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Abstract—Multiple threads executing on a multicore processor
often communicate via shared objects, allocated in main memory,
and protected by locks. A lock itself is often implemented with the
compare-and-swap operation. However, this operation is retried
when the operation fails and the number of retries is unbounded.
For hard real-time systems we need to be able to provide worst-
case execution time bounds for all operations.

The paper presents a time-predictable solution for locking on
a multicore processor. Hardlock is an on-chip locking unit that
supports concurrent locking without the need to get off-chip.
Acquisition of a lock takes 2 clock cycles and release of a lock 1
clock cycle.

I. INTRODUCTION

Multithreaded programs often communicate over shared
data allocated on the heap. To coordinate the access to these
shared data structures we use locks. A lock protects a data
structure such that only a single thread that is owning the
lock can read or write to that data structure. Other threads
trying to acquire the lock block until the lock is released by
the current lock owner.

To implement a lock, we need some operations that execute
atomically, usually a load, a compare, and a conditional store.
On a single-core processor, the processor can enforce atomic-
ity by simply turning of interrupts. However, on a multicore
processors further hardware support is typically available in
the form of compare-and-set (CAS) or load linked and store
conditional operations.

CAS operates on a single memory word and has as input two
values: an expected old value and a new value. The processor
reads the memory location, compares it with the expected old
value, and when the read value is identical with the expected
value, updates the memory word with the new value. The
processor executes this combination of operations atomically.
The instruction returns the read value to indicate success or
failure. On a failure the CAS operation is simply repeated.

CAS can be used to implement locks, which works effi-
ciently in the common case. However, locks built upon CAS
suffer from the potential issue that one thread may starve.
When two or more tasks contend for the same memory
location, i.e., try to update the value of the same memory
location, there is a small possibility that one or more of the
tasks will suffer from starvation. This happens if a task tries
to swap the value with its own, but with every attempt another
task has already swapped it, resulting in the initial task never
being able to swap the value and therefore never acquiring
the lock. This possible unbounded starvation is not acceptable

for real-time systems. We need a system where the worst-
case execution time (WCET) of each operation needs to be
bounded.

This paper presents and evaluates Hardlock, a hardware unit
that provides truly concurrent locks for real-time multicore
processors. The acquisition of a free lock is bounded and takes
in the worst-case 2 clock cycles. The release of a lock takes 1
clock cycle. Two different locks can be requested concurrently
by two different cores. Furthermore, the Hardlock implements
a queue in hardware so that every core that requests a lock will
be served in the worst-case after all other cores that requested
the lock. No unbounded starvation is possible.

To support manycore processors, and for comparison, we
also implemented an asynchronous locking unit where cores
in different clock domains can access the locking unit. Fur-
thermore, for the evaluation we also implemented a CAS
based locking unit for a multicore processor. We integrated
all locking units with the T-CREST multicore processor [23],
[26]. The comparison of the three locking implementations
shows that the Hardlock provides the shortest time for locking
and unlocking, and is also the only unit that properly bounds
this time. Furthermore, for the number of locks used in this
paper, it is also the smallest hardware unit.

This paper is an extension of [33], where we presented an
initial version of Hardlock. The additional contributions of
this paper are: (1) an implementation of CAS on a shared
scratchpad memory for comparison, (2) an implementation of
an asynchronous lock for comparison, (3) integration of the
three locking units with the pthread library.

This paper is organized in 7 sections. Section II presents
related work. Section III provides background on the T-
CREST multicore platform, which is used for the imple-
mentation and evaluation of the locking units. Section IV
describes our designs and implementations. Section V analyses
the performance of our implementations whereas Section VI
measures the performance our implementations on an FPGA.
Section VII concludes the paper.

II. RELATED WORK

The classical issue of priority inversion that can occur on
real-time systems when tasks use locks was solved a long
time ago for single-core systems with the priority ceiling
protocol [29]. Additionally, the protocol also prevents dead-
locks. However, no such definite solution has been found for
multicore system. Many solutions have been proposed, all



with their own benefits and drawbacks. Our work focuses on
the hardware acceleration of acquiring and releasing locks to
generically reduce the locking overhead, and not any specific
protocol, although these protocols can be built on top of our
locking unit. We find it easiest to analyze programs that use
our hardware locking units if critical sections execute non-
preemptively and a global ordering of lock acquisitions is used
to prevent deadlocks. Additionally, critical sections should be
kept short to reduce the impact of threads’ critical sections
on each other, as well as gaining the proportionally greatest
benefit of the low lock acquisition overhead of the locking
units.

Carter et al. [6] compare 6 lock implementations, 2 of which
are software implementations with CAS or similar atomic
operation support, and 4 hardware implementations. Their
findings show that hardware implementations can reduce the
lock acquisition and release time by 25-94% compared to well-
tuned software locks. Using their own benchmark with heavy
contention, the hardware locks outperform the software locks
by up to 75%, whilst on a SPLASH-2 benchmark suite, the
hardware locks perform 3-6% better.

