
A Controller for Dynamic Partial Reconfiguration
in FPGA-based Real-Time Systems

Luca Pezzarossa, Martin Schoeberl, and Jens Sparsø
Department of Applied Mathematics and Computer Science

Technical University of Denmark, Kgs. Lyngby
Email: [lpez, masca, jspa]@dtu.dk

Abstract—In real-time systems, the use of hardware acceler-
ators can lead to a worst-case execution-time speed-up, to a
simplification of its analysis, and to a reduction of its pessimism.
When using FPGA technology, dynamic partial reconfiguration
(DPR) can be used to minimize the area, by only loading those
accelerators that are needed at any given point in time. The
DPR controllers provided by the FPGA vendors satisfy a wide
range of requirements and rely on software to manage the
reconfiguration. This approach may lead to slow reconfiguration
and unpredictable timing. This paper presents an open-source
DPR controller specially developed for hard real-time systems
and prototyped in connection with the open-source multi-core
platform for real-time applications T-CREST. The controller en-
ables a processor to perform reconfiguration in a time-predictable
manner and supports different operating modes. The paper also
presents a software tool for bitstream conversion, compression,
and for reconfiguration time analysis. The DPR controller is
evaluated in terms of hardware cost, operating frequency, speed,
and bitstream compression ratio vs. reconfiguration time trade-
off. A simple application example is also presented with the scope
of showing the reconfiguration features of the controller.

I. INTRODUCTION

In general purpose systems, the main benefit gained from
using reconfiguration is the speed-up of the average-case
execution time obtained with the hardware acceleration of
specific tasks of an application. In real-time systems, such
average-case speed-up is not in itself relevant, since it is the
worst-case execution time (WCET) of tasks that determines the
ability of the system to respond in time. However, the use of
hardware accelerators and co-processors may lead to a reduction
of the WCET, simplification of the WCET analysis, and a
reduction of its pessimism. In [1], we discussed and briefly
explored the idea of using dynamic partial reconfiguration in the
context of operational mode changes in hard real-time systems.
This paper provides more details on the required hardware
infrastructure and it includes a comprehensive evaluation of
the cost and performance of the approach.

Dynamic partial reconfiguration (DPR) is typically supported
by controllers provided by the FPGA vendors. These con-
trollers target general-purpose architectures and are therefore
developed to satisfy a wide range of requirements leading to
large hardware implementations. Moreover, these controllers
rely on software libraries and processor support to manage
the reconfiguration, resulting in slow reconfiguration and to
unpredictable timing. This is not suitable for hard real-time
systems for embedded applications, which typically requires

predictable hardware/software interfacing. In addition, a smaller
hardware footprint is attractive.

This paper presents a lightweight real-time DPR controller,
called RT-ICAP, to be used with the internal configuration
access port (ICAP) of Xilinx FPGAs. The controller is time-
predictable and has a low hardware cost. It enables a processor
to write into the FPGA configuration memory through the
ICAP interface in two different operating modes: (1) one
driven by a host CPU and (2) one driven by the RT-ICAP
controller itself. In addition, our RT-ICAP controller supports
run-length encoding to compress the bitstreams, in addition to
the default compression provided by the FPGA vendors’ tools.
This leads to interesting trade-off between compression and
reconfiguration time, discussed in the evaluation section.

The paper also presents the software tool needed to translate
the partial bitstreams produced by the FPGA vendors’ tools
into a format that is compatible with the controller and to
perform the reconfiguration time analysis. The architecture
is evaluated and compared with other controllers in terms
of hardware cost, operating frequency, reconfiguration speed,
bitstream compression ratio, and worst-case reconfiguration
time. An application example is also presented aiming to show
the reconfiguration features of the controller, how DPR can
lead to a more efficient usage of the FPGA resource, also
providing WCET numbers. This architecture is open-source
and it is prototyped using the multi-core platform for real-
time applications T-CREST [2]. However, it can be easily
used by other time-predictable architectures (including FPGA-
based acceleration devices) where a small hardware footprint
of the controller and time-predictable reconfiguration are strong
requirements.

This paper has two main contributions: (1) it presents
the hardware architecture of a lightweight time-predictable
reconfiguration controller and (2) it presents a software tool
for bitstream manipulation and reconfiguration time analysis,
to support the controller.

This paper is organized in six sections: Section II presents
related work on controllers and infrastructures used for dy-
namically reconfigurable systems. Section III gives a brief
background on T-CREST, on DPR, and on reconfiguration in
real-time systems. Section IV presents the hardware/software
infrastructure developed to support reconfiguration. Section V
present the evaluation of this infrastructure. Finally, section VI
concludes the paper.



II. RELATED WORK

The XPS HWICAP reconfiguration controller [3], provided
by Xilinx, is an IP core designed to be connected to the
processor local bus [4] and it provides the support for DPR
using a set of software functions provided in processor-specific
libraries. The AXI HWICAP controller [5] by Xilinx delivers
the same functionality as the XPS HWICAP controller, but
it can be interfaced to the AXI4-Lite bus [6]. The associated
software library, (currently provided for the MicroBlaze [7] and
the PowerPC [8] processors) allows an application programmer
to write and read configuration bitstreams, and it enables the
modification of single look-up tables and flip-flop properties.

Other reconfiguration controllers managed by the soft-
ware running on a processor are presented in [9]. The
work presents and investigates the performance of three con-
troller architectures, named MST HWICAP, DMA HWICAP,
and BRAM HWICAP, strongly inspired by the Xilinx
XPS HWICAP controller, and therefore very similar in terms
of functionality.

The ZyCAP controller [10] is a custom controller for
processor/FPGA hybrid platforms, such as the Xilinx Zynq.
The ZyCAP controller is connected to the hardcore processor
through the AXI4-Lite bus and to the system memory through
the AXI4 bus [6] (where the bitstreams are stored). A
direct memory access controller loads the bitstream during
reconfiguration using the ICAP interface. Software drivers are
associated with the controller and allow the hardcore processor
to manage the reconfiguration process.

