
Experiences from Adjusting Industrial Software for
Worst-Case Execution Time Analysis

Patrick Denzler∗ , Thomas Frühwirth∗† , Andreas Kirchberger∗, Martin Schoeberl‡ and Wolfgang Kastner∗
∗Institute of Computer Engineering, TU Wien, Vienna, Austria

Email: patrick.denzler@tuwien.ac.at, a.kirchberger@kbit.pro, wolfgang.kastner@tuwien.ac.at
†Research Department, Austrian Center for Digital Production, Vienna, Austria

Email: thomas.fruehwirth@acdp.at
‡Department of Applied Mathematics and Computer Science, DTU, Lyngby, Denmark

Email: masca@dtu.dk

Abstract—Worst-case execution time (WCET) analysis is a
prevalent way to ensure the timely execution of programs in time-
critical systems. With the advent of new technologies such as fog
computing and time-sensitive networking (TSN), the interest in
timing analysis has increased in industrial communication. This
paper highlights experiences made while adjusting the publisher
of the open62541 OPC UA stack to enable WCET analysis, fol-
lowing a simple process combined with the open-source platform
T-CREST. The main challenges are the required knowledge about
the code and the specific communication software characteristics
like variable message sizes. Other findings indicate the need
for other types of annotation for indirect recursion or callback
functions. The paper provides the foundation for further research
on adjusting the implementation of existing industrial communi-
cation protocols for WCET analysis.

Index Terms—worst-case execution time, industrial software,
transformation rules, real-time communication, OPC UA

I. INTRODUCTION

Program timing analysis aims to determine the program’s
execution-time characteristics and is mainly used for hard real-
time systems with strict timing requirements [1]. A fundamen-
tal problem of this type of analysis is that the execution time
varies. The cause for those variations is, amongst other things,
changes in input data, as well as the specifics of the software
and the used hardware (i.e., processor, platform).

A well-known timing measure is the worst-case execution
time (WCET) of a program. Commonly used in schedulability
analysis, WCET is studied to ensure that interrupt reaction
and periodic processing times or operating system calls occur
within a specified time-bound. In essence, WCET analysis
determines if a piece of code will execute within its allocated
time budget [1], [2]. Accurate timing and WCET estimates are
vital in the design and verification of real-time and embedded
systems, primarily if used in safety-critical products such as
aircraft, vehicles, or industrial plants [3], [4].

This work has been partially supported and funded by the Austrian
Research Promotion Agency (FFG) via the “Austrian Competence Center for
Digital Production” (CDP) under the contract number 854187. Moreover, the
research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 764785, FORA—Fog Computing for
Robotics and Industrial Automation.

WCET and timing analysis are tool-based and follow dif-
ferent methodologies such as measurements and static analy-
ses [5]. Measurement-based tools are suitable for less time-
critical software, as the focus lies on the average timing
behavior. For time-critical software with tight WCET bounds,
static analysis or some hybrid method is preferable. Most tools
consider the used processor and hardware specifics to obtain
realistic WCET results [6].

The interest in timing analysis has also reached industrial
automation, as it currently changes towards higher integration
and seamless communication. While most industrial systems
do not require exact timing estimations, they still can benefit
the overall system’s performance [7]. Another emerging topic
is end-to-end real-time machine-to-machine communication.
While technological advances such as fog computing, time-
sensitive networking (TSN) [8] and communication protocols
such as OPC unified architecture (OPC UA) [9] provide
the technological means to achieve this goal, the required
predictability of the software parts remains an open issue.
The complexity of the communication protocols and limited
experience with WCET analysis in the automation industry
hinder obtaining reliable timing measures necessary for end-
to-end real-time machine-to-machine communication.

This paper addresses the feasibility of static WCET analyses
of industrial non-real-time communication protocols to sup-
port timing analysis in industrial automation. The outcomes
unveil that manual annotation’s effort strongly depends on
the programmer’s familiarity with the code and used WCET
tool. Exact code and comment guidelines would further ease
the adjustment. Other results show that message sizes in
communication protocols strongly influence the WCET. The
time-predictable platform T-CREST provided the necessary
WCET tools and hardware [6]. Further contributions are a
WCET adjusted publisher of the open-source OPC UA project
open62541 [10], and WCET estimates relevant for ongoing
research in end-to-end real-time machine-to-machine commu-
nication. The evaluation measurements confirm the calculated
WCET results. The introduced adjustment process for WCET
program analysis provides an introduction for programmers
not familiar with the topic.

This paper contains seven sections: the following two sec-
tions present background and related work relevant to the
topic. Section IV introduces the applied process and the
transformation rules followed by a proof of concept and
evaluation in Section V. Section VI discusses the findings and
results, and Section VII concludes the article.

II. BACKGROUND

This section provides background information on WCET
analysis and tools. Interested readers can refer to [1] for a
detailed survey about WCET analysis.

A widely used industry method to determine program timing
is by measurements [5]. This method executes a program
several times with different inputs to measure the execution
time. The results represent a statistical description of the
timing behavior or an approximate WCET value.