Patel et al. [21] describe a hardware implementation of
MCAS, a multi-word CAS operation for multi-core systems.
They find that on average, their implementation is up to 13.8
times faster than locks with critical sections spanning from 40
to 345 cycles. The locks are POSIX mutexes built on Tejas,
a Java based architectural simulator, where the lock overhead
is not specified. The MCAS operation itself is guaranteed to
be atomic and starvation free. However, like CAS, a thread
can potentially starve unless additional operations are added
to prevent this.

Afshar et al. [5] propose a synchronization unit connected
to all cores, like the Hardlock. It also contains a field for
each core to register synchronization participation. However,
they designed the unit for low-power systems in a produc-
er/consumer relationship, thus only the power consumption,
and not the performance, is tested. Additionally, the unit has
a shared counter field, meaning that some arbitration, which
is not described, must be done to update the counter.

Milik and Hrynkiewicz [19] present a complete dis-
tributed control system, that also includes hardware memory
semaphores. The semaphore allows consumers to be notified as
soon as data is ready, or the producer to be notified when it can
update data. The semaphores are not centralized. Instead, each
consumer has its own semaphore that notifies, or is notified,
when data is consumed, or available, respectively. There can
only be one producer per semaphore. It is not clear if the
same semaphore allows multiple producers, and if so, how
the semaphore handles arbitration.

Braojos et al. [3] investigate pre-emptive global resource
sharing protocols. They also present their own protocol that
features an increased schedulability ratio of task sets and
strong task progress guarantees. The Hardlock operates at the
core level and therefore does not make any guarantees about
the behaviour of threads on the same core pre-empting each
other. This is not an issue in this paper, as the T-CREST

platform that we integrate the Hardlock with is not configured
for more than one thread per core. However, the platform can
easily support pre-emptive global resource sharing protocols
by utilizing the Hardlock as a global lock and then managing
queues and priorities in software.

Altera provides a “mutex core” [4], which implements
atomic test-and-set functionality on a register with fields for an
owner and a value. However, that unit does not provide support
for enqueuing tasks. Therefore, guaranteeing an ordering of
tasks entering the critical section must be done in software.

US Patent 8,321,872 [12] describes a hardware unit that
provides multiple mutex registers with additional “waiters”
flags. The hardware unit can trigger interrupts when locking
or unlocking, such that an operating system can adapt appro-
priate scheduling. The operating system carries out the actual
handling of the wait queue.

The hardware unit described in US Patent 7,062,583 [15]
uses semaphores instead of mutexes, i.e., more than one task
can gain access to a shared resource. The hardware unit
supports both spin-locking and suspension; in the latter case,
the hardware unit triggers an interrupt when the semaphore
becomes available. Again, queue handling must be done in
software. US Patent Application 11/116,972 [38] builds on that
patent, but notably extends it with the possibility to allocate
semaphores dynamically.

US Patent Application 10/764,967 [20] proposes hardware
queues for resource management. These queues are, however,
not used for ordering accesses to a shared resource; instead a
queue implements a pool of resources, from which processors
can acquire a resource when needed.

The hardware-accelerated queue, HAQu [18], is used to im-
prove the performance of software queues by adding a single
instruction for enqueueing and dequeueing, whilst keeping the
queue data in the application’s address space. Hardware locks
might not provide the same performance benefits to queues
as dedicated queueing units. However, locks have more use-
cases than just queues, giving hardware locking units a wider
application potential.

Besides using a CAS operation on a shared, external main
memory, an on-chip shared scratchpad memory can support
synchronization [8]. The shared scratchpad memory is arbi-
trated in a time-division multiplexing manner for normal read
or write operations providing a time-predictable memory for
shared data structures. The arbitration scheme is extended,
allowing larger access slots where two memory operations, a
read and a write, can be performed by a single core. With those
two operations executed atomically, locks can be implemented.
However, this extension of time slots also leads to higher
worst-case access time for normal read and write operations.
A variation, with one dedicated synchronization slot, leads to
a smaller increase of the worst-case memory access time at the
cost of longer lock acquisition times. In contrast, our approach
avoids mixing normal access to shared memory and a locking
protocol by providing a dedicated locking unit. We envision
also using on-chip shared memory for shared data structures
protected by a lock from our locking unit.



In our previous work [32] we implement hardware locks
for a Java processor that support queues of waiting tasks.
The locks support 3 types of atomic operations: requesting
a lock, checking ownership, and releasing a lock. Using
varying number of processors, we compare the hardware
implementation to a software implementation. In all cases the
hardware routines are significantly faster than the software
routines. This also applies for the benchmarks with a high
lock use. The difference between the Java locking unit and the
proposed locking unit in this paper, is that the Java locking unit
tracks locked memory locations using a content-addressable-
memory and has a FIFO queue for each lock. This requires
arbitration of requests. The unit in this paper does not rely
on FIFO queues and can therefore be without the request
arbitration, i.e., cores can concurrently issue requests that the
unit processes concurrently, although in the case of contention
only one core receives the lock.