For all the above mentioned controllers, most of the
functionality is provided by software executing on a processor
that reads from or writes to the controller interface. These
frequent accesses to the controller through the system bus
affect the reconfiguration speed and may increase the WCET
pessimism, since I/O functions may be difficult to analyze.
Moreover, for the Xilinx controllers, the source code is not
provided and only netlists are available, making it impossible to
perform WCET analysis. In our solution, we aim to minimize
the interaction between the processor and the DPR controller,
in order to increase time predictability.

Another class of controllers reconfigure in an autonomous
fashion, somewhat similar to a direct memory access controller.
The PRC controller [11], provided by Xilinx, is an IP core
designed to independently manage DPR in reconfigurable
designs targeting the Xilinx 7 series FPGAs. The controller is
interfaced to a processor through the AXI4-Lite bus [6]. When
it receives a software or hardware trigger, it can independently
manage the reconfiguration of multiple regions by reading
bitstreams from a memory connected to the AXI4-Lite bus
and writing these into the ICAP interface. Also for this Xilinx
controller, only the netlist is available.

The DPRM controller presented in [12] and the ICAP-I
controller presented in [13] offer similar functionality for
Xilinx Virtex-5 and Virtex-4 FPGAs, respectively. The DPRM
controller supports only bitstream transfers from off-chip flash
memories into the FPGA configuration memory, while the

ICAP-I controller supports also transfer of bitstreams stored
in on-chip BRAMs. The architecture of these two controllers
and the BRAM HWICAP are the ones that most resemble
the architecture of our RT-ICAP controller. However, our
architecture can support a tighter interaction with a processor,
as explained in Subsection IV-B.

The D2PR controller presented in [14] is an example of
a minimal custom DPR controller connected to the ICAP
interface. The controller can be configured to include circuitry
for configurable error detection and correction, aiming to
improve safety in DPR by monitoring for data errors in the
partial bitstreams. Our controller relies on the default checksum-
based bitstream checking already supported by Xilinx FPGAs.

III. BACKGROUND

This section provides an overview of the T-CREST multi-
core platform, background information regarding DPR of
FPGAs, and it describes our approach to reconfiguration in
real-time systems.

A. The T-CREST Multi-Core Platform

The T-CREST [2] multi-core platform has been developed
specifically for use in hard real-time applications. All compo-
nents have been designed with a focus on time-predictability
and with a focus on reducing the complexity and pessimism
of the WCET analysis. The platform consists of a number of
processing nodes and two networks-on-chip (NoCs): (1) one
NoC for message passing traffic between cores and (2) one
NoC for traffic between cores and the shared memory.

A processing node consists of a time predictable, dual-issue
RISC processor, called Patmos, that is optimized for real-time
systems [15]. Patmos contains special instruction and data
caches, and local private scratchpad memories (SPMs) for
instructions and data. Patmos is supported by a compiler, also
developed with a focus on WCET [16] and by the WCET
analysis tools aiT [17] from AbsInt and platin [18], which
allows static derivation of tight WCET bounds.

The Argo [19] NoC provides message-passing to support
inter-processor communication and offers the possibility to
set up virtual point-to-point circuits between processor nodes.
Data is pushed across these circuits by direct memory access
controllers in the source end of the circuit.

For code and larger data structures all processors are
connected by a NoC in tree form to the memory controller and
then to the shared external main memory. For the memory tree
there exist two solutions: (1) the Bluetree [20] memory tree
with the Predator memory controller [21] for DRAM memory
and (2) a distributed memory arbiter [22] with a memory
controller for SRAM memory.

The DPR controller presented in this paper is specifically
designed for real-time systems and targets this platform, sup-
plementing it with time predictable reconfiguration capabilities
using DPR.



B. Dynamic Partial Reconfiguration

DPR is a feature of modern FPGAs that allows the modifi-
cation of an operating FPGA [23]. Partial bitstreams can be
loaded into the FPGA to reconfigure selected regions, without
compromising the functionality of other parts of the device. A
system that uses DPR can be conceptually divided into a static
part and a dynamic part. The static part is configured only
once at boot-time with a full bitstream. The dynamic part can
be reconfigured multiple times during run-time with different
partial bitstreams and it may consist of several independent
reconfigurable regions.

When a bitstream is loaded into the FPGA, it is stored in a
static RAM called configuration memory. The content of this
memory defines the hardware configuration implemented in
the FPGA. Therefore, by writing a partial bitstream into the
reconfiguration memory, the hardware system implemented in
the FPGA is dynamically modified.

For Xilinx FPGAs, DPR can be performed by loading
a partial bitstream, at runtime, through one of the FPGA
configuration interfaces. In this work, we use the ICAP
interface [24]. The ICAP interface is a hardware primitive in
Xilinx FPGAs that provides access to the FPGA configuration
memory. It allows the user to access configuration registers,
read-back configuration data, and to partially reconfigure the
FPGA after its initial configuration.

The ICAP interface has separate read and write buses and it
can be configured to support a data width of 8, 16, or 32 bits.
It has a maximum operation frequency of 100 MHz. Therefore,
it can stream at a maximum speed of 400 MB/s. During
reconfiguration, the ICAP interface provides information about
the current state of the reconfiguration and communicates when
the reconfigurable region is successfully reconfigured through
an output port. Specific ICAP timing diagrams and bitstream
ordering information are provided in [24].

C. Reconfiguration in Real-Time Systems

In the T-CREST platform [2], reconfiguration is associated to
an operation mode change. A mode change involves switching
from executing one task graph to executing another task graph
with different communication and computation guaranteed-
services requirements.

