis remain unattractive to
many practitioners. There remains a tendency to rely on
measurement and experimentation to make claims about a
system’s predictability. Measurements, however, can only im-
ply predictability; they cannot guarantee it. Unexpected input
data encountered in the field could cause the algorithm to
react more slowly than was measured during testing, as
illustrated in Fig. 1. While this kind of verification may be
suitable for soft real-time systems, measurement is insufficient
when developing hard real-time and especially safety-critical
systems.

The question is why the research community has failed to
make WCET analysis techniques more attractive to industry
practitioners. This disconnect can be traced, at least in part,
to three specific weaknesses in state-of-the-art tools:

Slow performance Virtually all WCET tools focus on
obtaining tight bounds; the speed of computing the answer is
secondary. As a result, finding the WCET of a large program
may require hours or even days of CPU time [6]. Developers
are then compelled to postpone the WCET analysis until a
final verification step. However, fixing timing errors after the
code has been written is expensive, time-consuming, and may
necessitate a redesign of the system.

Low-level environments Current tools operate at a very low
level. They perform WCET analysis of the assembly code, and
there they stop. While the tool may provide a visualization of
the results, as shown in Fig. 2, understanding this visualization
requires understanding the assembly language of the target
processor. Should the processor change, the developer may
have to learn yet another assembly language. Furthermore,

mailto:pubs-permissions@ieee.org

2

Fig. 2. One of the most advanced tools for automated WCET analysis is
aiT. Despite its sophistication, aiT exposes much low-level detail, such as
the source code disassembly shown here. (Screenshot by AbsInt Angewandte
Informatik GmbH; used with permission.)

presenting analysis results at the assembly level can result in
information overload. There is often no need to expose such
a deep and complex analysis at the user interface level. In
practice, the developer only needs to know whether a program
meets its WCET requirements and, if not, where its worst-
case paths lie in the source code. The individual machine
instructions are irrelevant.

No source code mapping Because virtually all WCET
analysis tools operate at such a low level, there is no link
between the tool and the original source code. The tools are
typically self-contained and exist separately from the source
code editor, forcing the developer to mentally map the jumble
of mnemonics and hexadecimal numbers back to the original
source language. This periodic switch between high-level and
low-level thinking not only hampers productivity but also
makes identification of the worst-case path overly difficult.

In short, current tools necessitate a slow, uncoupled style
of development, as there is no feedback during the imple-
mentation phase to indicate whether the code is meeting its
timing constraints. Recent studies have criticized this state of
affairs, noting that today’s tools demand too much manual
intervention [8].

In this paper we propose interactive WCET analysis as a
new method to make exploitation of timing analysis more
efficient. The novelty of the method lies in the provision of
near-instant WCET feedback to the developer during software
programming.

To make the technology of interactive WCET analysis fea-
sible, we focused on selection of the right analysis algorithms
and on the properties of the target platform. We show by means

of a complete implementation, called Volta, that interactive
WCET analysis is feasible using tree-based WCET calculation,
even on a modern pipelined processor with caching enabled.
Volta performs WCET analysis of Java programs at bytecode
level and supports Java processors as target architecture. The
feedback is realized with a plugin of the Java editor jEdit,1

where the WCET values of each statement and compound
structure are back-annotated in the Java source. The tool has
played a role in the validation of spaceflight software, been
adopted for graduate coursework, and served as a platform for
other researchers developing new WCET analysis techniques.

The comparison of the tree-based approach with the implicit
path enumeration technique (IPET, described in Section IV-A)
showed that tree-based analysis scales better and gives similar
WCET values. With an artificial benchmark we observed an
analysis time of five hours with the IPET based analysis
compared to 1.6 seconds with the tree-based analysis.

II. INTERACTIVE WCET ANALYSIS

To resolve these shortcomings, we propose a new approach
that makes WCET analysis interactive. Instead of waiting until
the implementation is complete before starting timing analysis,
the approach incorporates knowledge of worst-case time into
every facet of development. It mandates that WCET analysis
be performed continuously and interactively from the moment
the first line of code is written.

This is a sharp contrast to the current model of developing
real-time systems, in which WCET analysis is performed
only at the verification stage. By integrating automatic WCET
analysis into the implementation process, the feedback loop
tightens, and verification of timeliness becomes faster and
simpler, as shown in Fig. 3. Because it offers the developer
knowledge of worst-case time as the code is written, the
benefits of interactive analysis are twofold. First, by helping to
identify and correct timing problems the moment they emerge,
deadline violations are no longer revealed late in a system’s
life cycle. Second, should the implementation later change to
fix a bug or add a new behavior, the impact of the change
on worst-time time can be seen instantly, without having to
perform an additional and separate verification step.

Fig. 4 shows one example of how the vision of interactive
WCET analysis works in practice. The text annotating the
right-hand side of each statement, as well as each function as
a whole, are called back-annotations. They indicate how much
time the statement consumes in the worst case (for a partic-
ular target processor). Because the WCET tool that inserted
these back-annotations supports interactive analysis, they are
updated in the background automatically and continuously, as
the code is written. These mechanics are similar in nature
to integrated development environments such as Eclipse [9],
in which a compiler runs concurrently in the background to
check source code for syntax errors as it is typed. In a similar
fashion, a WCET analysis tool, if sufficiently fast and imbued
with knowledge of the high-level source language, can run in
parallel with an editor to provide immediate feedback on the
worst-case behavior of the code.

1http://www.jedit.org/

http://www.jedit.org/

3

Validated
programDesign

YesTest
functional

correctness

Is WCET
sufficiently

small?

Switch to
WCET analysis

tool
Write code Wait for WCET

analysis results

Validated
programDesign

Test
functional

correctness

Is WCET
sufficiently

small?
Write code

Traditional Analysis

Interactive Analysis

No

Yes

No

Fig. 3. In the traditional approach to WCET analysis, the developer’s feedback loop is large due to the switching to and from a separate tool that may
require minutes or even hours to finish its work. Interactive analysis tightens this loop and shortens development time by making the WCET algorithms much
faster and integrating them into the development environment.

Line 26

Line 37

Line 33

Line 44

Fig. 4. This screenshot shows an interactive WCET analysis of two alternative
implementations of adding an item to a buffer. The analyzer’s back-annotations
on lines 26 and 37 reveal which version offers better worst-case performance.
(For simplicity, the two functions are shown here as part of the same program,
but at run-time, only one will actually be invoked.)

This technique not only makes timing verification faster, it
can also eliminate mistakes that may arise from false intuition
on the part of the developer, thereby improving the worst-case
response time of the code. For example, one might expect an
append operation to be faster when performed on an array than
on a linked list, given that a linked list requires two pointer
operations for the insertion, while an array involves only a
single pointer copy. (Lines 33 and 44 of Fig. 4 supports this
assumption.) However, if an element must first be removed
to make room for the new one, the array will require the
additional step of shifting up to N − 1 elements, while the
linked list needs only a few extra pointer operations for the
removal. Therefore, two semantically identical functions may
have vastly different—and even counter-intuitive—worst-case
execution times, as shown on lines 26 and 37 of Fig. 4.

Fig. 5. This control system, consisting of a rotary encoder, pulse counter,
and real-time polling software, was assembled as a platform for hardware-in-
the-loop experimentation with interactive WCET analysis.

Interactive analysis brings this knowledge into the imple-
mentation phase, rather than postponing it until some separate
and final verification step, at which point acting upon it may
be too difficult or expensive.