An alternative to locks are lock- and wait-free data struc-
tures. Instead of acquiring a lock and then updating the data
structure, threads manipulate the structure with the help of
CAS, or similar atomic primitive, without preventing other
threads from concurrently accessing the structure. Lock-free
data structures are not starvation free on their own. However,
wait-free data structures provide the same guarantees whilst
being starvation free. Kogan and Petrank [14] present a wait-
free queue with performance comparable to that of a lock-free
queue. This approach is also generalized [37] to allow any
lock-free data structure to become wait-free. Compared to our
locks, the presented algorithms require several additional steps
to ensure the correct behavior when manipulating the data
structures. Additionally, it is not clear whether the presented
algorithms are WCET analyzable, as they contain while-
loops and they do not present a WCET analysis. Conversely,
the Hardlock is fully analyzable and highly deterministic.
However, we acknowledge that a proper comparison requires
the wait-free data structures to be implemented on the same
platform as ours, and the same benchmarks executed for both.

III. THE T-CREST PLATFORM

The locking unit can be used in any multicore proces-
sor. For the evaluation we used the open-source T-CREST
platform [23], [26]. Figure 1 shows the T-CREST platform,
consisting of several processor cores called Patmos [27], [28].
All processor cores are connected to a shared memory via
memory network-on-chip (NoC) [25]. For message passing
communication between cores, all cores are connected to
the Argo NoC [13]. Finally, all cores are connected to the
presented locking unit. The implementation of the locking unit
is part of the Patmos source repository.

Patmos is a RISC style processor optimized for WCET
analysis. Patmos contains special cache types to simplify
WCET analysis: a method cache [7] that caches full functions
and a stack cache [1] for stack allocated data. Patmos is
supported by a compiler that optimizes for WCET [22], based
on the LLVM framework [17]. The compiler provides flow
facts for the aiT [9] WCET analysis tool from AbsInt and also
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Fig. 1: The T-CREST multicore architecture with several
processor cores connected three multicore devices: (1) one
NoC for core-to-core message passing, (2) one for access to
the shared, external memory, and (3) the Hardlock device.

incorporates WCET path information for aiT. Furthermore, an
open-source WCET analysis tool, platin [10], is available for
Patmos.

The Argo NoC [13] provides message passing between
processing cores via virtual point-to-point channels. Data is
pushed from one core’s local scratchpad memory to a desti-
nation scratchpad memory. To be time predictable, the Argo
NoC uses static time-division multiplexing for access control
to router and link resources. The network interface between
the processor and the Argo NoC is synchronized with the time-
division multiplexing schedule. This results in a NoC structure
without flow control and no additional buffering.

The Argo NoC has also been used to implement synchro-
nization primitives [30]. Furthermore, the original T-CREST
platform supports locks in shared memory with a software-
based implementation. It works as follows: to provide a co-
herent view of the main memory the write-through data cache
is invalidated [24] and then Lamport’s bakery algorithm [16]
is used to implement locks. This implementation of locks is
inefficient, so the proposed locking unit replaces it.

IV. IMPLEMENTATION OVERVIEW

We have implemented 3 locking units: (1) the synchronous
Hardlock, (2) CAS on a shared scratchpad memory, and (3) an
asynchronous lock. Furthermore, we have adapted the library
to use those units for the pthread mutex.

A. Hardlock

The main goal of the Hardlock is to minimize the WCET
when acquiring and releasing locks, thereby potentially re-
ducing critical sections. To achieve this, it is important that
requests to one lock are unrelated to requests to a different



TABLE I: The io interface of the Hardlock

Name Size Direction Description

en 1 Input Request activation
op 1 Input Request type, i.e., acquisition or release
sel log2(m) Input Lock ID
blck 1 Output Core blocked status

lock, i.e., cores can request locks concurrently without going
through some arbiter. The secondary goal is to be starvation
free, which is an important property for real-time systems.
Although this can be achieved without direct support from
the hardware, having locks that are inherently starvation free
alleviates the burden of users.

Figure 2 shows an overview of the Hardlock. n cores
connect to the Hardlock through their respective input and
output signals, and can issue requests to any of the m locks.
There are two types of requests:
• Acquisitions, where a core requests ownership of a lock
• Releases, where a core releases ownership of a lock
Table I lists the Hardlock interface. In our integration with

Patmos we adapt the signals to the T-CREST open core
protocol [2] interface.