The idea is to use DPR to dynamically adapt the hardware
platform to the actual needs of a specific mode of operation.
This minimizes the hardware resources utilization, by only
loading those resources (such as co-processors, hardware
accelerators, digital signal processors) that are needed at any
given point in time. Moreover, execution time analysis of
hardware used to implement software-equivalent tasks is often
easier to perform than analysis of a pure software solution.
Moving functionality from software into hardware can lead
to a simplification of the WCET analysis and therefore to
a reduction of its pessimism. This directly translates into a
speed-up in the WCET of the tasks executed in hardware.

Figure 1 shows a block diagram of the FPGA implementation
of the T-CREST platform with support for DPR [1]. The
platform consists of a reconfiguration master processor Mrec

FPGA

Argo network-on-chip 

CPU

(Mrec)

CPU

(S1)

CPU

(S2)

T-CREST platform

FPGA configuration logic and memory

reconfig. 

region

reconfig. 

regionRT-

ICAP

shared

reconfig. 

region

CPU

(SN)

reconfig. 

region

ICAP if.

Fig. 1. Block diagram of the FPGA implementation of the T-CREST platform
with DPR support. The reconfiguration master Mrec is connected to the ICAP
interface through our RT-ICAP controller. Slave processors are provided with
a reconfigurable region and a shared reconfigurable region is also directly
connected to the Argo NoC.

and N slave processors (S1, S2, ..., SN) connected through a
message-passing network-on-chip. In this example, each slave
processor is provided with a reconfigurable region. In addition,
a shared reconfigurable region is also directly connected
to the Argo NoC of the T-CREST platform [25]. Custom
configurations are also possible. The reconfiguration master
Mrec is connected to the ICAP interface through our RT-ICAP
controller and it can reconfigure the hardware implemented
in the reconfigurable regions of the slaves and in the shared
reconfigurable region. In the following sections we focus on
the architecture of this controller and the associated tool.

IV. THE RECONFIGURATION CONTROLLER

This section provides a description of the architecture and
the functionality of our RT-ICAP reconfiguration controller.
Moreover, it presents the bitstream compression technique, the
software tool associated with the controller, and a hardware-
level reconfiguration time analysis.

A. Overview

Some of the controllers presented in Section II offer a range
of functionalities that are not strictly required by our approach
to support reconfiguration in the T-CREST platform, where
DPR is used to switch hardware accelerators and co-processor
during an operational mode change [1]. Examples of these
functions are the read-back, which is typically used for FPGA
scrubbing purposes, or the LUT-based reconfiguration used to
speed up DPR for specific applications (such as replacement
of FIR-filter coefficients).

These additional functionalities increase the hardware com-
plexity and therefore the complexity of the hardware-level
reconfiguration time analysis. Moreover, for some of the
architectures, the detailed hardware and software architecture of
these controllers is not public, making it impossible to perform
a precise and reliable WCET analysis.

Our controller is open-source and intended to be used
in the T-CREST platform. It is specifically designed to
assist processor-initiated partial reconfiguration of processing



SPM

Status values:

READY_AND_DONE

READY_AND_FAIL

WAIT_BUSY_ICAP

WRITE_IN_PROGRESS

WAIT_END

ABORT_IN_PROGRESS

RT-ICAP

CPU

status

Registers

control

bs_length

bs_addr

stream_in

Commands:

SW_RESET

ABORT

START_CPU_STREAM

START_RAM_STREAMFSM control

OCP-style

interface
r/w

FPGA configuration logic and 

memory

ICAP interface

FPGA logic

FPGA config.

r/w

Fig. 2. A block diagram of the RT-ICAP reconfiguration controller and
its interfaces, with the possible status register values and control register
commands.

resources such as hardware accelerators. The controller uses
run-length encoded bitstream decompression to minimize the
size of the bitstream files and it does not support read-back. This
lightweight and simple design makes DPR in T-CREST and
the timing analysis straightforward and easy, and it results in a
small hardware implementation. The controller is implemented
in VHDL and it supports the Virtex-4, -5, -6, and the 7-series
FPGAs from Xilinx.

B. Architecture and Functionality

Figure 2 shows a block diagram of our reconfiguration
controller. The controller is connected to a processor through
an OCP interface [26], to a scratchpad memory (SPM), and to
the ICAP interface. A SPM is an on-chip memory that is private
to a processor. To use the SPM, the programmer/compiler must
allocate data structures in the SPM. In our architecture, the
SPM is used to store the reconfiguration bitstreams and also
acts as a local general purpose memory for the processor. In
comparison to a data cache, the access time for an SPM is
guaranteed to be a single cycle. This is one further element that
distinguishes our RT-ICAP controller from the ones discussed
in Section II.

Our RT-ICAP controller is interfaced with the processor
through a set of 32-bit registers. The status register can be
read by the processor to monitor the controller/reconfiguration
status. The control register can be written by the processor
to manage the controller. The possible status register values
and the control register commands are listed in Figure 2. The
functionality of the other registers is explained below.

Our RT-ICAP controller can operate in two different modes:
SPM-stream and CPU-stream mode. When the controller
operates in SPM-stream mode, it autonomously fetches the
bitstream from the SPM. In order to start a reconfiguration, the
bitstream is stored in the SPM and the processor configures
the bs addr register with the SPM address that points at
the beginning of the bitstream and the bs length register

with the length (in bytes) of the bitstream. By writing the
START SPM STREAM command into the control register, the
processor starts the transfer from the SPM to the ICAP. The
status register reports the controller status, including the end
of the reconfiguration process. With this operating mode, it is
possible to achieve the maximum transfer speed of the ICAP
interface, but it requires that the bitstream fits into the SPM.
When possible, for example if a reconfiguration is scheduled
to happen at a certain point in time, bitstream pre-fetching
from main memory (on-chip or off-chip) to the SPM can
be performed by the reconfiguration master to minimize the
reconfiguration time during a mode change. Therefore, it should
be used for small bitstreams associated to reconfigurable regions
that require a fast reconfiguration.