A limitation is that each run only follows one program
path; therefore, in most cases where the execution paths
are too numerous, this method is not applicable. In such
cases, the measurements will underestimate the WCET and
require adding safety margins, to try to ensure that the ac-
tual WCET value is less than that bound. However, adding
margins always carries the risk of over and underestimation
and causes either waste of resources or schedulability issues.
Often measurement-based methods use oscilloscopes, logic
analyzers, and in-circuit emulators on the actual hardware to
obtain measurements.

Static WCET analysis is a technique to determine WCET
estimates. This type of method does not execute the program
but statically analyses the timing properties [11]. Such tools
tend to give larger WCET estimates (upper bounds) than
the actual execution time without the need for additional
margins. A typical WCET analysis contains three phases:
a flow analysis to identify the possible program execution
paths, a low-level analysis to estimate times for atomic parts
of the code (e.g., instructions, basic code blocks), and the
calculation phase combines the two previous phases into a
WCET estimation.

Flow analysis focuses mainly on loop bound analysis [12],
[13] since the amount of iterations of a loop affects the WCET
estimates. Modern tools contain methods to determine loop
bounds; however, in most cases, manually adding the loop
bounds is still required. Other features of the flow analysis
are the possibility to identify infeasible paths, i.e., paths which
are feasible in the control-flow graph (CFG), but impossible
when examining the input data values and the semantics of
the program [12].

The low-level analysis takes care of modern hardware’s
combined behavior, with features like pipelines, caches, and
out-of-order execution [6]. Models, e.g., simulators, of the
hardware, are a common way to approach these issues and
make the analysis without the actual hardware possible. How-
ever, accurate models of a processor and hardware can become
complex, sometimes too complex to be usable. Therefore, safe
simplifications of the processor models are needed, leading to
higher WCET bounds.

Overall the combination of flow and low-level analysis
allows the calculation of a WCET bound. As the complexity
of current software and hardware continually increases, there
is a wide range of research activities. The areas span from
integer linear programming (ILP) [14], model checking [15],
and tree-based calculation [12]. Other research directions are
concerned with code conversion to WCET-analyzable single-
path code to improve the execution time [16] or specialized
programming languages [17].

There are various commercially available timing analysis
tools, including aiT (static) [18] from AbsInt or RapiTime
(hybrid) [19] from Rapita Systems and several academic open-
source prototypes, such as T-CREST [6], or SWEET [12].

III. RELATED WORK

The body of knowledge concerned with timing analysis is
considerably large; however, concrete studies on analyzing
industrial software are not widespread. There are studies on
analyzing code for space applications [3], [20], [21], avion-
ics [22], and the automotive industry [4].

Specific in the industrial context, the authors in [23] con-
ducted a case study to find upper time bounds for time-critical
industrial code with static WCET analysis. In their study, the
authors identified practical difficulties when applying current
WCET analysis methods and determined how labor-intensive
the analysis becomes. Similarly, Gustafson et al. [7] sum-
marized their experiences from five different industrial case-
studies using both static and measurement-based tools. They
investigated if current timing analysis methods are suitable for
industrial code and their accuracy. The WCET results show
very high accuracy but required a sound knowledge of the
tool and the code. Also, the effort increases when adding
annotations to create better estimates, especially for complex
code. In [24], the authors tested an automatic flow analysis
method on industrial real-time system code and achieved high
accuracy results. However, all these case studies concern the
analysis of binary code only. A common problem is the need to
provide cumbersome and error-prone manual annotations for
program flow properties at the binary level. Lisper et al. [25],
approached the annotation issue by executing the program flow
analysis on the source level and found that this method can
resolve some program flow constraints on the binary level.

Other authors focused on general WCET challenges. For
example, Sehlberg et al. [26] found that industries in this field
oppose complexities with strict guidelines that exclude lan-
guage constructs that make programs not WCET-analyzable.
Such guidelines are most important for general-purpose lan-
guages such as C. In C, structures such as pointers, recursive
data structures, dynamic memory allocation, assignments with
side effects, recursive functions, and variable-length loops are
known to be an obstacle for WCET [27]. While modern tools
can handle most of such language constructs, some require
reprogramming. Sehlberg et al. [26] concluded that it is rela-
tively easy to obtain loose WCET bounds using analysis tools.
However, the effort increases when more accurate WCET
estimates are required [28].

Port application
to new platform

Generate call
graph and control

flow graph

Apply
annotations[else]

[WCET can
be calculated]

Apply
transformations[else]

[All annotation
rules applied]

Fig. 1. Process for adjusting existing software for WCET analysis

IV. CODE TRANSFORMATION PROCESS

A considerable effort in the WCET community is di-
rected towards automating WCET analysis. The work resulted
in commercial tools like Absint aiT and Rapita Systems
RapiTime but also open-source tools like SWEET and the T-
CREST platform. Although these tools offer significant support
for all necessary steps, determining the WCET cannot be
fully automated. In practice, static WCET analysis of existing
code that has not been written for real-time applications
often requires additional manual work to calculate the WCET.
Furthermore, finding reasonable tight bounds to make the code
applicable in real-time applications may require additional
effort.

The essential steps to prepare an existing program for
WCET analysis have been derived from WCET analysis tools
and combined into the process illustrated in Figure 1. It is
intended to serve as an abstract guide and a helpful starting
point for static WCET analysis. The process consists of (A)
porting the existing code to the new platform, (B) examining
the code structure via the call graph and the CFG, (C) applying
code annotations, and (D) code transformations. The following
paragraphs provide more details on each process step, focusing
specifically on challenges that may arise from conducting
static WCET analysis of existing software.