The blck signal indicates whether a core has an outstanding
request, i.e., whether the core is awaiting ownership. If a
core’s blck signal is set, the core stalls its pipeline. Therefore,
although a core can own multiple locks, it can only have
one outstanding request at any time, potentially increasing the
WCET of unrelated threads on the stalled core. Stalling is not a
requirement dictated by the Hardlock, as cores might also poll
or register an interrupt when a lock is available, but stalling
simplifies analysis and the implementation. Additionally, we
are not running any scheduler on the T-CREST platform, so
each core only executes one thread. However, at the cost of
a few more clock cycles the locking unit can be extended
to support multiple threads for each core. As we focus on
minimizing the WCET we will not expound this.

Figure 2 shows how the input signals connect to each lock.
The sel signal determines which lock a core’s request is routed
to. Each lock produces one blck per core. These are or’ed
together with respect to the core number, producing a single
blck signal per core.

Figure 3 depicts the composition of a single lock. Each
lock consists of a queue register and a current owner register.
The queue consists of n bits, with each bit belonging to one
core. A core’s en and op signals connect to the bit. A set
bit indicates that the respective core has issued an acquisition
request for the lock. Set bits in the queue therefore indicate
that the respective core either owns the lock or is waiting for it.
Cleared bits indicate a release request, or simply the absence
of a request. The current owner register consists of log2(n)
bits that specify the identity of the core currently owning the
lock. The current owner is set by round-robin arbitration of
the queue register. Starting from the last owner, or 0 if there
is no previous owner, the arbiter searches through the queue
register, looping around at the end, until it encounters a set

bit, as shown in Figure 4. When the owner clears its queue
bit, the arbiter starts the process again from that position in
the queue. The process of finding the next set bit in the queue
is done within a single clock cycle.

If there is no contention for a lock, the Hardlock processes
acquisition requests in 3 steps:

1) Receive the acquisition request and update the respective
queue bit

2) Update the current owner register
3) Notify the core and stop stalling it
Those three steps are executed in 2 clock cycles. Note that

the 3rd step does not count towards the acquisition time, as
the core executes the next instruction in that clock cycle.

The benefits of iterating round-robin style are twofold:
1) The queue is simpler than, e.g., FIFO, as the order

of the requests are irrelevant, so there is no additional
hardware for this. Cores only access their own queue bit.
This allows cores to truly concurrently issue requests.
Additionally, release requests only need to clear the
request bit.

2) In contrast with, e.g., compare-and-swap, if no core in-
definitely holds a lock, the unit is guaranteed to process
all requests in bounded time, preventing starvation.

B. Compare-And-Swap

CAS is one of the most commonly supported synchro-
nization primitives. Comparing the Hardlock to CAS will
therefore show how a specialized solution compares to the
common solution. However, as Patmos does not support CAS,
we implement it as described in this section.

CAS is commonly implemented as a specialized instruction
that is supplied with 3 values: The address of the value to be
swapped, the expected old value at that address, and the new
value to be written at that address if the value at the address
and the supplied old value is equal. The address used for CAS
can be any memory address in the processor’s memory space.

We extend a scratchpad memory (SPM) with the necessary
logic to perform CAS operations. Instead of supporting CAS
on the full memory space, as might be the general case
for commercial processors, we restrict the operation to the
memory space of the shared SPM. This significantly simplifies
implementation, as:

1) there is no need for adding a specific CAS operation to
the instruction set, as explained below

2) we do not have to consider cache coherency issues
The CAS unit contains two registers specific to each

core: one containing the expected value at the address to be
swapped, and one containing the new value. Each is set by
a core issuing a store to them in the CAS unit. These are
the only stores that the CAS unit supports. To issue a CAS
operation, a core first sets the two registers, after which it
issues a load from the address that should be swapped. The
CAS unit reads the value from the SPM and compares it to
the expected value register. If the values are equal, the value
from the new value register is written to the SPM. Regardless
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Fig. 4: Current register updated to the next lock owner in a
single cycle by a round-robin arbiter

of whether the expected value and the read value are equal,
the read value is returned to the core. The core can then check
the success of the CAS operation by similarly comparing the
expected value with the returned value.

A benefit of storing the expected and new values in core
specific registers, is that in the case that the CAS operation
fails, the core does not have to re-supply the two values.
Instead it can continuously issue loads until the operation
succeeds.

Access to the SPM is arbitrated with time-division multi-
plexing, ensuring time-bounded access. The CAS unit needs
one clock cycle to issue a load to the SPM, one clock cycle
to receive the value and compare it and one clock cycle to
potentially issue a store. The time-division multiplexing slot
size is therefore set to 3 clock cycles.

As the expected and new value registers are core specific,
and not a part of the SPM, they can be written at any time by a
core and are not subjected to the arbitration. Multiple threads
running on the same core must not issue multiple interleaved
CAS operations, as this would corrupt the registers. Given that
the CAS operation is time bounded we can simply disable
interrupts for the core instead of having to support register
sets for each thread.