When the controller operates in CPU-stream mode, it
receives the bitstream from the processor as a sequence
of writes. In order to start a reconfiguration, the processor
must first configure the bs length register and write the
START CPU STREAM command into the control register.
Then, the bitstream is written into the stream in register of the
controller. The CPU reads the bitstream from some on-chip
or off-chip memory. This operating mode is slower than the
maximum speed of the ICAP controller and the bottleneck is
typically determined by the bandwidth to the (off-chip) memory
from where the processor reads the bitstream. This mode of
operation should be used when it is not possible to store the
bitstream into the SPM (e.g., in case of an unexpected mode
change triggered by an aperiodic event). The advantage is that
it avoids potentially large SPMs.

C. Bitstream Compression

The size of the SPM is a limiting factor of our approach
in SPM-stream operating mode. To overcome this limitation,
lossless compression techniques can be used to decrease the
size of a partial bitstream and therefore the memory needed
for storage. The application of the most common compression
techniques (e.g. run-length encoding, Huffman, Arithmetic,
Lempel-Ziv, etc.) on Xilinx bitstreams is a well-known topic
and it is explored in the work presented in [27], [28] and [29].

In our implementation, we have selected a simple run-length
encoding (RLE) compression technique in order not to affect
the reconfiguration speed and not to increase the hardware
cost of performing decompression. Moreover, implementing
the RLE decompression in hardware instead of a software task
executed by the reconfiguration master processor contributes
to the reduction of the complexity of the WCET analysis. The
data element size used for the compression is the same as the
data size of the ICAP interface. In the following, we refer to
data element of this size as ‘character’. The idea is to store
sequences of repeated characters (data run) as a single character
and a count identified by an escape character. In the bitstream,
when a data run longer than three elements gets compressed,
it appears as an escape value to signal the beginning of a
compressed sequence, followed by the count and the data itself.
A single escape value is represented in the compressed bitstream
as replicated character to distinguish it from a compressed



� b c c c b a a a a a b b b b b b c e a � Uncompressed bitstream

� b c c c b e 5 a e 6 b c e e a � Compressed bitstream

Run of ‘c’ not long 

enough to be compressed

Compressed runs 

of ‘a’ and ‘b’

Double escape ‘e’

Simple uncompressed characters

Escape sequences (escape and run length or double escape)

Compressed data runs

Fig. 3. An example of the RLE compression on a sequence of characters. In
this example, the escape character is ’e’.

sequence. Figure 3 shows an example of RLE compression
on a sequence of characters. The escape character is ‘e’. The
bitstream is compressed by the software tool presented in the
following subsection, and it is decompressed in hardware by
the controller.

The tools provided by the FPGA vendors offer a bitstream
compression functionality based on writing identical configu-
ration frames once, instead of writing each frame individually.
A frame is the smallest addressable segment of the FPGA
configuration memory space and its size is in the order of KB,
depending on the FPGA model (e.g., 5.7 KB for the Virtex-6
FPGA). If more than one frame has identical data, the frame
is loaded into the configuration logic and written to multiple
address locations in parallel. In this case, the decompression is
executed by the FPGA logic that manages the reconfiguration
(not accessible by the user). The RLE technique can be used
stand-alone or in addition to the frame-based compression
offered by the Xilinx tools. The trade-off between compression
ratio and reconfiguration time is discussed and evaluated in
Subsection V-B.

D. Tool Support and Timing Analysis

The hardware architecture is supported by a software tool,
named convbitstream. This tool performs two tasks: (1) it
compresses the partial bitstreams produced by the Xilinx tools
and converts them to the format required by our RT-ICAP
controller, and (2) for each compressed bitstream it computes
the time that the RT-ICAP controller takes to perform the
reconfiguration. The time is computed for both the SPM-stream
and CPU-stream mode and explained in detail below.

Similarly to the other tools of the T-CREST platform [2],
convbitstream receives as input an XML file specifying
parameters that control the compression and format conversion
as well as a path to a directory containing the bitstream files
to be processed. For each bitstream provided as input, the
tool produces the converted bitstream in two formats: as a
binary file, to be used if the bitstreams are stored in an off-chip
memory, and as an array declaration in a C file containing all
the bitstreams in the form of arrays, to be used to embed a
bitstream into a C program. The operations that are performed
on the bitstream are bit-swapping [24], RLE compression, and
translation into an RT-ICAP compatible format.

For each compressed bitstream the convbitstream tool
computes the time it takes to perform the corresponding partial
reconfiguration. The reconfiguration time Trec is from the
moment when the processor (or a master device) starts the
reconfiguration and until the partial bitstream is completely writ-
ten into the FPGAs configuration memory. This reconfiguration
time is needed during WCET analysis of an application that
uses the reconfiguration feature, and it depends on properties
of the RT-ICAP controller and on properties of the compressed
bitstream.

The reconfiguration time is computed using Eq. (1) and it is
the period of the clock signal, Tclk times the number of clock
cycles as a sum of three contributions: the number of cycles
needed to invoke (initialize and finalize) a reconfiguration, the
number of cycles needed to transfer the compressed bitstream
into the RT-ICAP controller and the number of additional cycles
required to expand compressed data runs and write these into
the reconfigurable area of the FPGA.

Trec = Tclk{noh + nifns +

nr∑
i=1

(Ri len − 1)} (1)

• noh is a small overhead required for starting and finishing
a reconfiguration; for our RT-ICAP controller this is 3
cycles.

• nif is the number of cycles to write a character into the
RT-ICAP controller; for SPM-stream mode this is 1 cycle
and for CPU-stream mode it is 2 clock cycles (the time
for an OCP-transaction [26]). In parallel, a character is
written into the reconfigurable area of the FPGA in one
clock cycle.