As a representative demonstration of interactive analysis in a
real-world industrial environment, consider the case of polling
a sensor. Determining the maximum frequency at which the
sensor can be polled is a common task in real-time systems.
For example, a design requirement may state that the sensor
must be polled at 20 Hz, but how can one guarantee that the
time taken to read the sensor and process the result will be
sufficiently small to allow this sampling rate?

To show how interactive WCET analysis can solve this
problem, a simple control system was assembled, as illustrated
in Fig. 5. It consists of a DC motor that oscillates an axle
through a 90◦sweep. Attached to this axle is an incremental
rotary encoder (quadrature type) that emits pulses as the
axle oscillates. A pulse counter then records these pulses
to determine the axle’s current position. Finally, real-time
software running on a Java processor, implemented on an
FPGA (Field-Programmable Gate Array), repeatedly polls the
pulse counter and stores each sample in an array buffer.

From a real-time systems perspective, the question is now
this: Can the software loop sustain a 20 Hz sampling rate in
the worst case? Such a question could be answered through
interactive WCET analysis without even assembling the hard-
ware. As the screenshot of Fig. 4 has shown, on line 26, the
polling task requires 68 milliseconds of execution time, or a
maximum frequency of no more than 15 Hz. This is clearly
insufficient for the 20 Hz design requirement.

However, consider storing each sample in a linked list
instead of an array. Again, interactive analysis provides an
answer as soon as the code has been written, with no need
for a hardware-in-the-loop test or even a separate verification
step using an external tool. Fig. 4 shows (on line 37) that

4

the loop’s WCET reduces to about 25 milliseconds, or a
maximum frequency of about 40 Hz. Therefore, the linked list
implementation is guaranteed to satisfy the 20 Hz constraint.

The key observations of this experiment are threefold. First,
knowledge of whether an implementation exceeds a real-
time deadline constraint can be obtained without performing
any live tests. Second, interactive WCET analysis enables a
kind of “what-if” style of programming. A developer can
experiment with different implementations of a function and
quickly compare the impact on the WCET. And third, because
interactive analysis adjusts for changes to the code as they are
made, it can pinpoint exactly when an addition, no matter how
small, causes a deadline to be exceeded.

III. A PLATFORM FOR INTERACTIVE ANALYSIS

Achieving this kind of interactivity requires a rethinking
of the established WCET analysis techniques. Instead of
emphasizing accuracy above all else, factors such as the speed
of the analysis and the ability to map the results to high-level
source code should be emphasized.

To that end, we developed a complete stack of tools and
libraries with which to explore this theme of interactivity.
Fig. 4, for example, is not a mock-up but an actual screenshot
of our WCET tool Volta. All of the techniques demonstrated
in this work have been implemented as a tool suite, complete
with unit tests and documentation, in a project called Volta.2

The entire Volta suite is published under an open-source
license,3 inviting critical comparison and making the reported
experiments repeatable. It is also built in a modular, extensible
fashion to facilitate future research. Volta currently consists of
the following components:

Cascade A hybrid of a decompiler and a control flow
analyzer, Cascade’s purpose is to generate a data structure—
either a control flow graph or a control flow tree—that is
suitable as the input to a WCET analyzer. It supports the
concept of source-annotated control flow information, which
is a prerequisite for mapping WCET analysis results to a high-
level source language.

Clepsydra Built on top of Cascade, the Clepsydra4 tool
performs the actual WCET analysis. It supports a plug-in
architecture (via the Strategy pattern) that allows analysis
algorithms, CPU models, and loop bound detectors to be
swapped cleanly at runtime. More importantly, Clepsydra
includes a novel WCET analysis algorithm that is sufficiently
fast for interactive analysis.

Canteen In hard real-time systems, general-purpose li-
braries pose a special problem, as they are designed with
average-case performance in mind. Canteen is a class library
that demonstrates how to write general-purpose, reusable code
that can still be analyzed by a WCET tool such as Clepsydra.
For the sake of brevity, however, Canteen will not be discussed
further; more information about it can be found in prior
work [10].

2Named after the lake in Ghana, not the physicist from Italy. The nomen-
clature of Volta and its components—Cascade, Clepsydra, Canteen—is meant
to invoke the theme of a controlled flow of water.

3Source code is available for download at http://volta.sourceforge.net/
4A clepsydra is a clock that measures time by the escape of water.

To be sure, the goal of these tools and libraries to support
interactive analysis is both challenging and ambitious. Some
researchers have even argued that industrial-strength WCET
analyzers are simply too difficult to implement, largely due to
the increasing complexity of modern processors [11]. To make
the problem tractable, Volta operates under some simplifying
assumptions about the hardware and software under analysis.

A. Hardware Assumptions

From the hardware perspective, the modern microprocessor
alone is a major obstacle in WCET analysis. Architectural
advancements in processor design—long pipelines, branch
prediction, and complex multi-level caches—have focused on
making the average case as fast as possible. Unfortunately, the
shrinking of this average has not come without cost. While
average execution time may be low, its standard deviation
has grown, resulting in large worst-case times. Theoretically, a
highly sophisticated WCET analyzer could model the flow of
data through this CPU to predict a tighter worst-case time,
but this is a formidable task that is still an open area of
research [12]–[14].

Rather than fight the increasingly hard-to-predict behavior
of modern general-purpose processors, a new strategy is to
build WCET analysis-friendly processors [15]. The approach
is exemplified by specialized processors that understand Java
bytecode as their native instruction set [16]–[18]. These pro-
cessors offer a clear advantage for WCET analysis: Running
bytecode directly on the processor eliminates the need for vir-
tual machines and just-in-time compilation, making execution
time far less variable.

These characteristics make WCET analysis much less com-
plicated while yielding a tighter bound at the same time. For
this reason, Volta assumes that the program under analysis will
execute on a Java-specific processor. It includes, by default, a
model of the Java Optimized Processor (JOP) [17], a fully
functional VHDL soft core that runs on several varieties
of off-the-shelf FPGAs. JOP has been used successfully in
commercial applications [19], [20]. Although Volta’s plug-in
capability allows future support for similar architectures, all
of the empirical results presented in this work were obtained
with JOP as the target.

Although moving to such a new and unusual architecture
may seem drastic, a questionnaire distributed to WCET tool
users in 2003 revealed that 75% of respondents would adopt
a processor with more predictability even if it meant a loss
in average performance [21]. Certainly, the most important
feature of a processor for hard real-time systems is not how
fast it can go but how much it can be slowed down by a series
of unfortunate events.

Furthermore, for the design phase, the main application
area of Volta, it might be appropriate to use conservative
approximations for the execution time of instructions to find
the WCET hotspots. Therefore, also more complex processors
can be used with fast WCET feedback. The final WCET
verification, where analysis time is not the main issue, then has
to be done with the more complex processor model. We are
considering this approach to integrate other Java processors,

http://volta.sourceforge.net/

5

such as picoJava [16] and jamuth [22] into Volta. The idea is
to build (automatically) test programs, measure their execution
time, and then derive a timing model on the level of bytecode
instructions.

B. Software Assumptions

The tools and libraries in Volta analyze code written in Java.
This language has already been adopted for real-time projects
in industry and the military [23], [24], and it is becoming
a more common topic in real-time systems research [25]–
[29]. However, certain run-time characteristics of Java, such
as dynamic class loading, make Java more difficult than other
languages for conducting WCET analysis. Therefore, Volta
places the following constraints on the code under analysis:

• All loop statements must have bounded iterations that are
supplied as source code annotations [30].