There are many solutions to implementing locks on top of
CAS, depending on whether the locks support queueing, pre-
emption, etc. However, these all add additional overhead in
the form of software steps. To keep the locks simple and fast,
each CAS unit address corresponds to a lock. Lock acquisition
is then as follows:

expected_value = 0;
new_value = 1;
while(cas(lockid) != 0) { }

and lock release as follows:
expected_value = 1;
new_value = 0;
// Should succeed on first try
while(cas(lockid) != 1) { }

C. Asynchronous Lock

The previous solutions require both the processors and the
synchronization mechanisms to be in the same clock domain.

For very large chips with hundreds and even thousands of
processor cores this becomes infeasible. These systems typi-
cally use a globally-asynchronous, locally-synchronous timing
organization where each processor resides in its own clock do-
main, and where some form of asynchronous communication
protocol is used for communication between clock domains.
In such a system, a locking unit could reside in its own clock
domain as well. For reliable operation, the locking unit must
synchronize incoming request signals (using for example a pair
of flip-flops), and the individual processors must synchronize
the incoming grant-signals.

A simpler and more elegant solution can be built using a
tree of asynchronous arbiters. Figure 5(a) shows the interface
between a processor and the arbiter tree and Figure 5(b) shows
an arbiter tree for a system with eight processors. The arbiter
tree implements one lock and must be copied if more locks are
needed. The request-grant interface used on all arbiter ports
(inputs as well as outputs) use a 4-phase handshaking protocol
and the meaning of the four events of a full handshake are: (1)
Request the resource, (2) the resource has been granted, (3)
release the resource, and (4) the resource has been released.

The arbiter is a standard textbook design [31][Section 5.8].
The mutual exclusion element that forms the heart of the
arbiter requires a non-digital metastability filter circuit. For our
FPGA implementation we use a standard gate implementation
proposed by Ran Ginosar1. Compared to a synchronous
locking unit, where synchronizers would have to be used for
both signals going to the unit, as well as signals coming from
the unit, only the grant-signals into the processors need to be
synchronized for the arbiter tree. Furthermore, the arbiter tree
itself is very fast, as it is self-timed and signals will traverse
the tree as fast as possible, regardless of the clock(s) in the
rest of the system. The arbiter tree does not guarantee that
processors will get the lock in the same order as they request
it, but it does guarantee the same worst-case behavior as the
locks discussed in the previous sections: In the worst-case a
processor requesting a lock will be granted access to the lock
after all the other n− 1 processors have been granted access
once.

In the general case n is not a power of two and in this case
one or more leaf nodes are omitted from the arbiter tree. This
results in an unbalanced tree, and processors with a shorter
distance to the root may obtain the lock two times where other
processors obtain it only once. In any case a processor in a
system with n processors will wait for at most n′− 1 other
processors to access the lock, where n′ is computed as follows
(the number of processors rounded up to the nearest power of
two):

n′ = 2dlog2(n)e (1)

D. Pthread Mutex

In the next section we show how our analyzed values cor-
respond to our measured values. To this end we use optimized
locking procedures, such as pre-calculating the lock id, as any

1http://images.slideplayer.com/16/4906671/slides/slide 13.jpg
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Fig. 5: (a) The request-grant interface between a processor
node and the arbiter tree. (b) The asynchronous arbiter tree
implementing a single lock for a system with eight processors.

additional operation, other than requesting the lock, adds to
the overhead. However, these procedures are not practical for
programmers. We therefore build the standard pthread mutex
on top of our locks, allowing our locks to be used in “normal”
C programs.

We do this by implementing the types
pthread mutex attribute and pthread mutex t, as well
as the following methods

1) pthread mutex initialize: Initializes a mutex by mapping
it to an available hardware lock

2) pthread mutex destroy: Deallocates the mutex by mark-
ing the mapped hardware lock as available

3) pthread mutex lock: Attempts to acquire the mutex.
This method maps almost directly to the hardware lock

TABLE II: Uncontended lock performance in clock cycles

Acquisition Release

Hardlock 2 1
CAS 3n+8 3n+8
Asynchronous Lock ≈ 3 ≈ 3

TABLE III: Contended lock acquisition performance in clock
cycles

Hardlock 2n+∑
n−1
i=1 ci

CAS 3n+8+∑
∞
1 ∑

n−1
i=1 (6n+1+ ci)

Asynchronous Lock ≈ 6n′−3+∑
n′−1
i=1 ci

4) pthread mutex unlock: Releases the mutex. As above,
this method maps almost directly to the hardware lock

We track available hardware locks by having an array of
the same length as the number of hardware locks. One of the
hardware locks is reserved for synchronizing access to this
structure. During mutex initialization, an available hardware
lock is found, marked as reserved, and its id written in the
mutex. When the mutex is destroyed the hardware lock is
marked available.

Acquiring and releasing the mutex does not incur the
above overhead, as these methods map to a hardware lock.
The implementation limits the number of mutexes that can
be active to the number of hardware locks. However, the
number of concurrently active locks is usually low, so this
is not necessarily an issue. Additionally, users do not have to
consider which specific hardware locks to use, which makes
the pthread mutex easier to use than the hardware locks in
their “raw” form.