A. Port application to new platform

Many industrial applications, in particular, if they employ
real-time aspects, are executed on specialized computing
platforms. However, most existing computer programs are
developed for general-purpose processors. Therefore, porting
the application to the target platform is often required as a
preliminary step. Examples for platform-specific functionality
include:

• Network communication
• Hardware access
• Timing and interrupts
• File access
• User interaction via input/output devices

This step of the process results in a program that can be
compiled and executed on the target platform.

CGNode:(main)17

CGNode:(recurse_infinite)13 CGNode:(recurse_function_loop1)10 CGNode:(simple_function)15

CGNode:(recurse_function_loop2)11

CGNode:(recurse_function_loop3)12

Fig. 2. Example of a call graph with direct and indirect recursions

B. Generate call graph and control flow graph

The call graph and the CFG provide a structured overview
of software programs. A call graph visualizes the interdepen-
dencies between functions, as illustrated in Figure 2. Nodes
in the graph represent functions of the program, and directed
edges indicate function calls. A directed edge from node f to
node g shows that f calls g, i.e., g is a sub-routine of f .

On the other hand, the CFG contains program statements
(one or several lines of code) represented as nodes. Directed
edges visualize the control flow between these program state-
ments, as depicted in Figure 3. The CFG is called intrapro-
cedural if it covers a single function, or interprocedural if it
spans across multiple functions.

In the code transformation process, the call graph and the
CFG fulfill two purposes. First, they provide graphical means
to examine the structure of possibly large and complex pro-
grams. This also includes identifying all program parts relevant
for the WCET analysis, as in many industrial applications only
specific functionalities are time-critical.

Second, the call graph and the CFG allow determining
programming constructs that pose a hindrance for WCET
analysis. Thereby, the call graph allows detecting direct and
indirect recursions, which are visible as cycles, as shown
in Figure 2. Likewise, the CFG allows identifying loops,
conditional, and jump statements. They are visible as non-
sequential paths in the CFG, as illustrated in Figure 3.

The programming constructs that do not allow for fully
automated calculation of the WCET need to be addressed
either by adding code annotations or applying code trans-
formation rules. Whether a specific programming construct
requires annotation or transformation depends mainly on the
features of the WCET analysis tool. For example, annotations

unsigned long x0 = s >> 1;

return s;unsigned long x1 = (x0 + s / x0) >> 1;

return x0;x0 = x1;
x1 = (x0 + s / x0) >> 1;

elseif (x0)

while (x1 < x0)

Fig. 3. Example of a control flow graph with condition and loop

to define the minimal and maximal number of loop iterations
are supported by virtually any WCET analysis tool. However,
this is not necessarily the case for recursions. Specifically for
indirect recursions, applying a code transformation rule, e.g.,
replacing the recursion by iterations, may be required.

Programming constructs that pose an obstacle for WCET
analysis were identified by examining the WCET benchmarks
TACLeBench [29], PolyBench [30], and the benchmarks pro-
vided by Mälardalen University [31]. Additional constructs
motivated by practical experience have also been added.

C. Apply annotations
This section contains programming constructs analyzable by

most WCET analysis tools if appropriate code annotations are
added. Depending on the tool, these annotations are added
directly in the source code or in a separate file. In the
following pseudocode examples, the syntax suggested by the
TACLeBench is used.

1) While loop: Repetition (loop) is a fundamental part of
a program’s control structure yet presents a challenge for
WCET analysis. The reason is that the loop condition might
depend on unavailable information during compile time, e.g.,
a configuration file, user input, or sensor data. Therefore, it is
often impossible to automatically calculate a valid and tight
upper bound for the number of loop iterations.

Algorithm 1 (top) shows the annotation that needs to be ap-
plied to enable WCET analysis of a while loop. The idea is to
define the minimum and maximum number of loop iterations
via the code annotation (Pragma). An assert statement may
be added within the loop to ensure that the upper bound is not
exceeded during runtime. This may be required if the loop
bound cannot be determined with absolute certainty by static
value analysis or similar techniques. Violating this assertion
constitutes a WCET violation error. The programmer needs to
implement appropriate error handling measures in such a case.

2) Do-while loop: In do-while loops, the same rules apply
as for while loops with one exception. The minimum loop
bound in Algorithm 1 (middle) must be at least 1 (X ≥ 1)
as a do-while loop is executed at least once. Again, an assert
statement may be required.

3) For loop: Algorithm 1 (bottom) shows the annotation of
a for loop. It is semantically equivalent to the while loop.

4) Recursion: A function that calls itself is said to be
directly recursive. The call graph shows a direct recursion as
a self-referencing node. Algorithm 2 shows the annotation of
a direct recursion.

In contrast, an example of an indirect recursion is a function
f1 calling another function f2, which calls f1. In the call
graph, indirect recursions manifest as a cycle spanning across
multiple nodes. Some WCET analysis tools do not provide an-
notations for indirect recursions. Instead, code transformation
needs to be applied.

D. Apply transformations
The last step in the process is iteratively applying the

transformation rules until the program is WCET-analyzable.
This section presents these transformation rules.