• Recursive function calls, exception handling, dynamic
heap allocations, dynamic class loading, and dynamic
dispatch are prohibited. (A simple and safe, though
pessimistic, workaround is to select the maximum WCET
of all possible receivers.)

• Multithreading and interrupt handling are assumed to be
absent. However, concurrency could be achieved through
alternative techniques that are more WCET-friendly, such
as time-triggered scheduling [31].

• The control flow graphs produced by the compiler are
assumed to be reducible, which should always be the case
given that there is no goto statement in the Java source
language.

These requirements may seem exceedingly strict, but they
are not uncommon in hard real-time systems, where timing
guarantees are more important than speed and flexibility.
For instance, industry guidelines for safety-critical software
impose similar limitations on developers [32], and modern
WCET tools typically do not support dynamic memory man-
agement functions and require manual annotations when a loop
bound cannot be automatically determined.

Furthermore, the limitations have not prevented Volta’s use
in various settings. For example, it has been applied in NASA’s
Integrated Vehicle Health Management (IVHM) program for
WCET analysis of Bayesian verification algorithms. It was a
topic of study in a master’s course at the Delft University
of Technology. And other researchers in the field, working
independently, have extended Volta to support new abilities,
such as incremental analysis and recursion.5 Overall, Volta’s
restrictions provide a reasonable tradeoff between analysis
results and analysis efforts.

IV. ACHIEVING FAST, INTERACTIVE WCET ANALYSIS

With these assumptions, the foundation for constructing an
interactive WCET analysis tool is in place. The next step is to
produce a data structure expressing the order of execution of
individual statements—that is, the control flow. The Volta tool

5Kevin Buell and James Collofello. “Worst-Case Execution Time Analysis
of Incremental Changes to Recursive Methods,” in the 3rd NASA Formal
Methods Symposium (in submission).

suite offers an alternative to the (control flow graph) CFG:
a control flow tree [33]. This data structure is similar to an
abstract syntax tree (AST), except it is “concrete” in that it
preserves all machine code, and allows for fast identification
of loop structures.

A. Longest Path Computation in WCET Analysis

Finding an upper bound on the execution time of a task is
normally broken down into three sub-problems: control flow
reconstruction, low-level analysis, and longest path computa-
tion. Cascade already handles the first problem.

The second problem, also known as execution time mod-
eling, assigns to each basic block in the control flow an
execution time. The amount must be derived from a model of
the target processor. With the assumption of Java processors,
the problem reduces to summing the cycle count for each
bytecode instruction in isolation. This is possible because
most bytecodes have a best-case execution time that is identi-
cal to their worst-case execution time, without any pipeline
dependencies between them. On the JOP, for instance, the
cycle count of the GETSTATIC bytecode instruction is always
12+2rws, where rws is the number of wait states for a memory
read. Almost all bytecode timings can be computed with a
simple formula such as this, and therefore execution time
modeling is not an impediment to fast, interactive analysis.

There remains, however, the final step of WCET analysis:
the actual search for the longest path. It can be mapped
to a well-known problem from graph theory: Finding the
maximum flow through a single-source, single-sink directed
acyclic graph. The graph in this case is the control flow graph
of a computer program, and the flow capacity of an edge is
the instruction time of a basic block.

Implicit Path Enumeration Technique: The common ap-
proach to search the longest path is the implicit path enumer-
ation technique, or simply IPET [34]. In IPET the maximum
flow is defined with constraints on the legal flow through the
graph [35]. The paths through the graph are never actually
explored; they are derived implicitly from the constraints, thus
giving the method its name. Accounting for a loop is simply a
matter of adding an additional constraint to bound the amount
of flow—that is, the number of iterations—through the loop.
IPET based WCET analysis tools commonly create linear flow
constraints, which allows integer linear programming (ILP) to
solve the constraint system. IPET is today the most commonly
employed longest path search algorithm in WCET tools, both
commercial and academic, including Bound-T [36], aiT [37],
and Chronos [38].

B. Rethinking the Longest Path Problem

Despite the sophistication and variety of these tools, they
all suffer from a common weakness: Little or no attention is
given to improving the speed of analysis, only its accuracy. In
fact, IPET can be quite slow; it is an NP-hard problem whose
running time grows exponentially with the input size. This
slothful performance makes IPET impractical for the kind of
interactive analysis we envision.

6

IPET is not the only means of finding the longest path
through a program, however. A tree-based approach, also
known as the structural approach, was the basis of the very
first implementations of WCET analysis [33], [39]. It operates
by recursively descending the nodes of a program’s control
flow tree, returning the execution time for each node. When
the algorithm encounters a new node, it decides how to
compute the WCET based on the node’s type. For straight-
line code, the time to execute each instruction is simply
summed. For branches (if and switch statements), the path
whose execution time is highest—the “worst” path—is taken
as the total time. For loops, the maximum number of iterations
is simply multiplied by the WCET of the loop’s body. The
value returned for the root node is then the total WCET.

Despite being relatively easy to implement and understand,
the tree-based algorithm has fallen out of favor in WCET re-
search. It suffers from certain drawbacks, such as a susceptibil-
ity to the “false path” (or “infeasible path”) problem, in which
data dependencies between two if statements can fool the
algorithm into computing an overly pessimistic WCET [40].
In contrast, IPET can eliminate a false path by adding a single
constraint to its ILP formulation.

But tree-based algorithms have a benefit that is not so com-
monly recognized: raw speed. The complexity of a recursive
descent to determine WCET is θ(n), where n is the number
of nodes in the control flow tree. This processing cost of θ(n)
does not include the false-path analysis, i.e., flow information
like loop iteration bounds have to be given as code annotations.
However, this linear running time is clearly superior to the
exponential complexity of IPET. It has the potential to reduce
the longest path search to just a few seconds, making analysis
of real-time software happen in real time.

The challenge, then, is to modify the tree-based technique
so that its accuracy is on a par with comparable ILP-based
techniques. For example, the extension of the tree-based
technique for nested loops has been proposed by Colin and
Puaut [41]. In future work we plan to extend our simple tree-
based calculation to detect and eliminate false paths, which
will provide a user-selectable tradeoff between speed and
accuracy, still faster than ILP-based calculation. Furthermore,
we think of combining tree-based calculation with clustered
IPET-based calculation [42], which is applicable to the local
scopes of flow information. As Volta supports both analysis
methods, this extension shall be straightforward.

C. An Example from JOP’s Dual-Method Instruction Cache

Regrettably, improving the accuracy of tree-based tech-
niques is far from trivial. Handling any kind of dependency
across siblings in the control flow tree is difficult due to the
nature of tree traversal, which restricts the scope of each step
to a locality of nodes. With sufficient effort, though, solving
this tricky situation is still possible. Colin [43], for instance,
describes how a tree-based algorithm can resolve the false path
problem.

As further evidence that a tree-based technique can be as
accurate as its IPET counterpart, at least for certain code
structures, consider the instruction cache implemented in the

JOP. Instead of a traditional block-based cache, JOP’s cache
is method-based [44]; it always stores complete Java methods.
It fills only on an invoke or a return instruction, meaning
that all other instructions are a guaranteed cache hit. JOP can
be configured to store more than one method at a time. For
example, a dual method cache stores two methods at once
using a least-recently used replacement strategy.

While this dual method cache improves performance, it also
complicates WCET analysis. Whether a method invocation is
a hit or miss depends not only on the structure of the program
but on the input data, as well. For certain code structures,
however, the hit ratio can be determined without regard to
input. For example, an invocation of a single method within
a loop is always a hit if the cache can hold two methods
simultaneously.