V. TIMING ANALYSIS

In this section we analyze the behavior and limitations of
each lock. Table II and Table III present the derived WCETs.
n is the number of cores, ci is the WCET of another core’s
critical section and n′ is the variable from equation 1.

None of the locking units dictate how long cores hold the
locks, as this is application dependent. Also, the units do not
prevent deadlocks. The software must handle these issues, e.g.,
always acquire locks in the same order, no infinite loops while
holding locks, etc.

Another apparent issue with the units is the limited number
of locks. Whilst this is configurable during hardware genera-
tion, it does not have the benefit of normal CAS where every
memory address is a potential lock, i.e., practically infinite
locks. However, we find that most applications use a very
limited amount of locks.

A. Hardlock

When a core requests an uncontended lock, 1 clock cycle
is spent updating the queue register. The round-robin arbiter
spends another clock cycle updating the current owner register.
In the 3rd clock cycle the core is notified of the ownership,
and as it continues execution in the same clock cycle, the



3rd clock cycle does not count towards the lock request, i.e.,
2 clock cycles total. A lock release is done by updating the
queue register, after which the core can continue execution,
i.e., 1 clock cycle total.

When a lock is contended, we assume that all other cores
acquire the lock first and must release it. However, this requires
the other cores to be enqueued, meaning the first acquisition
clock cycle for all other cores does not count towards the total
waiting time. We also include other cores’ critical sections. We
therefore have

WCETacquisition = 2+
n−1

∑
i=1

(1+1+ ci)

= 2+2(n−1)+
n−1

∑
i=1

ci

= 2n+
n−1

∑
i=1

ci

(2)

B. CAS

The CAS unit uses 3 clock cycle TDM slots and one slot
for each core, i.e., n slots. However, for the WCET the core
misses its own slot’s first clock cycle, so it must wait 2 clock
cycles plus 3 clock cycles for each TDM slot. Additionally,
software steps take 6 clock cycles: 2 clock cycles for writing
the expected and new value to the unit, and 4 cycles for
branching the while loop. If the lock is uncontended, we know
that the CAS operation will succeed. The WCET for acquiring
an uncontended lock is therefore 3n+ 2+ 6 = 3n+ 8 clock
cycles. This also applies for a release.

When the lock is contended, we assume that other cores
come first, similarly to the Hardlock. However, although a
CAS operation is guaranteed to be executed in bounded time,
i.e., 3n + 8 clock cycles, the number of times other cores
can acquire the lock is not. We can therefore state what the
overhead of another core acquiring the lock first will be, but
not the number of these acquisitions. The WCET is therefore
technically unbounded, represented by the infinite sum.

If another core acquires the lock first, we assume it has
the last TDM slot, so 3(n− 1) + 2 clock cycles. That core
then executes its critical section, ci, after which it releases the
lock, but not before missing its TDM slot, i.e., another 3n+2
clock cycles. We also add 3n+8 clock cycles for the current
core acquiring the lock, but just missing its TDM slot. The
WCET is therefore

WCETacquisition = 3n+8+
∞

∑
1

n−1

∑
i=1

(3(n−1)+2+3n+2+ ci)

= 3n+8+
∞

∑
1

n−1

∑
i=1

(6n+1+ ci)

(3)

C. Asynchronous Lock

The asynchronous lock involves both synchronous and
asynchronous parts. On the synchronous side the lock has one
flip-flop per core to maintain the command that the core issued,

and two flip-flops to synchronize the answer (grant) from the
locking unit. On the asynchronous side the WCET depends on
the number of connected cores, i.e., the depth of the arbiter
tree. With n processors, the depth of the arbiter tree can be
expressed as follows: d = dlog2(n)e.

The depth does not affect the clock frequency of the
synchronous side, but as our analysis measures time in clock
cycles, the latency of going up and down the arbiter tree must
be converted into clock cycles. The critical path in each arbiter
stage consists of 4 LUTs down towards the root and 1 LUT
upwards. The critical path for the tree is therefore d ∗5 LUTs.
Translating this into a number of clock cycles, k, depends on
many factors such as FPGA technology used, layout, routing,
etc., and must be rounded up to an integer number of clock
cycles. As Patmos is clocked at 80 MHz, k = 1 even for a very
large number of processors.

