InterNoC: Unified Deterministic Communication For
Distributed NoC-based Many-Core

Eleftherios Kyriakakis
Technical University of
Denmark
Kgs. Lyngby, Denmark

elky@dtu.dk

ABSTRACT

Network-on-Chip is a popular paradigm for scalable many-core
communication. There is a trend in modern system-on-chip to in-
tegrate more functionality. This combined with recent research for
network-on-chip in the aerospace industry, gives room for design
space exploration in new architectural paradigms for distributed
and real-time many-core communication. In this paper, we present
InterNoC, a deterministic communication scheme for distributed
network-on-chip many-core that allows for unified IP-based time-
triggered communication. It is hypothesized that such an archi-
tecture will efficiently minimize communication complexity in dis-
tributed many-core systems as well as provide hard-bounded end-
to-end latency guarantees. We extend the real-time multi-core plat-
form T-CREST by introducing a time-triggered NoC-based switch-
ing mechanism combined with a NoC packet to Ethernet frame traf-
fic controller. The proposed architecture will be evaluated in an ex-
perimental InterNoC network that implements a 36-core real-time
system distributed over four FPGA devices.

1. INTRODUCTION

The shift to chip multi-processors (CMPs) in real-time systems
is inevitable as emerging technologies in the field of industrial au-
tomation and industrial internet of things continue to increase the
demand for performance on the edge of the network while main-
taining strict requirements in low power consumption [12]. To
meet these requirements, the number of cores in modern many-
core system-on-chip continues to scale and thus the requirements
on resources and bandwidth of traditional buses become demand-
ing. Network on-chip (NoC) have proven to be a viable solution
for scalable many-core on-chip interconnection as they allow for
efficient all-to-all communication [4]).

Most research in the field of NoC focuses on improving the func-
tional characteristics of the architecture as well as analyzing the ap-
plication mapping strategies to such many-core systems. Over the
years, few works have been presented that discuss the use of NoC
for inter-chip communication, particularly in the field of real-time
systems. In this paper, we envision a prototype network architec-
ture that allows for a unified deterministic communication scheme
for distributed real-time many-core systems. It is hypothesized, that
such an architecture will allow real-time many-core applications
to deploy tasks on cores in a locality agnostic way. Essentially,
a task will execute the same code regardless if it needs to com-
municate with other tasks found on- or off-chip. We identify two
possible ways to extend a NoC over physically distributed CMPs:
1) the local NoC communication (i.e. flits) gets encapsulated in an
inter-chip communication protocol or 2) the Ethernet network pro-
tocols are pulled into the local NoC communication, abstracting
away any on- and off-chip communication details from the appli-

Jens Sparsg
Technical University of
Denmark
Kgs. Lyngby, Denmark

jspa@dtu.dk

Martin Schoeberl
Technical University of
Denmark
Kgs. Lyngby, Denmark

masca@dtu.dk

cation. In this paper, we focus on investigating the implementation
of the second option as it abstracts away from the application any
details about the internal architecture and routing of the NoC and
allows to integrate heterogeneous systems.

The contribution of this paper is a first exploration of the idea
of distributed CMP real-time systems that aims to provide seam-
less and scalable inter-chip time-triggered communication using
the Internet Protocol (IP). It is based on the time-division multi-
plexed NoC architecture Argo, the time-predictable processor Pat-
mos and an Ethernet controller extension. The communication is
realized by implementing a new software abstraction layer between
NoC packets and Ethernet IP frames. Bounded latency guaran-
tees and contention-free communication is achieved by enforcing a
network-wide time-triggered schedule.

The rest of the paper is organized in 7 sections: Section [2] pro-
vides the user with a background of the related work in the field
of NoC-based inter-chip communication. Section 3] provides the
reader with a background on the fundamental components the pro-
posed communication is built on. Section ] presents the proposed
architecture and describes its integration with the T-CREST plat-
form. Section [5] provides a preliminary evaluation of the feasibil-
ity and characteristics of the proposed architecture. Section [] de-
scribes the future scope of this project and the immediate research
focus points. Finally, Section [7]concludes the paper.

2. RELATED WORK

Inter-chip communication has been previously explored in the
context of distributing the processing resources of a NoC and the
following works present different techniques for implementing an
off-chip bridge for NoC system-on-chip [9} |11} 20]. In this work,
we implement Ethernet as the physical link for the inter-chip NoC
communication as it allows for greater interoperability that can take
advantage of different industrial Ethernet technologies. It also fa-
cilitates for software development as applications can communicate
using a single protocol regardless if they are on the same chip or
distributed over multiple devices.