• ns is the length of the compressed bitstream, which
includes the number of simple (uncompressed) characters,
the number of escape sequences (each comprising two
characters), and the number of compressed data runs. In
the example shown in Figure 3, these elements are marked
yellow, red and blue respectively.

• The third contribution is the number of additional clock
cycles required for writing repeating characters into the
reconfigurable area of the FPGA: nr is the number of
compressed data runs and Ri len is the number of times
a compressed character repeats in the i-th data run.

The parameters noh and nif characterize the RT-ICAP
controller and ns, nr, and Ri len characterize the bitstream.

When the controller operates in CPU-stream mode, the
bitstream is loaded from main memory or other form of external
storage. The time needed for this is independent of the RT-ICAP
controller and needs to be analyzed separately with a relevant
tool. In T-CREST, the WCET analysis tools aiT [17] and
platin [18] can be used to perform the WCET analysis. This
information, together with the reconfiguration time provided by
our analysis, is needed for the application-level WCET analysis
that uses the reconfiguration feature.

V. EVALUATION

This section evaluates the proposed architecture in terms
of hardware cost, operating frequency, reconfiguration speed,



TABLE I
CHARACTERIZATION IN TERMS OF HARDWARE RESOURCES, MAXIMUM CLOCK FREQUENCY, AND RECONFIGURATION SPEED OF

OUR RECONFIGURATION CONTROLLER AND COMPARISON WITH RELATED PUBLISHED DESIGNS.

Controller Target
FPGA

Hardware resources fmax

(MHz)
Recon. speed

(MB/s)FF LUT BRAM

RT-ICAP Kintex-7 101 245 0 >300 382.21

PRC [11] Kintex-7 1270 1075 0 >100 n/a
ZyCAP [10] Zynq-7000 806 620 0 >100 382

RT-ICAP Virtex-6 88 190 0 323 382.21

DPRM [12] Virtex-6 77 109 0 379 6.62

D2PR [14] 3 Virtex-6 112 249 0 >100 400
XPS HWICAP [3], [30] Virtex-5 745 741 3 >100 1.32

AC ICAP [30] Virtex-5 1667 1161 7 >100 381.0

ICAP-I [13] Virtex-4 303 177 0 90 180.0
DMA HWICAP [9] Virtex-4 4277 977 0 121 82.12

MST HWICAP [9] Virtex-4 1083 918 2 200 234.5
BRAM HWICAP [9] Virtex-4 963 469 324 121 332.1

1 SPM-stream mode. 2 Using off-chip memory. 3 Synchronous version - no error check. 4 Including storage.

bitstream compression ratio, and worst-case reconfiguration
time. Finally, it presents a simple application example of the
reconfiguration features offered by the presented architecture,
including WCET estimations, hardware resources, and con-
figuration speed results. All the results of our architecture,
presented in this section, were produced using Xilinx Vivado
(v16.4) targeting the Xilinx Kintex-7 FPGA (model XC7K325T-
2FFG900C) and using Xilinx ISE and PlanAhead (v14.7)
targeting the Xilinx Virtex-6 FPGA (model XC6VLX240T-
1FFG1156). All the synthesis properties were set to their
defaults. The data size of the ICAP interface is 32 bits.

A. Hardware and Performance

Table I presents hardware resources, maximum clock fre-
quency, and reconfiguration speed. Our architecture is compared
against some of the controllers presented in the related work
and listed in the first column of the table. For these controllers,
the results are taken from the respective publication. The second
column of the table reports the target FPGA used to produce
the results.

Table I shows the FPGA hardware resource usage in terms
of flip-flops (FFs), look-up tables (LUTs), and block-RAMs
(BRAMs) for our controller and for the other designs. The
BRAM used to store the bitstreams needed to produce the
hardware results of Table I is not taken into account (except
for the BRAM HWICAP). The hardware results for 7-series,
Virtex-6 and -5 FPGAs can be quantitatively compared, since
these FPGAs use 6-input LUTs. Virtex-4 FPGAs use 4-
input LUTs, therefore the LUT results are only reported for
qualitative comparison. We can observe that our controller is
comparable in size with the controllers DPRM [12], D2PR [14]
(synchronous version without error check), and ICAP-I [13],
even if our controller offers more functionality than these, such
as support of two operating modes, bitstream compression,

and a status/control register based interface. Our controller is
considerably smaller than the other controllers.

Table I also presents the maximum operating frequency of
our controller and of the other designs. In practical applications,
the controller typically runs at the same operation frequency
as the ICAP interface (max. 100 MHz) in order to avoid clock
domain crossing. We can observe that all the controllers are
able to meet this constraint, except for the ICAP-I.

Table I shows, in the last column, the reconfiguration speed
computed as a ratio between the bitstream size and the recon-
figuration time as defined in Subsection IV-D. The operating
frequency is assumed to be 100 MHz for all the controllers,
except for the ICAP-I (90 MHz). The reconfiguration speed is
computed assuming the bitstream stored in an on-chip memory.
In the cases where an on-chip memory is not available, we
report for qualitative comparison the reconfiguration speed
when the bitstreams are stored in an off-chip flash memory
(marked with the superscript 2 ).

For our controller, the table shows the speed for the SPM-
stream mode calculated as average of the reconfiguration
speed of 6 different RLE-compressed sample bitstreams of
size between 13.1 KB and 129.7 KB. We can observe that, for
our controller, reconfiguration speed is comparable or faster
than the one of the other controllers, except for the D2PR [14]
(synchronous version, no error check) which is faster, since it
does not offer any further functionality, such as compression
and register based interface.

B. Bitstream Compression and Reconfiguration Time

This subsection evaluates the compression capability of the
convbitstream tool and shows the trade-off between compres-
sion and reconfiguration time. Table II presents the compression
ratios of three sample bitstreams. The compression ratio is



TABLE II
BITSTREAM COMPRESSION RATIOS USING OUR RLE COMPRESSION, THE XILINX COMPRESSION ONLY, AND OUR RLE COMPRESSION

ON TOP OF THE XILINX ONE FOR THREE BITSTREAM WITH DIFFERENT UTILIZATION RATIOS. THE RECONFIGURABLE REGION SIZE
IS 880 SLICES AND THE UNCOMPRESSED BITSTREAM SIZE IS 184.8 KB.