Both uncontended acquisition and release require 1 clock
cycle for the command, 1 clock cycle for the synchronization
register, and k clock cycles for the arbiter tree, in total 2+ k.
With k = 1, this corresponds to 3 clock cycles. For a contended
lock the worst-case number of processors that may be served
before a processor is granted the lock is given by equation 1.
We therefore have:

WCETacquisition = 2+ k+
n′−1

∑
i=1

(2+ k+2+ k+ ci)

= 2+ k+
n′−1

∑
i=1

(2k+4+ ci)

= 2+ k+(n′−1)(2k+4)+
n′−1

∑
i=1

ci

≈ 6n′−3+
n′−1

∑
i=1

ci

(4)

VI. EVALUATION

In this section we evaluate the locking units. First, we
compare the resource usage when synthesizing the units on
an FPGA. We then compare the performance of the units for
both uncontended and contended locks. We also compare the
performance of the pthread mutex on top of each locking unit.
Finally, we compare the Hardlock to a lock-free implementa-
tion.

Throughout the section, n represent the number of cores and
m the number of locks.

A. Resource Consumption

We use Quartus II Web Edition version 15.0 [11] and
the Altera DE2-115 development board with the Cyclone IV
FPGA for the evaluation. Table IV contains the hardware
resource usage of the 3 locking units when synthesized with
different number of locks and connected to different number
of Patmos cores. The resources are specified as logic cells,
registers and memory bits. A logic cell on Cyclone IV contains



a 4-bit lookup table. To put the numbers in relation to the
resource usage of a processor, a simple RISC style processor
requires about 3000 logic cells and Patmos consumes about
9000 logic cells.

Overall, the Hardlock has the lowest hardware usage. The
number of registers corresponds to the number of queues
and current owner registers, one for each lock, i.e., m×
(n+ log2(n))+ n. The cell count corresponds to the number
of locks and connected cores. When the number of cores
increases, the queue and current registers grow, which results
in the round-robin arbiter growing. When the lock count
increases, the unit grow almost proportionally with the count.
Only when both increasing the number of cores and locks does
the unit grow significantly.

The CAS unit has the highest register usage, as it must
store all the data of a request, such as address, expected
value, new value, etc. Additionally, the CAS unit is the only
one that consumes memory bits, corresponding to the number
and width of the SPM fields, i.e., m×32 bits. Increasing the
number of locks almost only increases the number of memory
bits, which is cheaper than the other resources. Therefore, the
CAS unit has the best scalability with regards to the number
of locks.

Like the CAS unit, the asynchronous lock must also store
more request data than the Hardlock, resulting in a higher
register usage. However, the cell count is almost twice that of
the other units. This is caused by forcing the synthesis tools to
keep separate parts of the mutex and arbiter in their own cells.
If the unit were to be implemented on an ASIC, the resource
usage would be more comparable to, and possibly even lower
than, that of the other units.

B. Uncontended Performance

We have created a small test program to measure the per-
formance of uncontended locks when running on the FPGA.
Each core has its own lock to ensure that no core experiences
contention. The program executes on all cores and loops 1024
times, each time measuring the time before and after acquiring
a lock, as well as the time before and after releasing a lock:

time1 = read_time();
lock(id);
time2 = read_time();
unlock(id);
time3 = read_time();

Table V contains the results of running the program on 8
cores using 16 locks. The tables contain the average, mini-
mum, and maximum time in clock cycles for both operations
on all lock types. When using the locking units directly, the
measured WCET is exactly equal to our analyzed WCET from
Table II, which shows the Hardlock and asynchronous lock
having the best performance, although only the Hardlock can
guarantee its performance.

Using the pthread mutex on top of each locking unit has
absolutely no impact on the performance, compared to using
the locking units by themselves. Although this might seem
unexpected, the test is optimized to have no overhead in

addition to the locking itself. The compiler is therefore able
to inline the pthread mutex lock and pthread mutex unlock
functions, which in turn merely call the raw locking routines.
The contended performance test achieves a more accurate
view.

C. Contended Performance

We have also created a small test program to measure the
performance of contended locks when running on the FPGA.
The program runs on 8 Patmos cores. Each core executes a
loop where it takes a lock, stalls for a given number of clock
cycles and then releases the lock, as shown in the following
excerpt:

int lckid = 0;
for(int i = 0; i < cnt; i++)
{

lock(lckid);
timer_setup(wait_cycles)
timer_wait()
unlock(lckid);
if(++lckid >= lckcnt)

lckid = 0;
}

The loop executed 1000 times, and for each iteration, each
core tries to acquire a different lock than in the previous
iteration. The number of locks used in the loop affects the
contention experienced by the cores, i.e., when the lock count
is 1, there is full contention, whereas when then lock count
is 8, there should be little to no contention. The time a core
stalls corresponds to its critical section. All cores have the
same critical section length. The time is measured from when
the first core starts executing the loop until all cores have
finished.

Figure 6 contains the results of executing the program with
critical sections of 10 to 10000 clock cycles, using each
locking unit with and without pthread mutex. The y-axis
represents the execution time in clock cycles and the x-axis
represents the number of locks used.