More recently, in [[1]] the authors propose a mixed avionics full-
duplex Ethernet (AFDX) and NoC communication between many-
core applications. The proposed communication model is moti-
vated by real-time use-cases in the field of avionics and health
monitoring the authors investigated different application mapping
strategies concerning the effects of contention on the worst-case
traversal time of communication flows. Moreover, in [2] the au-
thors propose a function mapping strategy in mixed AFDX/NoC
communication that aims to minimize flow contentions and thus
provide bounded jitter.

Another related distributed real-time system is presented in [[19]].
The authors propose and implement the Mock Turtle architecture,



which is based on 32-bit RISC-V processor cores. On-chip com-
munication is provided by a shared memory mechanism while off-
chip communication is implemented using the white-rabbit net-
work [[16]. As shared memory communication does not scale well
and with a cache coherence protocol is hardly time predictable, we
use a NoC for on-chip communication.

Finally, in contrast to previous works the proposed architecture
does not suffer from contention as it is based on a network-wide
time-triggered schedule and a time-division multiplexing (TDM)
NoC design. The software driver handling the time-triggered com-
munication is implemented on the time-predictable Patmos proces-
sor allowing for worst-case execution time (WCET) analysis. The
building blocks of this architecture allow for a bounded end-to-end
communication latency that can be statically calculated as shown
in Section[3l

3. BACKGROUND

This section aims to briefly introduce the existing architecture
components, namely the processor and the NoC architecture, which
the proposed InterNoC design uses for the implementation. Both of
them are part of the open-source research platform T-CREST [13]],
which is an FPGA-based many-core platform that has been devel-
oped for on-going research in real-time applications.

3.1 Argo NoC

Argo [17] is a packet-switched and source-routed NoC that uses
TDM to guarantee bandwidth and latency. It allows for determinis-
tic unicast message-passing communication over virtual channels,
which is implemented using dedicated direct-memory access (DMA)
controllers for each source-end of every virtual channel. The DMAs
are integrated with a TDM mechanism in the network-interface
(NI), eliminating the need for buffering and flow control. Accord-
ing to the TDM schedule, each virtual channel gets a time-slot dur-
ing which it can start sending a message. These time-slots are as-
signed according to a statically scheduled period.

The TDM mechanism is implemented in each Argo NI as TDM
counter. This TDM counter indexes a schedule table that in turn
points to an entry in the DMA table containing the respective coun-
ters and pointers for a DMA access. The NI exposes two interfaces
to the processor core, a configuration interface and a data interface.
The data interface allows the processor to exchange data with the
NI’s dual-port scratch-pad memory. The configuration provides ac-
cess to both the schedule table as well as the DMA controller.

It is worth noting, that Argo supports on-the-fly schedule re-
configuration. This can be done with zero delays experienced by
any on-going messages in a virtual channel communication as de-
scribed in [17]], but using this mechanism is outside the scope of
this work.

3.2 Patmos

Patmos [[15] is a time-predictable WCET-optimized, dual-issue
RISC processor that has been designed with a focus on WCET anal-
ysis. It uses special WCET-optimized instruction and data caches
along with private scratchpad memories for instructions and data.
It is supported by an LLVM-based [[10] compiler, also optimized
for WCET and by the WCET analysis tool platin [6].

The tool platin performs static analysis to compute the WCET
of a certain code segment by using the information generated and
preserved during compilation to determine a control flow graph.
Together with low-level timing information of the processor archi-
tecture, it can calculate a safe WCET bound of the analyzed code
segment.

4. ARCHITECTURE

The architecture of InterNoC is building on top of the statically
scheduled TDM Argo NoC (see Section [3.1), but the communi-
cation concept can be applied to any NoC architecture as long as
it can guarantee bandwidth allocation. Moreover, the NoC cores
are implemented using the Patmos processor, allowing for time-
predictable and statically WCET analyzable execution of software
tasks. This combination allows the proposed architecture to have a
fully deterministic communication scheme.

The proposed architecture defines two types of NoC cores, (1) a
computation core and (2) a gateway core that is interfaced with an
Ethernet controller and is responsible for handling incoming and
outgoing traffic. This is illustrated in Figure [T} where core 0 is
assigned the role of the gateway core.

