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ABSTRACT
Garbage collection is traditionally not used in real-time systems
due to the unpredictable temporal behavior of current implementa-
tions of a garbage collector. However, without garbage collection
the programming model is very different from standard Java. It is
the opinion of the authors that garbage collection algorithms can be
adapted to meet even the requirements for hard real-time systems.

One important property of a real-time garbage collector is to
identify only the real roots on the root scan. Misinterpreting primi-
tive values as false root pointers can result in an unpredictable worst
case memory consumption. In this paper we propose a method to
add information on the stack layout to the runtime data structure in
order to find the roots exactly. Furthermore, interpreting this infor-
mation during the collection process is implemented to be worst-
case execution time analyzable.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory man-
agement (garbage collection)

General Terms
Algorithms, Languages

Keywords
Garbage Collection, Real-Time, Java, Root Set

1. INTRODUCTION
Garbage Collection (GC) is an essential part of the Java run-

time system. GC enables automatic dynamic memory manage-
ment, which is essential to build large applications. Automatic
memory management frees the programmer from complex and er-
ror prone explicit memory management (malloc and free).

Dynamic memory allocation in hard real-time systems is attrac-
tive as the programmer can use the same style and patterns as with
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non-real-time programs that use traditional garbage collectors. In
real-time systems and especially in embedded real-time systems
there are some additional constraints on the garbage collector. It
needs to be real-time analyzable with guarantees that it can be
scheduled with other real-time threads. This demand can motivate
the need for time-predictable garbage collection.

A garbage collector in Java collects objects on the heap that are
not reachable from the application anymore. The garbage collector
searches the global variables (the class variables) and the Java stack
frames for objects references. These references are called the root
set. Starting from this root set the complete graph of all live objects
is traversed. The objects that are not found during this traversal are
not referenced anymore and thus are garbage.

A prerequisite for a time-predictable root set scan is that this ini-
tial set of object references is precise and does not contain any false
references. It is such that the primitive values in Java like int can
look like a reference to an object without being one. This can fool
the garbage collector to retain this object as a live object and in turn
break the prerequisites for the scheduling of a concurrent real-time
garbage collector. Accordingly, we implement and analyze an ex-
act root set scanner, which is configurable in terms of its memory
overhead depending on the application programmers scheduling re-
quirements.

The paper is structured as follows: Section 2 provides the overview
of real-time garbage collection (RTGC) and related work. In Sec-
tion 3 we describe the architecture of the open source Java proces-
sor used for the implementation of the exact root set scanner and
how some architectural choices influence the root set. Section 4
details the design of the exact root set scanner and provides the ex-
perimental results in Section 5. We continue with the discussion of
the root set scanner in Section 6 and concluded the paper in Sec-
tion 7.

2. REAL-TIME GARBAGE COLLECTION
Garbage collection is considered unsuitable for real-time sys-

tems due to the unpredictable blocking times introduced by the GC
work. As one solution to use Java for real-time systems the Real-
Time Specification for Java (RTSJ) [6] introduces new thread types
with program managed, scoped memory for dynamic memory re-
quirements. The RTSJ programming model differs largely from
standard Java and is difficult to use [20, 26]. It is the opinion of the
authors that a garbage collector with real-time properties is manda-
tory to build future, probably more complex, real-time applications
in Java.

To distinguish between other garbage collectors and a collector
for (hard) real-time systems we cite from [32] the definition of real-
time collector:



A real-time garbage collector provides time predictable
automatic memory management for tasks with bounded
memory allocation rate with minimal temporal inter-
ference to tasks that use only static memory.

The exact root scanner presented in this paper is one essential
part of a real-time enabled garbage collector.

2.1 First Collectors
Garbage collection was first introduced for list processing sys-

tems (LISP) in the 1960’s [19]. The first collectors were stop-the-
world collectors that are called when a request for a new element
can not be fulfilled. The collector, starting from pointers known as
the root set, scans the whole graph of reachable objects and marks
these objects live. In a second phase the collector sweeps the heap
and adds unmarked objects to the free list. On the marked objects,
which are live, the mark is reset in preparation for the next cycle.

However, this simple sweep results in a fragmented heap which
is an issue for objects of different sizes. An extension, called mark-
compact, moves the objects to compact the heap instead of the
sweep [8]. During this compaction all references to the moved ob-
jects are updated to point to the new location.

Both collectors need a stack during the marking phase that can
grow in the worst-case up to the number of live objects. Cheney
[7] presents an elegant way how this mark stack can be avoided.
His GC is called copying-collector and divides the heap into two
spaces: the to-space and the from-space. Objects are moved from
one space to the other as part of the scan of the object graph.