Algorithm 1 Annotations: loops

While loop
. Original code:
while loop condition do

execute loop content
end while

. Code annotated for WCET analysis:
Pragma(”loopbound min X max Y”)

while loop condition do
assert loopbound defined by Pragma is not violated
execute loop content

end while

Do-while loop
. Original code:
do

execute loop content
while loop condition

. Code annotated for WCET analysis:
Pragma(”loopbound min X max Y”)

do
assert loopbound defined by Pragma is not violated
execute loop content

while loop condition

For loop
. Original code:
for initialization; loop condition; iteration statement do

execute loop content
end for

. Code annotated for WCET analysis:
Pragma(”loopbound min X max Y”)

for initialization; loop condition; iteration statement do
assert loopbound defined by Pragma is not violated
execute loop content

end for

1) Recursion: If the WCET analysis tool does not support
the annotation of a recursion, the recursion needs to be
replaced by iterations. As shown in Algorithm 3, a directly re-
cursive function may perform calculations on the state/variable
F . The next step executes the recursive call. Upon completing
the recursive call, calculations on the resulting state/variable
R might be executed.

One general solution to transform a directly recursive func-
tion for WCET analysis is using a stack. The resulting iterative
function consists of two loops; the first adds data to the stack,
and the second retrieves the data back from the stack in a
last-in first-out manner. By determining the maximum stack
size, the loop bound can be defined for the two loops and
the WCET can be calculated. Again, an additional assertion
statements ensure that the loop bounds are not exceeded.

Indirect recursions can be transformed to direct recursions
by replacing the function call with the body of the called func-
tion. This process is called inlining. Considering the example

where f1 calls f2, and f2 calls f1, the function call to f2 can
be replaced by the contents of f2, and vice versa. Algorithm 3
can then be applied to the resulting direct recursions.

Algorithm 2 Annotation: direct recursion

. Original code:
function REC(F)

if termination condition then
return F // base case

else
F := calculations before recursive call
R := REC(F) // solve subproblem
R := calculations after recursive call
return R

end if
end function

. Code annotated for WCET analysis:
if loopbound defined by Pragma is violated then

handle WCET violation error
else

if termination condition then
return F // base case

else
assert recursion depth defined by Pragma is not violated
F := calculations before recursive call

Pragma(”marker recursivecall”)
R := REC(F) // solve subproblem

Pragma(”flowrestriction X*Rec≤Y*recursivecall”)
R := calculations after recursive call
return R

end if
end if

Algorithm 3 Transformation rule: direct recursion

. Original code: cf. Algorithm 2

. Code transformed for WCET analysis:
function RECURSION(F)

Stack S
Pragma(”loopbound min X max Y”)

while base case not reached do
assert loopbound defined by Pragma is not violated
F := calculations before recursive call
S.push(F)

end while
Pragma(”loopbound min X max Y”)

while S not empty do
assert loopbound defined by Pragma is not violated
F := S.pop()
R := calculations after recursive call

end while
end function

2) Function pointer / callback function: Function pointers
and callback functions are very commonly used in C program-
ming. A pointer is a variable that holds the reference of another
variable; function pointers are similar but with the difference
that the reference points to a function. Callback functions are
passed as an argument (function pointer) to other functions for
execution at a given time. In WCET analysis, function pointers
and callback functions are difficult to analyze. The reason is

that it is unknown at compile-time which callback function
will be called. To enable WCET analysis, the programmer
needs to explicitly state the possible callback functions, as
shown in Algorithm 4.

Algorithm 4 Transformation rule: callback function

. Original code:
FunctionPointer cb
function REGISTERCALLBACK(FunctionPtr)

cb = FunctionPtr
end function
function CALLCALLBACK

cb()
end function

. Code transformed for WCET analysis:
FunctionPointer cb
function REGISTERCALLBACK(FunctionPtr)

cb = FunctionPtr
end function
function CALLCALLBACK

assert cb is one of Function0 .. FunctionX
switch cb

case Function0 do
Function0()

case Function1 do
Function1()

case FunctionX do
FunctionX()

end switch
end function

3) Jump table: A jump table is an array of function
pointers. Thereby, the function to be called is selected during
runtime via the array index. The jump table needs to be re-
placed by a switch statement or an equivalent if-else-if chain to
enable WCET analysis. Algorithm 5 shows the corresponding
transformation rule.

Algorithm 5 Transformation rule: jumptable

. Original code:
Array JumpTable[] = {Function0, Function1, FunctionX}
function FUNCTION(I)

JumpTable[I]()
end function

. Code transformed for WCET analysis:
function FUNCTION(I)

assert I is a valid index for the JumpTable
switch I

case 0 do
Function0()

case 1 do
Function1()

case X do
FunctionX()

end switch
end function

4) Non-WCET-analyzable code: Finally, existing software
may contain additional non-analyzable code not covered by
the previous annotation and transformation rules. For example,

if the program uses pre-compiled libraries, the source code
is not necessarily fully available. Relevant parts of such
libraries may or may not be WCET-analyzable, depending on
whether they make use of any non-analyzable programming
constructs. Therefore, it may be necessary to replace pre-
compiled libraries with WCET-analyzable alternatives or re-
implement the required functionality.