Schoeberl and Pedersen used this observation to modify
IPET to support dual method cache architectures [45]. They
simply search the CFG for method invocations that are a)
leaf methods—that is, methods that do not invoke any other
method—and b) the only invocation within a loop. For the
dual-method cache, this particular code structure ensures that
all invocations and returns of the leaf method are cache hits
(except of course for the first loop iteration). Accounting for
this special case of an improved hit frequency only requires
adding a small set of new constraints—one set for each
conforming leaf node—to the original ILP formulation.

D. Improving the Accuracy of Tree-based Cache Analysis
The intent of this section is to show an example of how

the tree-based approach can be refined and extended so that it
can produce WCET estimates that are not only as accurate as
IPET but far faster as well, at least for certain code structures.

One way to achieve this result is with a novel two-pass vari-
ation of the standard tree-based approach. When the algorithm
first encounters a loop, it treats any method invocation in this
first pass as a cache miss. Next, the algorithm must correct
this initial WCET estimate to account for method invocations
that are known to be cache hits (e.g., leaf methods). To do so,
it merely performs a second pass over the loop body to search
for these particular invocations and, when one is found, it adds
the incorrect miss penalty—that is, the number of cycles that
would be spent servicing the cache miss—to a running total.
(The algorithm refers to these penalties as “gain times” rather
than penalties because in this context they have a beneficial
impact: They restore the time that was lost due to the overly
conservative cache miss assumption of the first pass.) Finally,
this sum is subtracted from the original estimate to arrive at
the final WCET value for the loop.

Fig. 6 provides a pseudocode listing of this approach.
Note that the second pass occurs in the getGainTime method,
where the search for known cache hits occurs. The actual
determination of cache hits is implicit in the “number of cache
hits of the invocation” statement. Determining this number
requires checking whether the invocation is a leaf method.
If it is, the number of cache hits will equal the loop bound
minus one.

Even with its additional support for cache analysis, the two-
pass variation retains the θ(n) complexity of the original,

7

1 getTotalWCET ()
2 return getWCET(roo t node)
3

4 getWCET(node)
5

6 i f node i s nul l return 0
7

8 i f node i s o f type IF THEN ELSE
9 cyc les = getExprWCET (node . cond i t i ona l exp ress ion) +

10 max(getWCET(node . then branch) ,
11 getWCET(node . else branch))
12

13 else i f node i s o f type LOOP
14 express ion cyc les =
15 getExpressionWCET (node . cond i t i ona l exp ress ion)
16 cyc les = express ion cyc les +
17 (getWCET(node . loop body) + express ion cyc les)
18 ∗ node . loop bound
19 i f every parent node i s not o f type LOOP
20 cyc les −= getGainTime (node . loop body)
21

22 else i f node i s o f type STATEMENT
23 cyc les = getExpressionWCET (node . statement expression)
24

25 return cyc les + getWCET(node . next)
26

27 getExpressionWCET (expression)
28 return sum of CPU cyc les o f a l l i n s t r u c t i o n s i n the
29 basic b lock (assumes a l l i nvoca t i ons are cache misses)
30

31 getGainTime (node)
32 gainTime = 0
33 for a l l c h i l d r e n o f node
34 i f the c h i l d conta ins a method invoca t i on
35 gainTime += number o f cache h i t s o f the invoca t i on ∗
36 cache miss pena l ty
37 return gainTime

Fig. 6. The standard recursive descent algorithm in tree-based analysis cannot
account for method invocations because method cache hits are not constant
across loop iterations. A two-pass variation of the algorithm, shown here in
pseudocode, solves this problem.

where n is the number of nodes in the control flow tree.
An informal proof is as follows: First, assume that the get-
GainTime method is not present. Without it, the getTotalWCET
method is a simple recursive descent of the tree, touching every
node exactly once for a complexity of θ(n). Now consider
the presence of getGainTime. This method is invoked on
every loop and visits all of the loop’s child nodes a second
time. (The conditional on line 17 ensures that, in the case
of nested loops, the nodes are revisited no more than once.)
Even if every node in the control flow tree were a loop, the
additional complexity of getGainTime would be θ(n). The
total complexity of getTotalWCET for the two passes is then
θ(n + n), or θ(n). The algorithm therefore exhibits linear
running time, as empirical evidence in Fig. 9 will corroborate.

E. Qualitative Analysis

To clarify, this tree-based alternative is no panacea. The
algorithm presented here improves WCET accuracy only for
the dual-method cache architecture and only for certain code
patterns. Other kinds of architectures and patterns would
require additional work to devise new algorithms that enhance
the accuracy of the canonical tree-based approach without
sacrificing its speed. This requires more development effort
than IPET on the part of WCET tool authors, but such
is the trade-off: Tree-based approaches are fast but make

Faster

Slower

Method cache support

Infeasible path handling

Longest path search

Triangular loop bounds

IPET tree

M
or

e
im

pl
em

en
ta

tio
n

ef
fo

rt Less im
plem

entation effort

Fig. 7. This matrix offers a qualitative comparison of certain aspects of
WCET analysis, showing approximately where they lie on the spectra of
runtime complexity (faster vs. slower) and difficulty of implementation.

high accuracy difficult to achieve, while IPET is slower but
increasing accuracy is comparatively simpler. For the purpose
of interactive analysis, however, the extra effort of the tree-
based approach is justified.

Fig. 7 provides a visual perspective on these trade-offs.
The matrix shows the location of various aspects of WCET
analysis on the orthogonal spectra of runtime complexity and
difficulty of implementation. For example, the longest path
search of a control flow tree is relatively easy to implement
and executes very quickly, and therefore it lies in the top-
right quadrant of the matrix. By comparison, the longest path
search of a control flow graph is approximately as easy to
implement but requires far more time to execute, and therefore
it lies in the bottom-right quadrant. (Note that this is merely
a qualitative comparison meant to illustrate the relationships
between certain aspects of WCET analysis.)

An ideal WCET tool would have all of its aspects in the
top quadrants (making it suitably fast for interactivity), so we
are faced with two choices: 1) Devote the effort needed to
implement infeasible path handling, cache analysis, etc. for
the tree technique, or 2) make the longest path search of IPET
fast. The latter option means fighting an NP-hard problem,
however. Therefore, we conclude that the former option is
more tractable and more promising.

Here we also have to say that we do not consider the
problem of calculating flow information automatically. While
there are approaches to find many false-path constraints auto-
matically [46], [47], they have a quite considerable running
time. For the smooth interactivity of WCET analysis we
assume that program updates since the last derivation of flow
information have not invalidated them. Of course, whenever
flow information is invalidated, flow information has to be
updated (manually or automatically by a tool).

V. CLEPSYDRA: AN INTERACTIVE ANALYSIS TOOL

To test the performance and accuracy of the two-pass tree
technique, a worst-case execution time analyzer called Clep-

8

Java source
(.java file)

Java compiler

Begin WCET analysis

Java bytecode
(.class file)

JODE decompiler

Timing
strategy

Loop
strategy

Clepsydra

Control
flow
tree

Control
flow

graph

Cascade

Final WCET value

Analysis
strategy

WCET
data

B
ac

k
-a

n
n

o
ta

ti
o

n

Cache
strategy

Fig. 8. This flow chart illustrates how the Cascade and Clepsydra tools
work together to provide interactive WCET analysis with back-annotation,
represented in the figure by a dotted line.

sydra is part of the Volta tool suite. Built on top of Cascade,
it was designed with the goals of interactive analysis in mind:
fast response times, tight integration with development tools,
and a mapping of analysis results to source code.