2.2 Incremental Collection
All the former described collectors are still stop-the-world col-

lectors. The pause time of up to seconds in large interactive LISP
applications triggered the research on incremental collectors that
distribute collection work more evenly [35, 10, 4]. These collec-
tors were sometimes called real-time although they do not fulfill
hard real-time properties that we need today.

Baker [4] extends Cheneys [7] copying collector for incremental
GC. However, it uses an expensive read barrier that moves the ob-
ject to the to-space as part of the mutator work. Baker proposes the
Treadmill [5] to avoid copying. However, this collector works only
with objects of equal size and still needs an expensive read barrier.

A good overview of GC techniques can be found in [16] and in
the GC survey by Wilson [36].

2.3 Real-Time
Work on real-time garbage collectors started again through con-

sideration of Java for real-time systems [17].
In [25] two collectors based on [10] and [5] are implemented on

a multithreaded microcontroller. Higuera suggests in [14] the use
of hardware features from picoJava [24] to speed up RTSJ memory
region protection and garbage collection. A hardware assisted real-
time collector is proposed by Schmidt and Nielsen [29].

In [28] the authors suggest a time-triggered garbage collector
and provide an upper bound for the GC cycle time. An extension
on this topic can be found in [32].

The collector used for the root scanning presented in this paper
is based on the work by Steele [35], Dijkstra [10] and Baker [4].
However, the copying collector is changed to perform the copy of
an object concurrent by the collector and not as part of the mutator
work. Therefore we name it concurrent-copy collector.

It is the opinion of the authors that garbage collection is an op-
tion for real-time systems. In [32] we showed that a periodic sched-
uled garbage collector can keep up with the demands of real-time
threads. This is also the case for [21], which focus on portable so-

lutions using JIT. The exact root scan for JOP, with the low and
bound blocking time, as presented in this paper is another step to-
wards enabling Java for real-time systems.

2.4 Exact Roots
Next, we will discuss exact root set scanning. There are a num-

ber of different approaches to identify the potential references in
a stack. We will discuss a split stack, a runtime type stack, and a
stack map. The first two are online approaches that keep track of
the references in the embedded JVM [15]. The stack map method
is an offline approach that use information generated from the class
file during link time [1]. Others [11] have looked into the com-
pression of this compile-time information with good results. In
addition, there is also the method presented in [34], which requires
the use of synchronization points. At such a synchronization point
it is required that live references are stored on the heap. For a hard-
ware implementation of the JVM (a Java processor) that contains
the stack on-chip the additional type stack (which is just an addi-
tional 33rd bit) is a valuable option [13].

Garbage collection in real-time Java systems is useful because
it enables the use of dynamic memory allocation while the system
still adheres to hard real-time requirements. In order to allow allo-
cation of new objects the GC must be able to detect dead objects on
the heap. In order to detect which objects are not reachable from
the root set, the GC has to know which objects are live as the rest
must then be dead and subject to garbage collection.

A garbage collector that scans objects for references to build a
graph of live objects needs an initial set of references. This set is
called the root set and is identified by inspecting the static vari-
ables and the stack frames of the program. These stack frames
belong to different threads and are not shared among threads. A
Java stack frame corresponds to one method in a class. It does not
matter if the method is static or an instance method except that the
instance method has the reference to the instance as the first argu-
ment (which is mapped to the first local variable during method
invocation).

A root scan needs to inspect each frame for potential references
to objects (which are located in the heap memory area) to get the
initial set of references needed to make a live graph of the objects.
The objects that are not reachable starting from the root set of refer-
ences are dead in the sense that they can never be used again. They
can safely be collected by the garbage collector. Each GC cycle
is thus initiated with the identification of the root set of objects on
the heap. The root set contains all static references (class variables)
and the references on the thread’s stacks. From this root set the rest
of the reachable heap objects are identified.

3. A REAL-TIME JAVA PROCESSOR
In this section we introduce the environment where the garbage

collector with the exact root scan is implemented. Furthermore,
some features of the Java processor, such as only interrupts at byte-
code boundary, simplify the exact root finding process.

The Java Optimized Processor (JOP) [31] is an implementation
of the Java virtual machine (JVM) in hardware – a Java processor.
JOP is a stack computer with its own instruction set, called mi-
crocode. Java bytecodes are translated into microcode instructions
or sequences of microcode. The difference between the JVM and
JOP is best described as the following: The JVM is a CISC stack
architecture, whereas JOP is a RISC stack architecture.