Another aspect is that the program may use functions that
are not WCET-analyzable, are infeasible to be transformed
because of their complexity, or result in a WCET bound
that is impractical for the intended application. Examples are
output functions such as printf, blocking input function such as
scanf, and functions regarding the dynamic allocation and de-
allocation of memory such as malloc and free. Such functions
are usually not WCET-analyzable and need to be removed or
replaced. This completes the last step of the process, and the
resulting program should be WCET analyzable.

V. PROOF OF CONCEPT

An industry-relevant use case is chosen as a proof of concept
to demonstrate the process steps and address their practical
difficulties. This section covers the technical background,
additional information, and main findings. Furthermore, it
presents the evaluation setup and WCET results.

A. OPC UA
OPC UA is the successor of the open platform commu-

nications (OPC) protocol and a major standard in industrial
communication. According to Mahnke et al. [9], OPC UA
builds upon two pillars. Firstly, the Meta Model enables
information modeling. Secondly, the Transport Mechanisms
handle the encoding of data and the exchange of messages
between devices. OPC UA offers support for Server-Client
and Publish-Subscribe (OPC UA PubSub) communication
patterns. The Server-Client mechanism is used for invoking
complex services like browsing the information model and
calling methods. The OPC UA PubSub mechanism minimizes
the communication overhead and is primarily intended for
exchanging process data.

The transmission of time-critical messages over the network
can be handled by existing real-time Ethernet protocols like
TSN [32]. However, providing a real-time capable OPC UA
software stack is yet an open challenge. A first step to
address this issue is performing a WCET analysis of existing
implementations of the OPC UA publisher.

OPC UA software stacks are available in a variety of pro-
gramming languages. The open62541 open-source stack [10]
is chosen for this proof of concept because it is one of
the most-sophisticated stacks in terms of supported features,
implements the OPC UA PubSub specification, and is designed
to be easily ported to other hardware platforms. Furthermore, it
is implemented in C, which is well-supported by the T-CREST
project and other WCET analysis tools.

B. Patmos and T-CREST
The Patmos processor [6] was designed to simplify the

determination of the WCET bounds of tasks compared to

general-purpose processors. It builds upon two main mech-
anisms to enable static WCET analysis: a predictable pipeline
design and a predictable memory model. Its in-order execution
dual-issue pipeline requires resolving potential hazards with
the compiler instead of delaying the pipeline entirely at run-
time. Furthermore, its memory architecture allows controlling
the timing of memory accesses due to its predictable function
cache and a software-managed scratchpad area.

Being a non-standard processor, Patmos requires a set of ad-
ditional, specialized software tools, which are provided by the
T-CREST open-source project [33]. The T-CREST project in-
cludes a time-predictable multi-core platform, Patmos-specific
compilers, and a WCET analysis toolchain, including coding
guidelines [34].

C. Port OPC UA to Patmos
According to the proposed process (Figure 1), the first step

is porting the open62541 stack to the Patmos processor. The
stack is built in a very modular way. All platform-specific
functionality is separated from the rest of the software stack
and defined in so-called open62541 architectures. Therefore,
porting the stack to the Patmos processor can easily be
achieved by defining a new open62541 architecture. The only
platform-specific functionality that needs to be implemented is
sending and receiving Ethernet frames via the Patmos-specific
Ethernet library. The open62541 stack can now be compiled
and executed on the Patmos processor. The modified version
of the open62541 stack is available at [35].

The following steps cover the actual WCET analysis of the
real-time-critical parts of the open62541 stack. For the reasons
outlined above, only the parts of the stack handling publishing
and subscribing to messages need to be WCET analyzed to
enable real-time end-to-end data transmission over OPC UA.

D. Generate call graph
The next step of the process is generating the call graph

and the CFG of the time-critical parts of the application. At
the publisher, the UA_WriterGroup_publishCallback
method is the entry point for the WCET analysis. It handles en-
coding and sending the network messages. Therefore, the call
graph for this function is generated. However, the resulting call
graph contains 344 nodes and 698 edges in its original form
and is too extensive to be included in this paper. To provide
an overview of the functions that need to be WCET-analyzed,
Figure 4 depicts the call graph resulting after conducting the
remaining steps of the process.

The CFGs for each of the involved functions can also be
generated using the T-CREST project’s tools. However, they
are too numerous and too complex to be included in this paper.

E. Apply annotations
The T-CREST project supports manual loop bound annota-

tions. Therefore, the functions illustrated in the call graph are
systematically examined and loop bounds are added for each
while, do-while, and for loop.

In some cases, determining the loop bound is relatively
straightforward. However, as the open62541 stack was not

(UA_WriterGroup_publishCallback)172

(UA_LOG_WARNING124)181 (sendBufferedNetworkMessage)202

(UA_LOG_DEBUG)201(UA_PubSubChannelUDPMC_send)32 (UA_NetworkMessage_updateBufferedMessage)396

(UA_LOG_WARNING50)37 (sendto)282

(udp_send_mac)1591

(eth_mac_send)1527

(mem_iowr_byte)1596

(udp_compute_checksum)1588 (ipv4_compute_checksum)1569 (mem_iowr)1595

(eth_iowr)1593 (eth_iord)1594

(mem_iord_byte)1598(mem_iord)1597

(UA_UInt16_encodeBinary)409 (UA_DataValue_encodeBinary)410 (UA_Variant_encodeBinary)411