Bitstream Recon. region
utilization

Compression ratio RLE+Xilinx
size (KB)Ideal RLE Xilinx. RLE+Xilinx

Mult. & Add. 91 % 4.1 1.4 1.3 1.4 132.5
Adder 55 % 6.4 2.0 1.4 1.9 95.1
Blank 0 % 38.9 14.1 2.2 8.7 21.2

TABLE III
COMPUTED AND MEASURED RECONFIGURATION TIME, EXPRESSED IN CLOCK CYCLES (CC), FOR THE UNCOMPRESSED AND

COMPRESSED SAMPLE BITSTREAMS FOR THE SPM-stream OPERATING MODE.

Bitstream
Computed (CC) Measured (CC)

Uncompr. RLE Xilinx RLE+Xilinx RLE+Xilinx

Mult. & Add. 47311 48745 37384 38994 38999
Adder 47311 49480 33782 36105 36109
Blank 47311 48655 21175 22527 22529

defined as the size of the uncompressed bitstream divided the
by the size of the compressed one.

To produce these results, we used a reconfigurable region
size of 880 slices for all the experiments. The uncompressed
bitstream size, which depends only on the size of the reconfig-
urable region, is 184.8 KB. A double-precision floating-point
multiplier and adder generated with FloPoCo [31] (2406 FFs,
2524 LUTs, 12 DSPs) is implemented in the reconfigurable
region to obtain the utilization value of 91 %. A double-
precision floating-point adder (1665 FFs, 1499 LUTs) is used
to produce utilization of 55 %. Leaving the reconfigurable
region without any hardware implementation produces a blank
bitstream with utilization of 0 %.

Table II shows the ideal compression ratio and the ratios
obtained by our RLE compression applied on a bitstream, by
the Xilinx tools compression only, and by our RLE compression
applied on a bitstream already compressed by the Xilinx tools.
For the latter, Table II reports also the compressed bitstream
size. The ideal compression ratio specifies a theoretical upper
bound and it is derived from the 32-bit-based information
entropy of the entire bitstream. All the compression ratios are
referred to the uncompressed bitstream size.

We can observe that the RLE compression introduces a
significant reduction of the bitstream size and that it performs
better than the native compression offered by the Xilinx
tools. Moreover, it can further decrease the size of the
bitstream already compressed by the Xilinx tools because the
granularity of our compression is considerably smaller than
a frame. However, considering the reconfiguration time, we
can observe that a bitstream compressed with both the RLE
and the Xilinx native compression has a considerably shorter
reconfiguration time (about 50 % on average) than the one
compressed with RLE only, since the Xilinx decompression

logic writes identical configuration frames concurrently to
multiple addresses. Therefore, the combination between the
RLE and the Xilinx native compression, even if not as good as
the pure RLE in terms of compression ratio, can be considered
as the best trade-off between a high compression ratio and a
low reconfiguration time.

Table III presents the reconfiguration time computed with
the convbitstream tool and expressed in clock cycles, for the
uncompressed bitstreams and for the bitstreams compressed
using the techniques evaluated in Table II, for the SPM-stream
operating mode.

For the bitstreams compressed with both the RLE and the
Xilinx native compression, Table III also reports the measured
reconfiguration time. With this measurement we verify our
computed WCET of the reconfiguration time. The measurement
is executed using the RT-ICAP controller connected to a Patmos
processor [15] and implemented on the Xilinx Virtex-6 FPGA.
The time interval is measured by the software running on
the processor. Since the end of the reconfiguration process
is determined by polling the status register of the RT-ICAP
controller in a loop, a small measurement overhead is observed.
This overhead is in the order of few clock cycles and, when
executing the WCET analysis of a task that uses reconfiguration,
it is taken into account by the analysis tool. The results show
that the computed reconfiguration time is correct. By removing
the measurement overhead, it is possible to notice that there
is no pessimism in the estimation of the total reconfiguration
time.

C. Application Example

The scope of this simple application example is to provide
a further evaluation of the RT-ICAP controller in the context
of an operation mode change. The architecture used for this
application example consists of a Patmos processor [15], a



TABLE IV
COMPUTED WCET AND MEASURED EXECUTION TIME Texe FOR

THE SW, HWstd , AND HWdpr TEST-CASES FOR 10-BY-10
MATRICES, EXPRESSED IN CLOCK CYCLES (CC).

Test-case WCET (CC) Texe (CC)

SW 8197134 481661
HWstd 107892 104918
HWdpr 206953 203979

hardware accelerator, and the reconfiguration infrastructure
presented in this paper used in SPM-stream operating mode.
The hardware accelerator is a double-precision floating-point
unit, generated with FloPoCo [31], that performs addition and
multiplication. This example aims to show the reconfiguration
features of the controller and how DPR can lead to a
more efficient usage of FPGA resources without significantly
affecting the computational performances. Moreover, it provides
computed WCET numbers and measured execution time for
the entire application.

The synthetic test application executes a multiply-accumulate
operation A← A+ (B ∗ C) (very often used in digital signal
processing), where the accumulator A and inputs B and C
are n-by-n square matrices. The elements of the matrices are
double-precision floating-point values. Therefore, in terms of
floating-point operations, the application consists of a series
of n3 multiplications followed by a series of n3 additions.

For this example, we consider the series of multiplications
and the series of additions as two modes of operation, M1 and
M2 respectively. This emulates a behavior that can be found in
real-case applications. For instance, in the calculation of fast
Fourier transforms, where the transformed array is computed
with a series of additions and multiplications, followed by a
series of divisions for normalization.