IP Packet I DA 1P Packet

Ethernet Switch

Ethernet Ethernet
Controller Controller

Local NoC Msg

IP Packet

192.168.1.3 192.168.1.4 192.168.2.3 192.168.2.4

CMP A CMP B

Figure 1: Local and distributed NoC communication concept
over IP

When an application wants to transmit a message it constructs
an IP packet and passes the data to the driver. Consecutively, the
driver checks if the subnet of the requested IP address is on- or
off-chip. If the destination is on-chip it uses the respective NoC
virtual channel and writes the IP packet to the corresponding DMA
to reach the destination computation core. If the destination subnet
IP address is off-chip, the driver uses the respective NoC virtual
channel pointing to the gateway core and writes the IP packet to
the respective buffer.

Each gateway core executes two periodic tasks. The first task
is responsible for collecting incoming IP packets from the on-chip
computing cores, encapsulating them into Ethernet frames and for-
warding them at specific time-slots using the Ethernet controller.
The second task is responsible for polling the Ethernet controller
for incoming IP packets and depending on the destination IP ad-
dress creating the NoC channel and transmitting the incoming IP
packet to the respective NoC node.

Due to the difference in time granularity between the local NoC
schedule and the Ethernet transmission, each gateway core per-
forms a store-and-forward scheme and maintains separate buffers
per NoC channel for the incoming NoC packets, which it needs for
to reconstructs the respective IP packets. For example, if a NoC
packet can transfer a maximum of two words of data (64 bits) per
NoC TDM slot, then the on-chip transmission of a maximum size
Ethernet frame (1518 bytes) requires 190 NoC TDM slots to com-
plete. This is further discussed in Section 5]

All the components of the presented architecture are developed
as open-source and are hosted under the T-CREST project GitHub
repository lhttps://github.com/t-crest/.

S. EVALUATION


https://github.com/t-crest/

This section provides an initial evaluation of the scalability and
feasibility of the presented architecture. The proposed communi-
cation is composed of two types of traffic:

1. Intra-CMP, referring to the on-chip NoC communication

2. Inter-CMP, referring to the off-chip communication that pro-
cessing cores can access via Ethernet.

A full evaluation of the intra-CMP communication for Argo has
been already presented in [[14}18]. In this evaluation, we try corre-
late the results with the proposed IP-NoC abstraction layer’s added
overhead and the additional inter-chip communication scheme.

Figure2]presents the constraints for the inter-chip time-triggered
communication that define the schedule period (length). These are
the total number CMPs, the number of cores per CMP and the num-
ber of frames available for transmission/reception by each core.

|78chedule Periodgl

|‘Core1 | Core 2 |

IP Packet Length\

No. of frames per core

Figure 2: Constraints defining the inter-CMP schedule period

The evaluation is motivated by three industrial Ethernet traffic
classes, defined in [Sf], that specify the schedule period require-
ments. The available bandwidth for inter-CMP communication
is assumed to be 100 Mbps, as this is commonly used in real-
time communication protocols such as the TTEthernet [8]]. Tableﬂ]
presents the number of frames per schedule period that can be ex-
changed using the inter-chip links, by taking into account two types
of frames, 1) full Ethernet frames of 1518 bytes and 2) minimum
Ethernet frames of 64 bytes.

Table 1: Available frames versus inter-CMP schedule period

No. of Frames

Class  Schedule Period (ms) Fullframes — Min_ frames

1 100 833 19531
2 10 83 1953
3 025-1 2-8 48 — 195

In most industrial use-cases the period of real-time traffic con-
straints the frame size. Assuming a hard real-time schedule pe-
riod of 1 ms that aims to cover an all-to-all communication sched-
ule, with min. frame size of 64 bytes (6 bytes of IP payload).
This means that M CMPs containing N cores share a bandwidth
of 195 frames or 1.17 MBps that each carries 6 bytes of IP pay-
load. For example, a system composed of M = 4 then each CMP
has 44 time-slots available for inter-CMP communication. This can
be seen as a trade-off between the number of cores per CMP and the
assigned bandwidth to each CMP core. The application designer is
responsible for minimizing the off-chip communication flows. The
subject of task mapping strategy is outside the scope of this work.

The worst-case traversal time (WCTT) of the proposed archi-
tecture is end-to-end bounded since the Argo NoC operates on a

TDM schedule and the planned inter-CMP communication is time-
triggered. Thus, the WCTT of a packet in the presented architec-
ture can be statically expressed by WCTT,,, in Equation [I] The
WCTT,, is composed of three parts, the worst-case traversal time
of the NoC as WCT T,,c, the worst-case traversal time of the Ether-
net link as WCT T, and the worst-case execution time WCETy;yer
of the abstraction layer that performs the store-forward and the
translation between NoC and IP packets.