(UA_encodeBinary)1317

(encodeWithExchangeBuffer)1375

(encodeBinaryNotImplemented)1337

(UInt32_encodeBinary)1323

(Guid_encodeBinary)1328

(UInt16_encodeBinary)1322

(UInt64_encodeBinary)1324

(Byte_encodeBinary)1321

(Boolean_encodeBinary)1320

(UA_encode32)1377 (UA_encode16)1376

(UA_encode64)1378

Fig. 4. Call graph of function UA WriterGroup publishCallback including WCETs

developed for WCET analysis, most loops do not have pre-
defined bounds. For example, an OPC UA message can contain
arbitrarily many data fields. Encoding them in a message
requires iterating over the data structure that holds the cor-
responding values. For such iterations, reasonable limitations
need to be defined (e.g., a message may contain at most two
data fields). Following the specified rules (cf. Algorithm 1)
the Pragma defining the loop bounds and the corresponding
check are added. Table I summarizes how often each loop
annotation had to be applied for the open6541 publisher.

F. Apply transformation rules

T-CREST does not support annotations for recursions.
Therefore, they need to be replaced with iterations as sug-
gested in Algorithm 3.

The next programming constructs that need to be addressed
by their corresponding transformation rule are jumptables (cf.
Algorithm 5). The open62541 stack utilizes these quite heavily,
e.g., to call the corresponding function for encoding each of
the data fields depending on their data types.

Finally, there are two more programming constructs that
fall into the category of non-WCET-analyzable code (cf. Sec-
tion IV-D). Firstly, the open62541 logging mechanism is dis-
abled. Per default, it outputs messages to the console via printf,
which is not WCET analyzable. Secondly, the open62541
stack contains an implementation to encode floating-point
values following the IEEE 754 standard. Although a value
for the WCET can be calculated by applying the annotation
rules for this function, the number of nested loops results in a
theoretical WCET that is too high to be applicable in practical
applications. However, the Patmos processor (as many other
processors) already uses the IEEE 754 encoding. Therefore,
the function can be replaced by copying the data value’s in-
memory representation to the message’s corresponding data
field. Table I summarizes how often each of the transformation
rules had to be applied for the open62541 publisher.

TABLE I
PROGRAMMING CONSTRUCTS AND NUMBER OF OCCURRENCES FOR THE

UA WRITERGROUP PUBLISHCALLBACK FUNCTION

Programming construct Number of occurrences
While loop 1
Do-While loop 0
For loop 1
Indirect recursion 1
Jumptable 1
Other, non-WCET-analyzable code 6

G. Evaluation

The WCET analysis tool platin included in the T-CREST
project can now be used to determine the WCET of
the UA_WriterGroup_publishCallback method. The
WCET bound for encoding and publishing a single data value
on the Patmos processor is 18,550 processor cycles. At a clock
rate of 80 MHz, this corresponds to a WCET of 231.875 µs.

To verify these values, a single-core Patmos processor is
instantiated on an Altera DE2-115 development board featur-
ing a Cyclon IV FPGA. The theoretical WCET is empirically
verified using two different techniques.

Firstly, the Patmos processor provides programmatic access
to its clock cycle counter via the corresponding register. Thus,
the difference between the clock cycle counter before and after
executing the UA_WriterGroup_publishCallback is
utilized to determine the execution time. Secondly, to exclude
possible problems with the hardware and the configuration
(e.g., a mismatch of the expected clock speed), the develop-
ment board is connected to a basic logic analyzer for external
timing measurements. The measurement setup is depicted in
Figure 5. It performs the following steps:

1) Store the clock cycle counter value (start timestamp)
2) Set a general purpose input/output (GPIO) pin to high

(set GPIO pin)
3) Execute the method (UA WriterGroup publishCallback)

Logic Analyzer

FPGA Board DE2-115
(Development Hardware)

UA_WriterGroup_
publishCallback

Reset
GPIO

pin

Set
GPIO

pin

GPIO

Probe input

1 2 n-1 n0

1

execution
time 1

Program flow

Samples execution
time 2

execution
time n-1

execution
time n

Start
clock
tick

End
clock
tick

Fig. 5. Evaluation setup used to obtain execution time measurements

4) Set a GPIO pin to low (reset GPIO pin)
5) Store the clock cycle counter value (end timestamp)
A logic analyzer samples the pin at a frequency of 24 MHz.

Furthermore, the difference between the end clock tick and the
start clock tick is recorded to the console. This is repeated
n = 1000 times. Figure 6 depicts the distribution of the
execution times for publishing a 32 bit integer value measured
via the logic analyzer and the clock cycle counter. The
average measured execution times are about 138.65 µs and
139 µs, respectively. The execution times measured by the
logic analyzer are about 0.35 µs lower than the values obtained
via the clock cycle counter. This offset is expected and caused
by the additional time required to set and reset the GPIO pin.

0

50

100

150

200

250

300

350

400

450

500

550

600

138.3 138.4 138.5 138.6 138.7 138.8 138.9 139.0 139.1 139.2 139.3 139.4 139.5

#
sa

m
pl

es

usec

Evaluation results (logic analyzer) Evaluation results (clock cycle counter)

Fig. 6. Histogram of the evaluation results obtained via the logic analyzer
(orange) and via the clock cycle counter (red)

The highest value measured by the logic analyzer in this
test is 138.74 µs. Thus, the theoretical WCET is approximately
67 % higher than the execution time obtained by the measure-
ments. This is well in line with the results of other studies
analyzing industrial software, e.g. [7]. Nevertheless, it depends
on the specific application if these values are acceptable or if
additional effort needs to be spent to obtain a tighter WCET
bound.