Fig. 8 provides an overview of how Clepsydra combines
all of these goals into a single coherent process. The anal-
ysis begins when the developer supplies a Java source file,
which is immediately fed into a custom Java compiler that
supports WCET annotations [48]. Cascade then reconstructs
the bytecode output of this compiler into an analysis-friendly
control flow graph or tree. Finally, Clepsydra performs the
actual analysis and produces worst-case timing values, or
back-annotations, for every statement and compound structure
in the decompiled source code. The dotted line in the figure
represents the data flow of back-annotations from Clepsydra’s
analysis results to the source code.

To present the back-annotations in a suitable user interface,
Clepsydra includes an example of an editor plugin, a screen-
shot of which appeared in Fig. 4. This particular example is
based on the programmer’s editor jEdit, but the approach can
be adapted for any editor that allows the contents of its window
to be decorated by a plugin. A ready-to-use implementation
can be found in the Volta distribution. It is the first instance
of interactive integration of WCET back-annotations in a
programming environment.

A. Performance Benchmarks

Given that raw speed is a fundamental requirement of
interactive analysis, the performance of Clepsydra is key.
Constructing control flow data structures and analyzing them

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lo
ng

es
t

pa
th

 s
ea

rc
h

(h
ou

rs
)

Call stack height

Clepsydra (tree technique)
WCA (IPET)
Clepsydra (IPET)

Non-Commenting Source Statements (NCSS)

50 100 140

Fig. 9. This graph compares the running time of the longest path search for
the two-pass tree technique and IPET (Clepsydra and WCA implementations).

quickly has a direct impact on the user’s perceived quality of
the interaction. Therefore, these tasks must be fast enough to
analyze the program as it is written.

To show that tree-based techniques offer superior perfor-
mance over IPET, making them ideal for interactive analysis,
a deliberately simple test program was devised. It consists of a
series of identically structured functions, where each function
has a cyclomatic complexity of three. (For the complete source
code, refer to the Volta distribution.) This code pattern yields a
steadily increasing call stack that mimics the large call stacks
that commonly occur in object-oriented programs.

Fig. 9 shows the time needed for the actual WCET for each
of these functions in turn. For example, the fifth measurement
along the horizontal axis has as its entry point the fifth function
in the program (which calls the fourth function, and so on). All
tests were conducted on a 2.66 GHz Intel Core 2 Duo machine
running Java 1.6.0. In the graph, “tree technique” refers to the
two-pass variation described in Section IV-D, while “IPET”
refers to an ILP-based implementation that relies on lp solve6

to perform the actual equation solving.
To eliminate the ILP solver implementation as a variable

in this experiment, the same measurements were also taken
using an alternative implementation called GLPK,7 but the
performance differences were found to be negligible. To elimi-
nate the IPET implementation as a variable in this experiment,
the same measurements were also taken using WCA [49], the
WCET analysis tool that ships with the JOP distribution. WCA
supports IPET and model checking based WCET analysis, not
the tree technique. The WCA was developed independently of
Volta and acts as an external “control group” to verify that
any sluggishness measured in IPET is not merely the result of
a poor implementation in Clepsydra.

Note that WCA is somewhat faster than Clepsydra’s IPET
due to differences in the control flow graph structure of the two
implementations. Cascade splits each basic block according to
its representative source code statements. (This is necessary
for the back-annotation shown in Fig. 4.) For example, two

6http://lpsolve.sourceforge.net/
7http://www.gnu.org/software/glpk/

http://lpsolve.sourceforge.net/
http://www.gnu.org/software/glpk/

9

Discrete Cosine Transform

Fibonacci

Matrix Count

Matrix Multiplication

Binary Search

Bubble Sort

Cyclic Redundancy Check

Nested Search

Simultaneous Linear Equations

Exponential Integral

Janne Complex

Quicksort (non-recursive)

Insertion Sort

Select Smallest

0 2 4 6 8

7.18

6.84

6.63

6.33

3.80

1.77

1.63

0.86

0.43

0.03

0

0

0

0

Pessimism Ratio

Clepsydra
WCA

Fig. 10. These numbers represent Clepsydra’s pessimism ratio for a variety
of WCET benchmarks. The ratio in each case compares the WCET predicted
by Clepsydra to the true WCET measured in hardware. For comparison, the
figure also shows the benchmarks of the WCA tool, which were identical to
Clepsydra’s in every instance.

successive variable increment statements, such as i++, would
appear in WCA’s CFG as a single node and in Cascade’s as
two nodes. While this does not affect the correctness of the
algorithm, it does slow down the ILP computation due to the
extra constraint variables.

As shown in the graph, all techniques perform well early on,
but starting with function #11 IPET begins to falter. When the
call stack height reaches 14, IPET requires over five hours to
compute its result, while the tree-based alternative completes
in 1.6 seconds. The tree method is thus the best choice for
interactive analysis, even with the overhead of method cache
support.

B. Accuracy Benchmarks

Of course, speed is not the only factor. The tightness,
or accuracy, of the WCET estimation is still a concern. To
evaluate the accuracy of Clepsydra, a set of fifteen WCET
benchmark programs was created. It is based on a similar
suite of benchmarks from the Mälardalen Real-Time Research
Center [50]. Provided in the Volta distribution under a public
domain license, it is intended to serve as a de facto standard
for evaluating any Java-based WCET analysis tool.

Fig. 10 shows the results of running these benchmarks on
Clepsydra. The algorithm was then executed on a physical
JOP (implemented in hardware on an Altera Cyclone FPGA)
with input data that triggers worst-case performance, and
the running time was measured with clock-cycle accuracy.
Finally, this running time was recorded as the true WCET8

and compared to Clepsydra’s prediction as a simple pessimism
ratio: pessimism = predicted−true

true
The results vary widely. Discrete Cosine Transform, Fi-

bonacci, Matrix Count, and Matrix Multiplication exhibit the
ideal behavior of 0% pessimism because they are simple loops.
The Select Smallest benchmark, a complex piece of code
with many nested conditionals and loops, fared the worst at

8Strictly speaking, the true WCET of an arbitrary program cannot be known.
However, the algorithms of Fig. 10 are either simple enough or well-enough
understood that direct measurement can find the true WCET by supplying the
appropriate input data.

more than 700% pessimism. (That is, the time predicted by
Clepsydra was about eight times larger than the actual worst-
case time.)

The poor pessimism for some of these benchmarks is in part
by design. They are intended to stress typical weaknesses that
often afflict WCET analyzers. The Janne Complex benchmark,
for example, has an inner loop whose maximum number of
iterations depends heavily on the outer loop’s current iteration
number. Structural analyzers that ignore data flow, such as
Clepsydra, suffer from this behavior.

Overall, the largest increase in pessimism was often ob-
served to be a result of ineffective loop bound annotations.
The Insertion Sort and Quicksort benchmarks in particular
expose this problem; they also contain inner loops whose
bounds depend on the outer loop’s state. The loop bound
annotation mechanism currently supplied with Clepsydra can
only specify constant bounds, leading to overly conservative
estimates. Future work will focus on adding a more expressive
annotation language. Nevertheless, for the benchmarks that
represent numerical computations typically found in real-time
systems, such as the matrix and DCT benchmarks, the bounds
are quite tight.