The results show that Hardlock generally performs the best,
with the asynchronous lock performing close to the Hardlock,
and the CAS being the slowest. However, we mainly observe
this difference with shorter critical sections. As the critical
sections grow larger, the difference in performance becomes
negligible, e.g., when the critical section is 1000 or 10000
clock cycles. We also observe the overhead of the pthread
mutexes for the lower critical sections, particularly for CAS.
However, this overhead also becomes negligible as the critical
sections increase. Using pthread mutexes therefore does not
infer a much larger overhead.

D. Comparison with a Lock-Free Algorithm

An alternative to using locks when accessing a data struc-
ture, is to use a lock-free implementation of the access to that
structure. We have created two implementations of a stack, one
using the Hardlock to synchronize access, and the other using
CAS for a lock-free access. For both implementations, the
stack consists of a top pointer that points to the top element
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TABLE IV: Hardware resource usage for each locking unit

Lock type Cores Locks Logic Cells Registers Memory Bits

Hardlock 8 16 807 184 0
CAS 8 16 850 629 512
Asynchronous Lock 8 16 1452 392 0

TABLE V: Measured uncontended lock performance in clock cycles

Acquisition Release

Lock type Avg. Min. Max. Avg. Min. Max.

Hardlock 1.9 1 2 1 1 1
CAS 18 11 32 23 23 23
Asynchronous Lock 3 3 3 3 3 3

Pthread Mutex
Hardlock 1.9 1 2 1 1 1
CAS 18 11 32 23 23 23
Asynchronous Lock 3 3 3 3 3 3
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Fig. 7: Performance comparison of the implementation of a
stack data structure with the Hardlock or a lock-free algorithm
stack. The number of iterations indicates how many times each
core will execute two pops and two pushes, in that order

of the stack, and elements that contain a value and a next
element pointer, i.e., a single linked list.

The lock-free implementation uses CAS, although only
for manipulating the top. The top is therefore located in
the CAS unit, whereas all the elements are locate in main
memory. To ensure a fair comparison, this is also done for
the Hardlock implementation. Some lock-free implementations
rely on double-word CAS to avoid the ABA-problem by
swapping not only the top pointer, but also a element version
counter, which ensures that a pop knows whether other threads
popped and pushed the element before the pop finalizes the
swap. Our CAS unit is only single-word, so we reserve the
8 most significant bits of the top pointer for the version,
and add a version counter to each element. Before pushing
an element onto the stack, a thread increments the element’s

version counter, and then combines this value with the address
of the element to create the new top pointer.

We created a program to test the performance of the two
stack implementations. The main core starts by generating 2
elements per core and pushing them all on the stack, after
which it takes a time stamp, and starts all the cores. Each
core then pops two elements and pushes them in reverse order.
Each core does this for a number of iterations specified by an
iteration constant. When all cores finish, the main core takes
the end time stamp.

Figure 7 shows the result of running the program on 8 cores.
The x-axis specifies the number of iterations that each core
popped and pushed 2 elements, and the y-axis specifies the
number of cycles it took for all the cores to finish. Note, that
both scales are logarithmic, so the differences look far less
than on a linear scale. For a single iteration, the lock-free
implementation executes for roughly 19% more

cycles. Most likely, the cores spend most of the time on
setup overhead and not on modifying the stack. However,
as the number of iterations increases, the difference becomes
57%, increasing towards 72%, showing that the lock-free stack
has some additional overhead at high congestion.

Source Access

The T-CREST project is an open-source project and there-
fore we also provide the locking units and the evaluation
benchmarks as open source. Our work is available at [34]. A
README explaining how to run the tests and reproduce the
results is available at [35] and we provide an Ubuntu virtual
machine [36] containing all the build tools.

VII. CONCLUSION

Performance improvements are currently achieved by build-
ing multicore processors. Tasks split into several threads need
to communicate and coordinate their work, which is commonly
done with shared data structures protected by locks. Therefore,
the performance of locking is an important aspect of the
overall performance.



In this paper we presented 3 dedicated locking units in
hardware: the Hardlock, an asynchronous locking unit and
compare-and-swap on a shared scratch-pad memory. The
Hardlock bounds uncontended lock acquisition to 2 clock
cycles and releases to 1. Neither the asynchronous lock nor
compare-and-swap properly bound acquisition. However, the
measured performances show that the asynchronous lock per-
forms nearly as well as the Hardlock, and for critical sections
of 1000 cycles or higher, the performance difference between
the locks is negligible. Additionally, building pthread mutexes
on top of the locking units does not incur a large overhead,
particularly for locking routines. Comparing a stack imple-
mentation using the Hardlock to a lock-free implementation
shows that the lock-free implementation incurs an overhead
of 19-72

Generally, we find that for normal systems, which of the
locking units one might use does not significantly impact the
performance. However, for time-predictable computer archi-
tectures, the starvation free behavior of both the Hardlock
and the asynchronous lock is a benefit. Additionally, the
predictable and low worst-case execution time of the Hardlock
gives it a benefit over both other two locking units. We
therefore find that the Hardlock is the best fit for time-
predictable systems.
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