VI. DISCUSSION

The proof of concept demonstrates the feasibility of adjust-
ing an industrial communication protocol to enable time anal-
ysis based on the introduced structured process and the open-
source T-CREST toolchain. However, one limitation is that
the Patmos is a non-standard processor specifically designed
to simplify the determination of WCET bounds. The timing
behavior of the program on an off-the-shelf processor might
differ from the obtained results. Nevertheless, the measured
execution times validate the calculated WCET value and
provide a starting point for non WCET specialists to continue
analyzing other protocols. Based on the publicly available
modified publisher [35] of the open62541 stack, other parts
of the stack can be adjusted to get closer to an end-to-end
real-time machine-to-machine communication.

Additionally, the proof of concept confirmed the main
finding of previous research that a significant adjustment effort
lies in the manual annotation [7], [28]. However, the effort
also depends on how well the programmer is familiar with
the code and the WCET toolchain, also mentioned in [23].
In the case of the OPC UA publisher, understanding the
different contributors’ programming styles and the general
code complexity increased the effort significantly. Adjusting
the publisher took around eight working weeks, including
getting to know the T-CREST environment. The actual time
spent on applying the annotations and the code transformations
was only a small part. Clear guidelines for programming
WCET-analyzable code would undoubtedly reduce the effort
substantially, as indicated by Sehlberg et al. [26].

Specifically, for the OPC UA publisher, there is nearly no
dependency on global data structures, contrarily as reported
in [24] for embedded systems. The reason is that there are
no global values that external program parts can change, and
loops do not contain any break statements, nor are variables
involved in the loop condition that are manipulated within the
loop. However, as message sizes in communication protocols
vary, the loop bounds depend primarily on the input data.
Additionally, the open62541 stack uses jump tables to encode
data fields depending on their type and special encodings
for floating points values. Other authors did not report such
constructs as a significant issue [7], as in the WCET com-
munity such code constructs are generally not recommended.
In contrast, the publisher does not use dynamic memory
allocation, quite common in other software types.

A practical outcome of the proof of concept is that it makes
sense not to adjust the code permanently, instead use macros to
enable and disable the WCET adjustments or take advantage
of WCET tools that provide code annotations in separate files.
Such an approach enables using existing programs for real-
time applications while minimizing the effects on productive
code. Moreover, whenever possible, the use of annotations
over transformations should be preferred. There is undoubtedly
a need for additional control flow restrictions (pragmas) for all
programming constructs like indirect recursion and callback
functions in most WCET toolchains.

VII. CONCLUSION

The paper presents obtained experiences when adjusting
a part of an open-source industrial middleware for WCET
analysis. With a simple process and the open-source T-CREST
platform, it was possible to achieve representative WCET
values, confirmed by actual measurements. While the annota-
tion and transformation of the OPC UA publisher were time-
consuming, the knowledge about the code and the platform
became as important. The obtained results are the foundation
for further studies on industrial communication software to
allow time-critical communication.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem—Overview of Methods and Survey of Tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, 5 2008.

[2] P. Puschner and A. Burns, “A Review of Worst-Case Execution-Time
Analysis,” Real-Time Systems, vol. 18, no. 2/3, pp. 115–128, 2000.

[3] N. Holsti, T. Langbacka, and S. Saarinen, “Using a worst-case execution
time tool for real-time verification of the DEBIE software,” Proceedings
of DASIA 2000 Conference (Data Systems in Aero- space 2000, ESA SP-
457), vol. 457, pp. 307–312, 2000.

[4] P. Montag, S. Görzig, and P. Levi, “Challenges of Timing Verification
Tools in the Automotive Domain,” in Second International Symposium
on Leveraging Applications of Formal Methods, Verification and Vali-
dation (isola 2006), 2006, pp. 227–232.

[5] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, “A
Survey of WCET Analysis of Real-Time Operating Systems,” in 2009
International Conference on Embedded Software and Systems, 2009, pp.
65–72.

[6] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and D. Prokesch, “Pat-
mos: a time-predictable microprocessor,” Real-Time Systems, vol. 54,
no. 2, pp. 389–423, 2018.

[7] J. Gustafsson and A. Ermedahl, “Experiences from Applying WCET
Analysis in Industrial Settings,” in 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing
(ISORC’07), 2007, pp. 382–392.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New York,
NY, USA: Association for Computing Machinery, 2012, pp. 13–16.

[9] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture.
Springer Science & Business Media, 2009.

[10] F. Palm, S. Grüner, J. Pfrommer, M. Graube, and L. Urbas, “open62541-
der offene OPC UA-Stack,” 5. Jahreskolloquium “Kommunikation in der
Automation”(KommA 2014), 2014.

[11] P. Puschner and C. Koza, “Calculating the maximum execution time of
real-time programs,” Real-Time Syst., vol. 1, no. 2, pp. 159–176, 1989.