It should also be noted that for every one of these bench-
marks, the accuracy of the two-pass algorithm was identical, as
intended, to Schoeberl’s and Pedersen’s IPET implementation.
This result reinforces the claim of Section IV-B that tree-
based analysis algorithms can offer extraordinary increases in
performance while maintaining reasonable accuracy.

VI. RELATED WORK

One of the earliest attempts at interactive analysis came
in 1996 when Ko et al. developed a graphical interface for
a WCET tool [51]. The interface allowed the user to select
a specific portion of source code for analysis, and the tool
would then return the WCET of the selection. The primary
innovation in this work was to allow specification and pre-
sentation of timing predictions at the source code level while
retaining the accuracy of low-level analysis. Back-annotation
was not provided, however, and there was no investigation
into the speed of analysis. Another prototype for an integrated
development environment came from Ribeiro et al. [52]. The
aim was to provide continuity in a real-time software project
through the phases of implementation, debugging, and testing.
A novel feature in the environment was a graphical display of
control flow showing each source code element’s contribution
to the total WCET. This was one of the very first realizations of
back-annotation, although the data was displayed in a separate
window and was not integrated into an interactive source code
editor. There was also no mention of the speed at which the
graphic could be generated.

A step closer toward true back-annotation arrived as a side-
effect of Kirner’s study of optimizing compilers in the context
of WCET analysis [53]. He created a prototype tool chain
to display WCET calculations as static back-annotations into
source code. Kirner et al. also developed true back-annotation
of WCET results into the modeling environments of MATLAB
and Simulink [54], but the WCET calculation method relied
on IPET and was too slow for interactive analysis.

10

From the Java domain, the popular Real-time Specification
for Java (RTSJ) [55] has no provisions for WCET analysis.
Cost measurement and enforcement (defined in the ReleaseP-
arameters class) is strictly an optional facility for RTSJ
implementations. However, the year before RTSJ’s release,
a research prototype called Skånerost explored interactive
analysis in a Java environment [56]. The tool combined WCET
analysis and compilation to provide frequent feedback to
the programmer, updating continuously as the source code
changes. Skånerost made no attempt at back-annotation and
presented analysis results as raw bytecode instructions.

Among commercial WCET analysis tools, RapiTime [57] is
the only product to offer a feature that comes close to back-
annotation. The tool is able to color-code the worst-case path
in the source code. The information does not include the actual
numeric worst-case times, however, and the color-coding is
displayed as part of a static, read-only report.

It is also worth mentioning that our approach of back-
annotated timing analysis results may not be only useful for the
development of real-time system, but helps for performance
optimization as well. There are many other applications of
program analysis back-annotation via an editor plugin to
give the developer feedback about the program. For example,
Fauster et al. has developed a plugin to highlight input-data
dependent program code in order to show variable control
flow [58].

VII. CONCLUSION

The WCET research community has largely failed to ad-
dress certain needs of real-time practitioners. The vast majority
of analysis techniques are concerned only with obtaining a
tight and accurate bound. There has been little attention on
other features that industry desires, such as finding a rough but
adequate WCET estimate very quickly, then back-annotating
those results into the source code. As a result, it is easier
to find reports of unsuccessful attempts at moving real-time
systems theory outside of the academic environment [59].

We have therefore developed an interactive approach to
WCET analysis that provides the developer with nearly instan-
taneous WCET feedback, starting when the first line of code
is written. The interesting question addressed in this paper is
how to make this approach work in practice, given that current
techniques for WCET calculation, such as IPET, are too slow
for instantaneous feedback. Our strategy was to resurrect the
tree-based approach, which had been superseded due to its
inflexibility when specifying flow information or modeling
context-specific instruction timing. However, it remains sig-
nificantly faster than any IPET-based approach and is thus
suitable for interactive analysis. We have further shown that
it is flexible enough to accurately model complex hardware
features such as a method-based cache.

In this paper we also presented a practical WCET analysis
framework for the research processor JOP. Based on our
experience with this tool suite, we conclude that choosing
the right trade-offs at the software level allows fast and
interactive WCET analysis with reasonable accuracy, even on
a pipelined caching processor. Inherently connected with this

approach, however, are the relatively high overestimations in
the event of complex control flow. Despite this drawback,
bringing interactive feedback of WCET information to the
early implementation stages is a necessary improvement for
making WCET analysis more practical to system developers.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
detailed comments that helped to improve the paper.

REFERENCES

[1] J. Engblom, A. Ermedahl, M. Sjoedin, J. Gustafsson, and H. Hansson,
“Worst-case execution-time analysis for embedded real-time systems,”
International Journal on Software Tools for Technology Transfer, vol. 4,
no. 4, pp. 437–455, August 2003.

[2] D. Hardy and I. Puaut, “WCET analysis of instruction cache hierar-
chies,” Journal of Systems Architecture, vol. 57, no. 7, pp. 677–694,
2011.

[3] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 28, no. 7, pp. 966–978, 2009.

[4] D. Grund, J. Reineke, and G. Gebhard, “Branch target buffers: WCET
analysis framework and timing predictability,” Journal of Systems Ar-
chitecture, vol. 57, no. 6, pp. 625–637, 2011.

[5] P. Puschner and A. Burns, “Guest editorial: A review of worst-case
execution-time analysis,” Real-Time Systems, vol. 18, no. 2-3, pp. 115–
128, May 2000.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution time problem—Overview of methods and survey of tools,”
ACM Transactions on Embedded Computing Systems, vol. 7, no. 3, pp.
1–53, April 2008.

[7] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper, “Applying static
WCET analysis to automotive communication software,” in Proceedings
of the Seventeenth Euromicro Conference on Real-Time Systems (ECRTS
2005). Washington, DC, USA: IEEE Computer Society, July 2005, pp.
249–258.

[8] J. Gustafsson and A. Ermedahl, “Experiences from applying WCET
analysis in industrial settings,” in Proceedings of the Tenth IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC 2007). Washington, DC, USA: IEEE
Computer Society, May 2007, pp. 382–392.

[9] E. Gamma and K. Beck, Contributing to Eclipse: Principles, Patterns,
and Plugins. Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc., 2003.

[10] T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad, “Toward libraries
for real-time Java,” in Proceedings of the Eleventh IEEE Interna-
tional Symposium on Object Oriented Real-Time Distributed Computing
(ISORC 2008), May 2008, pp. 458–462.

[11] R. Kirner and P. Puschner, “Discussion of misconceptions about WCET
analysis,” in Proceedings of the Third International Workshop on Worst-
Case Execution Time Analysis (WCET 2003), July 2003, pp. 61–64.

[12] S. Altmeyer and C. M. Burguiere, “Cache-related preemption delay
via useful cache blocks: Survey and redefinition,” Journal of Systems
Architecture, vol. 57, no. 7, pp. 707–719, 2011.

[13] A. Ermedahl, F. Stappert, and J. Engblom, “Clustered worst-case
execution-time calculation,” IEEE Transactions on Computers, vol. 54,
no. 9, pp. 1104–1122, September 2005.

[14] J. Gustafsson and A. Ermedahl, “Merging techniques for faster deriva-
tion of WCET flow information using abstract execution,” in Proceed-
ings of the Eighth International Workshop on Worst-Case Execution Time
Analysis (WCET 2008), Prague, Czech Republic, July 2008.

[15] M. Schoeberl, “Time-predictable computer architecture,” EURASIP
Journal on Embedded Systems, vol. vol. 2009, Article ID 758480, p.
17 pages, 2009.