The WCTT of the NoC is presented in Equation |2} WCW T, is
the worst-case waiting time that a NoC packet can experience and
is equal to the period of the NoC TDM schedule, Sizejp is the size
of the transmitted/received IP packet, B, is the bandwidth of the
NoC channel, L, is the end-to-end latency of the NoC and T}, is
the NoC schedule period.

Finally, the worst-case traversal time over Ethernet is presented
in Equation[3] The WCWT,, is the worst-case waiting time an Eth-
ernet frame can experience before starting the transmission, Size,,
is the size of the Ethernet frame, B, is the available bandwidth of
the Ethernet connection and Ly, i the Ethernet switch latency.

WCTTpoe = WCT Ty + 2 % (WCTTnoc + WCETdriver) (H

Sizerp
WCT Thoe = WCWThyoc + T * Thoc + Lnoc 2
noc
Sizeern
WCT Torp = WCW Ty, +2 % T + Lywirch (3)
eth

Following is a short example of an experimental setup composed
of four CMPs with nine cores each communicating over a single
Ethernet switch. Assuming a bi-torus topology of the NoC we can
safely assume that the worst-case latency Ly, is equal to one TDM
NoC period. For a 3x3 Argo NoC the schedule period is 10 clock
cycles [14]. Furthermore, we assume that the architecture is im-
plemented on FPGA technology with 80 MHz clock. To calculate
the WCTT,;, between two CMPs, first, we calculate the WCTT
for Min. size IP frame, for each NoC, to be WCT Tp,p = 1.25 us.
Secondly, we calculate the WCTT for Ethernet, assuming B, =
100Mbps and Lyycp, = 3.9 ps [7]. According to Table[T]the system
can support a schedule period of 0.25 ms, where each core is al-
lowed to transmit one frame per period, thus WCT T, = 260.24 us.
Finally, we calculate WCT T, = 266.64 us + WCETyjyer- In fu-
ture works, a WCET analysis of the abstraction layer driver will
allow for the exact calculation of the end-to-end WCTT.

6. DISCUSSION AND FUTURE WORK

The proposed architecture is hypothesized to allow building In-
ternet applications on-top of a deterministic IP-NoC abstraction
layer that efficiently connects distributed real-time CMPs.

We plan to evaluate the communication on an experimental setup
that implements a 36-core architecture distributed over four physi-
cally separate devices, similar to what was visualized in Figure
The system is implemented in four Altera Cyclone IV FPGA de-
vices [3] that each implements a 3x3 NoC and communicate over
Ethernet using a standard off-the-shelf switch. Such a system would
be otherwise impossible to fit on a single FPGA device, something
that emphasizes the importance of this communication scheme for
FPGA-based many-core real-time systems. We plan to implement
the experimental setup on a TTEthernet network and integrate the
off-chip time-triggered communication with the TTEthernet sched-
ule. We will investigate distributed systems schemes such as client-
server, publish-subscribe and remote process call built on top-of-
the presented communication scheme.



Finally, since the abstraction layer implements IP, it allows for
the physical communication link to be extended to other technolo-
gies such as wireless. However, this requires different mechanisms
to guarantee determinism which are outside the scope of this work.

7. CONCLUSION

In this paper, we proposed a new paradigm of unified communi-
cation for NoC-based CMPs. The proposed architecture allows to
minimize communication complexity and improve real-time sys-
tems scalability by extending the TDM Argo NoC using an IP Eth-
ernet frame to NoC packets abstraction layer and a time-triggered
off-chip communication scheme. The presented communication
scheme extends the Argo message-passing library and the devel-
oped software API is statically WCET analyzable as it is imple-
mented on the time-predictable processor Patmos.

A first evaluation of the scalability and design constraints of the
proposed communication was presented. It revealed that an appli-
cation mapping strategy must aim to minimize off-chip communi-
cation links, if hard real-time cycle time needs to be guaranteed.
Furthermore, it was shown that the end-to-end communication de-
lay can be guaranteed in a statically analyzable way.

8. ACKNOWLEDGEMENTS

This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sktodowska-Curie grant agreement No. 764785, FORA—Fog Com-
puting for Robotics and Industrial Automation.