[12] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, “Automatic
Derivation of Loop Bounds and Infeasible Paths for WCET Analysis
Using Abstract Execution,” in 2006 27th IEEE International Real-Time
Systems Symposium (RTSS’06), 2006, pp. 57–66.

[13] M. de Michiel, A. Bonenfant, H. Casse, and P. Sainrat, “Static Loop
Bound Analysis of C Programs Based on Flow Analysis and Abstract
Interpretation,” in 2008 14th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications, 2008, pp.
161–166.

[14] B. Lisper, “Fully Automatic, Parametric Worst-Case Execution Time
Analysis.” WCET, vol. 3, pp. 77–80, 2003.

[15] S. Wilhelm, “Efficient analysis of pipeline models for WCET com-
putation,” in 5th International Workshop on Worst-Case Execution
Time Analysis (WCET’05). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2007.

[16] D. Prokesch, P. Puschner, and S. Hepp, “A Generator for Time-
Predictable Code,” in Proceedings - 2015 IEEE 18th International
Symposium on Real-Time Distributed Computing, ISORC, 2015, pp. 27–
34.

[17] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee, “Predictable Programming on a Precision Timed Architecture,”
in Proceedings of the 2008 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems. New York, USA:
Association for Computing Machinery, 2008, pp. 137–146.

[18] AbsInt, “ait,” Available at https://www.absint.com/ait/, 2021.
[19] Rapita Systems, “Rapitime,” Available at https://www.rapitasystems.

com/products/rapitime, 2021.
[20] N. Holsti, T. Långbacka, and S. Saarinen, “Worst-case execution time

analysis for digital signal processors,” in 2000 10th European Signal
Processing Conference. IEEE, 2000, pp. 1–4.

[21] M. Rodrı́guez, N. Silva, J. Esteves, L. Henriques, D. Costa, N. Holsti,
and K. Hjortnaes, “Challenges in Calculating the WCET of a Complex
On-board Satellite Application.” in Proceedings of 3rd International
Workshop on Worst-Case Execution Time Analysis (WCET’2003), 2003.

[22] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langen-
bach, R. Wilhelm, and C. Ferdinand, “An abstract interpretation-based
timing validation of hard real-time avionics software,” in Proceedings
of the IEEE International Conference on Dependable Systems and
Networks (DSN), 2003, pp. 625–632.

[23] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper, “Applying
static WCET analysis to automotive communication software,” in 17th
Euromicro Conference on Real-Time Systems (ECRTS’05), 2005, pp.
249–258.

[24] D. Barkah, A. Ermedahl, J. Gustafsson, B. Lisper, and C. Sandberg,
“Evaluation of Automatic Flow Analysis for WCET Calculation on
Industrial Real-Time System Code,” in 2008 Euromicro Conference on
Real-Time Systems, 2008, pp. 331–340.

[25] B. Lisper, A. Ermedahl, D. Schreiner, J. Knoop, and P. Gliwa,
“Practical experiences of applying source-level WCET flow analysis
to industrial code,” International Journal on Software Tools for
Technology Transfer, vol. 15, no. 1, pp. 53–63, 2013. [Online].
Available: https://doi.org/10.1007/s10009-012-0255-9

[26] D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper, and S. Wiegratz,
“Static WCET Analysis of Real-Time Task-Oriented Code in Vehicle
Control Systems,” in Second International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (isola
2006), 2006, pp. 212–219.

[27] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson,
P. Marwedel, J. Reineke, C. Rochange, M. Sebastian, R. V. Hanxle-
den, R. Wilhelm, and W. Yi, “Building Timing Predictable Embedded
Systems,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 4, 03 2014.

[28] M. Platzer and P. Puschner, “A Real-Time Application with Fully Pre-
dictable Task Timing,” in Proceedings - 2020 IEEE 23rd Int. Symposium
on Real-Time Distributed Computing, ISORC, 2020, pp. 43–46.

[29] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in 16th International Workshop on Worst-Case Execution
Time Analysis (WCET 2016), ser. OpenAccess Series in Informatics
(OASIcs), M. Schoeberl, Ed., vol. 55. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2016, pp. 2:1–2:10.

[30] L.-N. Pouchet, “PolyBench/C,” Available at https://web.cse.ohio-state.
edu/∼pouchet.2/software/polybench/ , 2021.

[31] Mälardalen Real-Time Research Center, “WCET Benchmarks,”
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html, 2021.

[32] D. Bruckner, M. Stănică, R. Blair, S. Schriegel, S. Kehrer, M. See-
wald, and T. Sauter, “An Introduction to OPC UA TSN for Industrial
Communication Systems,” Proceedings of the IEEE, vol. 107, no. 6, pp.
1121–1131, 2019.

[33] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva, and J. Sparsø, “T-CREST:
Time-predictable multi-core architecture for embedded eystems,” Jour-
nal of Systems Architecture, vol. 61, no. 9, pp. 449–471, 2015.

[34] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P. Puschner, “The
platin tool kit - the T-CREST approach for compiler and WCET
integration,” in Proceedings 18th Kolloquium Programmiersprachen
und Grundlagen der Programmierung, KPS 2015, Pörtschach, Austria,
October 5-7, 2015, 2015.

[35] A. Kirchberger and M. Schoeberl, “Readme [Source code],”
https://github.com/t-crest/rt-ua, 2021.