[16] J. M. O’Connor and M. Tremblay, “picoJava-I: the Java virtual machine
in hardware,” IEEE Micro, vol. 17, no. 2, pp. 45–53, March/April 1997.

[17] M. Schoeberl, “A Java processor architecture for embedded real-time
systems,” Journal of Systems Architecture, vol. 54, no. 1–2, pp. 265–
286, 2008.

11

[18] L. Yan and Z. Liang, “An accelerator design for speedup of Java execu-
tion in consumer mobile devices,” Computers & Electrical Engineering,
vol. 35, no. 6, pp. 904 – 919, 2009.

[19] M. Schoeberl, “Application experiences with a real-time Java processor,”
in Proceedings of the 17th IFAC World Congress, Seoul, Korea, July
2008, pp. 9320–9325.

[20] G. Michel and J. Sachtleben, “An integrated gyrotron controller,” Fusion
Engineering and Design, vol. In Press, Corrected Proof, pp. –, 2011.

[21] R. Wilhelm, J. Engblom, S. Thesing, and D. Whalley, “Industrial
requirements for WCET tools: Answers to the ARTIST questionnaire,”
in Proceedings of the Third International Workshop on Worst-Case
Execution Time Analysis (WCET 2003), July 2003, pp. 39–43.

[22] S. Uhrig and J. Wiese, “jamuth: an IP processor core for embedded Java
real-time systems,” in Proceedings of the 5th International Workshop on
Java Technologies for Real-time and Embedded Systems (JTRES 2007).
New York, NY, USA: ACM Press, 2007, pp. 230–237.

[23] J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Dawson, M. Fulton,
D. Grove, D. Hart, and M. Stoodley, “Design and implementation of
a comprehensive real-time Java virtual machine,” in Proceedings of
the Seventh ACM and IEEE International Conference on Embedded
Software (EMSOFT 2007). New York, NY, USA: ACM, September
2007, pp. 249–258.

[24] A. Armbruster, J. Baker, A. Cunei, C. Flack, D. Holmes, F. Pizlo, E. Pla,
M. Prochazka, and J. Vitek, “A real-time Java virtual machine with
applications in avionics,” Trans. on Embedded Computing Sys., vol. 7,
no. 1, pp. 1–49, 2007.

[25] C. Andreae, Y. Coady, C. Gibbs, J. Noble, J. Vitek, and T. Zhao, “Scoped
types and aspects for real-time Java memory management,” Real-Time
Systems, vol. 37, no. 1, pp. 1–44, 2007.

[26] C. Pitter and M. Schoeberl, “A real-time Java chip-multiprocessor,” ACM
Trans. Embed. Comput. Syst., vol. 10, no. 1, pp. 9:1–34, 2010.

[27] J. J. Hunt, I. Tonin, and F. B. Siebert, “Using global data flow analysis
on bytecode to aid worst case execution time analysis for realtime Java
programs,” in Proceedings of the Sixth International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES 2008). New
York, NY, USA: ACM, September 2008, pp. 97–105.

[28] J. H. Spring, F. Pizlo, J. Privat, R. Guerraoui, and J. Vitek, “Reflexes:
Abstractions for integrating highly responsive tasks into Java applica-
tions,” ACM Trans. Embedded Comput. Syst, vol. 10, no. 1, 2010.

[29] M. Kim and A. Wellings, “Efficient asynchronous event handling in
the real-time specification for java,” ACM Trans. Embed. Comput. Syst.,
vol. 10, pp. 5:1–5:34, August 2010.

[30] T. Harmon and R. Klefstad, “Toward a unified standard for worst-case
execution time annotations in real-time Java,” in Proceedings of the
Fifteenth International Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS 2007). IEEE Computer Society, March 2007.

[31] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, January 2003.

[32] MISRA, MISRA-C: Guidelines For The Use Of The C Language In
Critical Systems. The Motor Industry Software Reliability Association
(MISRA), October 2004.

[33] A. Colin and I. Puaut, “A modular and retargetable framework for tree-
based WCET analysis,” in Proceedings of the Thirteenth Euromicro
Conference on Real-Time Systems (ECRTS 2001). Washington, DC,
USA: IEEE Computer Society, June 2001, pp. 37–44.

[34] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 16, no. 12, pp. 1477–
1487, December 1997.

[35] S. Dasgupta, C. H. Papadimitriou, and U. Vazirani, Algorithms.
McGraw-Hill Higher Education, 2008, ch. 7.

[36] N. Holsti and S. Saarinen, “Status of the Bound-T WCET tool,”
in Proceedings of the Second International Workshop on Worst-Case
Execution Time Analysis (WCET 2002), June 2002.

[37] C. Ferdinand and R. Heckmann, “ait: Worst-case execution time pre-
diction by static program analysis,” in Building the Information Society,
ser. IFIP International Federation for Information Processing. Springer
Boston, 2004, vol. 156, pp. 377–383.

[38] X. Li, Y. Liang, T. Mitra, and A. Roychoudhur, “Chronos: A timing
analyzer for embedded software,” Science of Computer Programming,
vol. 69, pp. 56–67, December 2007.

[39] P. Puschner and C. Koza, “Calculating the maximum execution time
of real-time programs,” Real-Time Systems, vol. 1, no. 2, pp. 159–176,
September 1989.

[40] P. Altenbernd, “On the false path problem in hard real-time programs,”
in Proceedings of the Eighth Euromicro Workshop on Real-Time Systems

(EURWRTS 2006). Los Alamitos, CA, USA: IEEE Computer Society,
June 1996, pp. 102–107.

[41] A. Colin and I. Puaut, “Worst case execution time analysis for a
processor with branch prediction,” RTS, vol. 18, no. 2, pp. 249–274,
May 2000.

[42] A. Ermedahl, F. Stappert, and J. Engblom, “Clustered worst-case execu-
tion time calculation,” IEEE Transactions on Computers, vol. 54, no. 9,
pp. 1104–1122, Sep. 2005.

[43] A. Colin and G. Bernat, “Scope-tree: A program representation for
symbolic worst-case execution time analysis,” in Proceedings of the
Fourteenth Euromicro Conference on Real-Time Systems (ECRTS 2002).
Washington, DC, USA: IEEE Computer Society, June 2002, pp. 50–59.

[44] M. Schoeberl, “A time predictable instruction cache for a Java proces-
sor,” in On the Move to Meaningful Internet Systems 2004, ser. Lecture
Notes in Computer Science, R. Meersman and Z. Tari, Eds., vol. 3292,
January 2004, pp. 371–382.

[45] M. Schoeberl and R. Pedersen, “WCET analysis for a Java processor,” in
Proceedings of the Fourth International Workshop on Java Technologies
for Real-time and Embedded Systems (JTRES 2006), October 2006.

[46] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, “Automatic
derivation of loop bounds and infeasible paths for WCET analysis using
abstract execution,” in Proc. 27th IEEE Real-Time Systems Symposium
(RTSS 2006), Rio de Janeiro, Brazil, Dec. 2006.

[47] T. Chen, T. Mitra, A. Roychoudhury, and V. Suhendra, “Exploiting
branch constraints without exhaustive path enumeration,” in Proc. 5th
International Workshop on Worst-Case Execution Time Analysis, R. Wil-
helm, Ed., Palma de Mallorca, July 2005, pp. 40–43.

[48] T. Harmon, “Interactive worst-case execution time analysis of hard real-
time systems,” Ph.D. dissertation, University of California, Irvine, 2009.