9. REFERENCES

[1] L. Abdallah, J. Ermont, J.-L. Scharbarg, and C. Fraboul.
Towards a mixed noc/afdx architecture for avionics
applications. In 2017 IEEE 13th International Workshop on
Factory Communication Systems (WFCS), pages 1-10.
IEEE, 2017.

[2] L. Abdallah, J. Ermont, J.-L. Scharbarg, and C. Fraboul.
Reducing afdx jitter in a mixed noc/afdx architecture. In
2018 14th IEEE International Workshop on Factory
Communication Systems (WFCS), pages 1-4. IEEE, 2018.

[3] ALTERA. Cyclone IV FPGA Device Family Overview,
March 2016.

[4] L. Benini and G. De Micheli. Networks on chips: A new soc
paradigm. computer, 35(1):70-78, 2002.

[5] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth,

F. Golatowski, D. Timmermann, and J. Schacht. Survey on
real-time communication via ethernet in industrial
automation environments. In Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA),
pages 1-8. IEEE, 2014.

[6] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P.
Puschner. The platin tool kit - the T-CREST approach for
compiler and WCET integration. In Proceedings 18th
Kolloquium Programmiersprachen und Grundlagen der
Programmierung, KPS 2015, Portschach, Austria, October
5-7, 2015, 2015.

[7] Hewlett-Packard Development Company, L.P. ProCurve
Switch 1700 Series, March 2007.

[8] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer.
The time-triggered ethernet (tte) design. In Eighth I[EEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’05), pages 22-33. IEEE,
2005.

[9] E. Kyriakakis, K. Ngo, and J. Oberg. Implementation of a
fault-tolerant, globally-asynchronous-locally-synchronous,
inter-chip noc communication bridge on fpgas. In 2017 IEEE
Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip
(SoC), pages 1-6. IEEE, 2017.

[10] C. Lattner and V. S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In
International Symposium on Code Generation and
Optimization (CGO’04), pages 75-88. IEEE Computer
Society, 2004.

[11] W. H. Minhass, J. Oberg, and I. Sander. Implementation of a
scalable, globally plesiochronous locally synchronous,
off-chip noc communication protocol. In 2009 NORCHIP,
pages 1-5. IEEE, 2009.

[12] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D.
de Dinechin. The shift to multicores in real-time and
safety-critical systems. In Proceedings of the 10th
International Conference on Hardware/Software Codesign
and System Synthesis, pages 220-229. IEEE Press, 2015.

[13] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley,

R. Capasso, J. Garside, K. Goossens, S. Goossens,

S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan,
E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch,
P. Puschner, A. Rocha, C. Silva, J. Sparsg, and A. Tocchi.
T-CREST: Time-predictable multi-core architecture for
embedded systems. Journal of Systems Architecture,
61(9):449-471, 2015.

[14] M. Schoeberl, F. Brandner, J. Sparsg, and E. Kasapaki. A
statically scheduled time-division-multiplexed
network-on-chip for real-time systems. In 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, pages
152-160. IEEE, 2012.

[15] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and
D. Prokesch. Patmos: A time-predictable microprocessor.
Real-Time Systems, 54(2):389-423, Apr 2018.

[16] J. Serrano, M. Lipinski, T. Wlostowski, E. Gousiou,

E. van der Bij, M. Cattin, and G. Daniluk. The white rabbit
project. 2013.

[17] R. B. Sgrensen, L. Pezzarossa, M. Schoeberl, and J. Sparsg.
A resource-efficient network interface supporting low
latency reconfiguration of virtual circuits in time-division
multiplexing networks-on-chip. Journal of Systems
Architecture, 7T4(Supplement C):1-13, 2017.

[18] J. Sparsg, E. Kasapaki, and M. Schoeberl. An area-efficient
network interface for a tdm-based network-on-chip. In
Proceedings of the Conference on Design, Automation and
Test in Europe, pages 1044—1047. EDA Consortium, 2013.

[19] T. Wlostowski, F. Vaga, and J. Serrano. Developing
distributed hard-real time software systems using fpgas and
soft cores. 2015.

[20] Y. Yin and S. Chen. Design and implementation of a
inter-chip bridge in a multi-core soc. In 2009 4th
International Conference on Design & Technology of
Integrated Systems in Nanoscal Era, pages 102-106. IEEE,
20009.



	Introduction
	Related Work
	Background
	Argo NoC
	Patmos

	Architecture
	Evaluation
	Discussion and future work
	Conclusion
	Acknowledgements
	References