This example compares three test-cases, SW, HWstd, and
HWdpr, in terms of hardware resource utilization and execution
time. The SW test-case executes the test application completely
in software using the compiler support libraries for floating-
point operations [16]. The HWstd and HWdpr test-cases run
the application using the addition and multiplication capability
offered by the floating-point hardware accelerator. The TCstd

test-case executes the test application on a platform that does
not support DPR. Therefore, the adder and the multiplier
need to be both simultaneously implemented on the FPGA.
The TCdpr test-case executes the test application on platform
that supports reconfiguration, and the reconfigurable region
alternatively implements the multiplier during the mode M1

and the adder during the mode M2.
Table IV shows the WCET of the test application computed

with the WCET analysis tools platin [18] and the measured
execution time Texe obtained with the Patmos simulator for
the three test cases for 10-by-10 matrices. The WCET for
the HWdpr test-case also includes the reconfiguration time
computed by the convbitstream tool. We can notice that the
WCET for the SW test-case is very high compared to the

TABLE V
HARDWARE RESOURCES UTILIZATION FOR THE PATMOS PROCESSOR

AND FOR THE TWO TEST CASES HWstd AND HWdpr .

Entity Slices FF LUT DSP

Patmos proc. 2693 3693 5468 4

FP Adder 506 1665 1499 0
FP Multiplier 482 1218 1456 12
HWstd total 888 2883 2955 12

Our controller 91 83 191 0
Recon. region 560 4480 1 2240 1 32 1

HWdpr total 651 83+R 2 191+R 2 0+R 2

1 Maximum available resources in the reconfigurable region (600 slices).
2 R can be replaced with the FP Adder and the FP Multiplier values,

depending on the current configuration.

1.00E+04

1.00E+05

1.00E+06

1.00E+07

5 10 15 20 25 30 35 40

Texe_std

Texe_dpr

T
e

x
e

(C
C

)

10
4

105

10
6

10
7

N

α=0.94

α=0.78

α=0.51

Texe HWstd

105 15 20 25 30 35 40

α=0.89

α=0.96

Texe HWdpr

Texe HWstd

Texe HWdpr

α=

n

Fig. 4. Execution times, expressed in CC, for the two test-cases and their
ratio for different values of n (size of the matrices).

measured result. This is due to two effects: (1) not triggering
the worst-case path in the measurement and (2) overestimation
within the WCET analysis. The floating-point operations are
performed in software and we assume that the worst-case path
is in handling of corner cases, such as denormalized numbers.
The overestimation comes from the fact that not all floating-
point library code fits into the method cache [32] of Patmos. In
that case our method cache analysis [33] assumes more misses
than actually happen at runtime.

Overall, we can observe that for the HWstd and the HWdpr

test-cases, using hardware to implement software-equivalent
tasks leads to a simplification of the WCET analysis and
therefore to a reduction of its pessimism. For this example, this
directly translates into a considerable speed-up in the WCET
of the tasks executed in hardware.

Table V shows the FPGA hardware resource utilization for
the Patmos processor and for the acceleration infrastructure
for the HWstd and the HWdpr test-cases, targeting the
Virtex-6 FPGA. The total resources needed to implement the
reconfigurable region and the reconfiguration infrastructure for
the HWdpr test-case are roughly 73 % of the resources needed
to implement the static accelerator for the HWstd test-case.

Figure 4 shows the execution times Texe of the test
application for the two test cases for different sizes n of the A,



B, and C matrices. The Texe for the HWdpr test-case also takes
into account the reconfiguration time overhead. In the Figure 4
it is shown that, for a matrix size n > 25, the ratio α between
the execution times of the two test-cases becomes very close to
1, showing that the reconfiguration overhead becomes negligible
with respect to the duration of the computation interval. In this
case, taking into account the hardware resources utilization
results presented in Table V, we can observe that DPR leads to
a more efficient usage of FPGA resources, while maintaining
comparable computational performance.

VI. CONCLUSION

This paper presented a lightweight controller especially
developed to support DPR in real-time systems. The controller
offers two different operating modes (SPM-stream and CPU-
stream) to perform the reconfiguration in a bounded and
predictable amount of time. We also presented a software
tool for conversion and compression of the bitstreams, and for
reconfiguration time analysis.

The DPR controller was evaluated in terms of hardware
cost, operating frequency, reconfiguration speed, bitstream
compression ratio, and worst-case reconfiguration time. We also
presented a simple application example of the reconfiguration
features offered by the presented architecture, including WCET
numbers, hardware resources, and speed results.

SOURCE ACCESS

The source code of the RT-ICAP controller and the convbit-
stream tool are available at https://github.com/ t-crest/ reconfig/ .
The full T-CREST platform is available at https://github.com/
t-crest/ . The entire work is open-source under the terms of the
simplified BSD license.

REFERENCES

[1] L. Pezzarossa, M. Schoeberl, and J. Sparsø, “Reconfiguration in FPGA-
based multi-core platforms for hard real-time applications,” in Proc. of the
International Symposium on Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC). IEEE, 2016, pp. 1–8.

[2] M. Schoeberl et al., “T-CREST: Time-predictable multi-core architecture
for embedded systems,” Journal of Systems Architecture, vol. 61, no. 9,
pp. 449–471, 2015.

[3] XILINX, “DS586: LogiCORE IP XPS HWICAP product specifications
(v5.01a),” Tech. Rep., 2011, online (last accessed: Jan. 2016).

[4] ——, “DS586: Processor Local Bus (v4.6),” Tech. Rep., 2019, online
(last accessed: Jan. 2016).

[5] ——, “PG134: AXI HWICAP LogiCORE IP product guide (v3.0),” Tech.
Rep., 2015, online (last accessed: Jan. 2016).

[6] ——, “UG761: LogiCORE IP XPS HWICAP product specifications
(v13.1),” Tech. Rep., 2011, online (last accessed: Jan. 2016).