[49] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and B. Huber, “Worst-case
execution time analysis for a Java processor,” Software: Practice and
Experience, vol. 40/6, pp. 507–542, 2010.

[50] J. Gustafsson, “The worst case execution time tool challenge 2006,”
in Proceedings of the Second International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA
2006), Paphos, Cyprus, November 2006, pp. 233–240.

[51] L. Ko, C. Healy, E. Ratliff, R. Arnold, D. Whalley, and M. Harmon,
“Supporting the specification and analysis of timing constraints,” in
Proceedings of the Second IEEE Real-Time Technology and Applications
Symposium (RTAS 1996), Boston, MA, USA, June 1996, pp. 170–178.

[52] J. R. P. Ribeiro, N. C. da Silva, and C. E. Morón, “A visual environment
for the development of parallel real-time programs,” in Proceedings of
the 12th International Parallel Processing Symposium / Ninth Sympo-
sium on Parallel and Distributed Processing (IPPS/SPDP 1998), ser.
Lecture Notes in Computer Science, vol. 1388. Springer Berlin, March
1998, pp. 994–1014.

[53] R. Kirner, “Consideration of optimizing compilers in the context of
WCET analysis,” in Proceedings of the Deutsche Informatiktage 2000,
October 2000, pp. 123–126.

[54] R. Kirner, R. Lang, G. Freiberger, and P. Puschner, “Fully automatic
worst-case execution time analysis for Matlab/Simulink models,” in
Proc. 14th Euromicro Conference on Real-Time Systems, Vienna Uni-
versity of Technology. Vienna, Austria: IEEE, June 2002, pp. 31–40.

[55] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and
M. Turnbull, The Real-Time Specification for Java, G. Bollella, Ed.
Addison Wesley Longman, January 2000.

[56] P. Persson and G. Hedin, “An interactive environment for real-time
software development,” in Proceedings of the Technology of Object-
Oriented Languages and Systems (TOOLS 2000). Washington, DC,
USA: IEEE Computer Society, June 2000, pp. 57–68.

[57] G. Bernat and M. Bennett, “Identifying opportunities for worst-case
execution time reduction in an avionics system,” in Proceedings of the
Twelveth International Conference on Reliable Software Technologies
(Ada-Europe 2007), June 2007.

[58] J. Fauster, R. Kirner, and P. Puschner, “Intelligent editor for writing
WCET-oriented programs,” in Proc. 3rd International Conference on
Embedded Software (EMSOFT’03), Philadelphia, Pennsylvania, USA,
Oct. 2003.

[59] M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving industrial
strength timing predictions of embedded system behavior,” in The 2008
International Conference on Embedded Systems and Applications (ESA
2008), Las Vegas, Nevada, USA, July 2008.

12

Trevor Harmon completed his Ph.D. in 2009 at the
University of California, Irvine, where he received
a Graduate Research Fellowship award from the
National Science Foundation. The following year he
was accepted into the NASA Postdoctoral Program
to expand his research in worst-case execution time.
He also contributed to the NHTSA-NASA Study
of Unintended Acceleration in Toyota Vehicles. Dr.
Harmon is currently a software engineer for Intel
Corporation in Santa Clara, California.

Martin Schoeberl is Associate Professor at the
Department of Informatics and Mathematical Mod-
elling of the Technical University of Denmark. Be-
fore joining DTU, he was Assistant Professor at
the Institute of Computer Engineering of the Vienna
University of Technology.

His research interest is in time-predictable com-
puter architecture and real-time Java. He is a mem-
ber of the expert group for the Safety-Critical Java
Specification. Martin Schoeberl has published more
than 80 refereed conference and journal papers.

Raimund Kirner received his M.Sc. and Ph.D.
degrees from the Vienna University of Technology,
Austria, in 2000 and 2003, respectively. In 2011 he
received his habilitation (Privat-Dozent degree) from
the same institution.

From 2000 to 2010 he worked as a research assis-
tant and assistant professor at the Vienna University
of Technology. There he was principal investigator
of three research projects, working on reliability
of real-time systems, especially worst-case execu-
tion time analysis. In 2010 he became a Principal

Lecturer at the University of Hertfordshire, United Kingdom, working on
embedded and parallel computing. He is the local coordinator there of the
IST-FP7 project Advance. He chaired the program committee of WDES 2006
and WCET 2008 and has been a member of numerous technical program
committees. He is a member of the IEEE Computer Society, the ACM,
the IFIP WG 10.2 (Embedded Systems) and the Austrian Computer Society
(OCG).

Raymond Klefstad received his Ph.D. in 1988
from the Department of Information and Computer
Science at the University of California, Irvine (UCI).
He did research as an Adjunct Professor in the
Department of Electrical Engineering and Computer
Science in the Henry Samueli School of Engineering
at UCI, and he is currently serving as a lecturer
at the University of California, Riverside. His re-
search focuses on computer architecture, middleware
frameworks, and component systems for distributed,
real-time, and embedded computing.

Kwang H. (Kane) Kim passed away on June 2,
2011, after a long illness. He was a professor at the
University of California, Irvine, in the Department
of Electrical Engineering and Computer Science.
Dr. Kim contributed immensely to UC Irvine, to
his field, and to the profession as a whole. He
established the Computer Engineering program at
UCI in 1986 and over the years contributed actively
to its growth. With tremendous passion he planted
and nurtured fruitful pioneering areas of research
and education in real-time computing, fault-tolerant

computing, distributed computing, embedded systems, and related areas.
Professor Kim was greatly respected by his peers for his brilliance, foresight,
persistence, and outstanding accomplishments. He received many awards,
including the prestigious IEEE Technical Achievement Award, the IEEE
Tsutomu Kanai Award, and the SDPS Transformational Award, among others.

Michael R. Lowry serves as NASA’s Chief Scientist
for Reliable Software Engineering. Dr. Lowry has
been principle investigator on advanced software
engineering technologies through NASA Aeronau-
tics and Space R&D programs since 1996. The
major theme of his research has been the automa-
tion of mathematically based methods for software
engineering including generation and verification of
NASA aerospace software systems. He leads human
space research for development of advanced soft-
ware verification tools.

Dr. Lowry received his B.S. and M.S. from MIT and his Ph.D. in 1989
from Stanford University in Computer Science. From 1989 to 1992 he was a
computer scientist at the Kestrel Institute, and was principal investigator on
several projects related to AI and Software Engineering.

Dr. Lowry is an IEEE Automated Software Engineering Fellow with
numerous publications. He serves on the following journal editorial boards:
Springer Journal of Automated Software Engineering, ACM Transactions on
Intelligent Systems and Technology, and Innovations in Systems and Software
Engineering Journal.

	Introduction
	Interactive WCET Analysis
	A Platform for Interactive Analysis
	Hardware Assumptions
	Software Assumptions

	Achieving Fast, Interactive WCET Analysis
	Longest Path Computation in WCET Analysis
	Rethinking the Longest Path Problem
	An Example from JOP's Dual-Method Instruction Cache
	Improving the Accuracy of Tree-based Cache Analysis
	Qualitative Analysis

	Clepsydra: An Interactive Analysis Tool
	Performance Benchmarks
	Accuracy Benchmarks

	Related work
	Conclusion
	References
	Biographies
	Trevor Harmon
	Martin Schoeberl
	Raimund Kirner
	Raymond Klefstad
	Kwang H. (Kane) Kim
	Michael R. Lowry