[7] ——, “UG081: MicroBlaze processor reference guide (v10.3),” Tech.
Rep., 2009, online (last accessed: Jan. 2016).

[8] ——, “UG011: PowerPC processor reference guide (v1.3),” Tech. Rep.,
2010, online (last accessed: Jan. 2016).

[9] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial reconfig-
uration speed investigation and architectural design space exploration,”
in Proc. of the International Conference on Field Programmable Logic
and Applications (FPL). IEEE Computer Society, 2009, pp. 498–502.

[10] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration
management on the Xilinx Zynq,” IEEE Embedded Systems Letters,
vol. 6, no. 3, pp. 41–44, Sept 2014.

[11] XILINX, “PG139: LogiCORE IP PRC product guide (v1.0),” Tech. Rep.,
2015, online (last accessed: Jan. 2017).

[12] J. Tarrillo, F. A. Escobar, F. L. Kastensmidt, and C. Valderrama,
“Dynamic partial reconfiguration manager,” in Proc. of the Latin American
Symposium on Circuits and Systems (LASCAS). IEEE, 2014, pp. 1–4.

[13] V. Lai and O. Diessel, “ICAP-I: A reusable interface for the internal
reconfiguration of Xilinx FPGAs,” in Proc. of the International Con-
ference on Field-programmable Technology (FTP). IEEE Computer
Society, 2009, pp. 357–360.

[14] S. D. Carlo, P. Prinetto, P. Trotta, and J. Andersson, “A portable
open-source controller for safe dynamic partial reconfiguration on
Xilinx FPGAs,” in Proc. of the 25th International Conference on Field
Programmable Logic and Applications (FPL), 2015, pp. 1–4.

[15] M. Schoeberl et al., “Towards a time-predictable dual-issue micropro-
cessor: The Patmos approach,” in Proc. of the Workshop on Bringing
Theory to Practice: Predictability and Performance in Embedded Systems
(PPES), 2011, pp. 11–20.

[16] P. Puschner, R. Kirner, B. Huber, and D. Prokesch, “Compiling for time
predictability,” in Computer Safety, Reliability, and Security, ser. Lecture
Notes in Computer Science. Springer, 2012, vol. 7613, pp. 382–391.

[17] R. Heckmann and C. Ferdinand, “Worst-case execution time prediction
by static program analysis,” AbsInt Angewandte Informatik GmbH, Tech.
Rep., online (last accessed: Jan. 2017).

[18] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P. Puschner, “The platin
tool kit - The T-CREST approach for compiler and WCET integration,”
in Proc. of the 18th Kolloquium Programmiersprachen und Grundlagen
der Programmierung (KPS), 2015.

[19] E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Mller, K. Goossens,
and J. Sparsø, “Argo: A real-time network-on-chip architecture with an
efficient GALS implementation,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 24, no. 2, pp. 479–492, 2016.

[20] J. Garside and N. C. Audsley, “Investigating shared memory tree
prefetching within multimedia NoC architectures,” in Proc. of the Memory
Architecture and Organisation Workshop, 2013.

[21] M. D. Gomony, B. Akesson, and K. Goossens, “Architecture and optimal
configuration of a real-time multi-channel memory controller,” in Proc.
of the Design, Automation Test in Europe Conference Exhibition (DATE),
2013, pp. 1307–1312.

[22] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A time-
predictable memory network-on-chip,” in Proc. of the 14th International
Workshop on Worst-Case Execution Time Analysis (WCET), 2014, pp.
53–62.

[23] XILINX, “UG702: Partial reconfiguration user guide (v14.1),” Tech.
Rep., 2012, online (last accessed: Jan. 2016).

[24] ——, “UG360: Virtex-6 FPGA configuration user guide (v3.9),” Tech.
Rep., 2015, online (last accessed: Jan. 2016).

[25] L. Pezzarossa, R. B. Sørensen, M. Schoeberl, and J. Sparsø, “Interfacing
hardware accelerators to a time-division multiplexing network-on-chip,”
in Proc. of 1st Nordic Circuits and Systems Conference. Oslo, Norway:
IEEE, October 2015.

[26] OCP-IP Association, “Open core protocol specification 2.1,”
http://www.ocpip.org/, 2005.

[27] S. Hauck and W. D. Wilson, “Runlength compression techniques for
FPGA configurations,” in Proc. of the Annual Ieee Symposium on Field-
programmable Custom Computing Machines (FCCM). IEEE Computer
Society, 1999, pp. 286–7, 286–287.

[28] Z. Li and S. Hauck, “Configuration compression for Virtex FPGAs,” in
Proc. of the Annual Ieee Symposium on Field-programmable Custom
Computing Machines (FCCM). Institute of Electrical and Electronics
Engineers Inc., 2001, pp. 147–159.

[29] D. Koch, C. Beckhoff, and J. Teich, “Hardware decompression techniques
for FPGA-based embedded systems,” ACM Transactions on Reconfig-
urable Technology and Systems, vol. 2, no. 2, pp. 9:1–9:23, Jun. 2009.

[30] L. A. Cardona and C. Ferrer, “AC-ICAP: A flexible high speed ICAP
controller,” Intl. Journal of Reconfigurable Computing, vol. 2015, pp.
1–15, 2015.

[31] F. De Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design and Test of Computers, vol. 28, no. 4, pp.
18–27, 2011.

[32] P. Degasperi, S. Hepp, W. Puffitsch, and M. Schoeberl, “A method
cache for Patmos,” in Proc. of the 17th IEEE Symposium on
Object/Component/Service-oriented Real-time Distributed Computing
(ISORC), 2014, pp. 100–108.

[33] B. Huber, S. Hepp, and M. Schoeberl, “Scope-based method cache
analysis,” in Proc. of the 14th International Workshop on Worst-Case
Execution Time Analysis (WCET), 2014, pp. 73–82.