JOP is implemented in a field programmable gate array (FPGA).
One design goal for JOP is its applicability to worst-case execu-
tion time (WCET) analysis. This design principle is consistent
throughout the JOP processor. As the processor is implemented



in an FPGA and all sources are available, it is also possible to add
specialized hardware units (e.g. a typed stack as suggested in Sec-
tion 2.4. The thread scheduler on JOP [31] is preemptive. On a
control switch a complete stack belonging to the active thread is
saved. Therefore is can be easily accessed by the root scanner.
Each frame on the stack contains the saved program counter (PC)
that points to the next instruction that will get executed once control
returns from the invoked method.

3.1 The Processor Pipeline
JOP is a fully pipelined architecture with single cycle execution

of microcode instructions and a novel approach to mapping Java
bytecode to these instructions.

Three stages form the JOP core pipeline, executing microcode
instructions. An additional stage in the front of the core pipeline
fetches Java bytecodes – the instructions of the JVM – and trans-
lates these bytecodes into addresses in microcode. Bytecode branches
are also decoded and executed in this stage. The second pipeline
stage fetches JOP instructions from the internal microcode mem-
ory and executes microcode branches. Besides the usual decode
function, the third pipeline stage also generates addresses for the
stack RAM. As every stack machine instruction has either pop or
push characteristics, it is possible to generate fill or spill addresses
for the following instruction at this stage. The last pipeline stage
performs ALU operations, load, store and stack spill or fill. At
the execution stage, operations are performed with the two topmost
elements of the stack.

A stack machine with two explicit registers for the two topmost
stack elements and automatic fill/spill needs neither an extra write-
back stage nor any data forwarding. Details of this two-level stack
architecture are described in [30]. The short pipeline results in
short branch delays. Therefore, a hard to analyze, with respect to
Worst Case Execution Time (WCET), branch prediction logic can
be avoided.

3.2 Interrupt Logic
Interrupts are considered hard to handle in a pipelined proces-

sor, meaning implementation tends to be complex (and therefore
resource consuming). In JOP, the bytecode-microcode translation
is used to avoid having to handle interrupts in the core pipeline.

Interrupts are implemented as special bytecodes. These byte-
codes are inserted by the hardware in the Java instruction stream.
When an interrupt is pending and the next fetched byte from the
bytecode cache is an instruction, the associated special bytecode is
used instead of the instruction from the bytecode cache. The result
is that interrupts are accepted at bytecode boundaries. The worst-
case preemption delay is the execution time of the slowest bytecode
that is implemented in microcode. Bytecodes that are implemented
in Java (see Section 3.3) can be interrupted.

The implementation of interrupts at the bytecode-microcode map-
ping stage keeps interrupts transparent in the core pipeline and
avoids complex logic. Interrupt handlers can be implemented in the
same way as standard bytecodes are implemented i.e. in microcode
or Java. This special bytecode can result in a call of a JVM internal
method in the context of the interrupted thread. This mechanism
implicitly stores almost the complete context of the current active
thread on the stack.

It has to be noted that the interrupt is only handled at bytecode
boundaries. We do not need to consider interruption of the mi-
crocode which greatly simplifies the implementation of the root
scanning. At bytecode boundaries no valid references in proces-
sor internal registers have to be considered. For a compiling JVM
(a JIT compiler or a batch compiler [22]) also the registers of the

processor have to be considered as potential root references or ex-
plicit synchronization with the collector has to be included [23].

3.3 Microcode
The following discussion concerns two different instruction sets:

bytecode and microcode. Bytecodes are the instructions that make
up a compiled Java program. These instructions are executed by
a Java virtual machine. The JVM does not assume any particular
implementation technology. Microcode is the native instruction set
for JOP. Bytecodes are translated, during their execution, into JOP
microcode. Both instruction sets are designed for an extended1

stack machine.

3.3.1 Translation of Bytecodes to Microcode
To date, no hardware implementation of the JVM exists that is

capable of executing all bytecodes in hardware alone. This is due
to the following: some bytecodes, such as new, which creates and
initializes a new object, are too complex to implement in hardware.
These bytecodes have to be emulated by software.

To build a self-contained JVM without an underlying operating
system, direct access to the memory and I/O devices is necessary.
There are no bytecodes defined for low-level access. These low-
level services are usually implemented in native functions, which
mean that another language (C) is native to the processor. However,
for a Java processor, bytecode is the native language.

One way to solve this problem is to implement simple bytecodes
in hardware and to emulate the more complex and native functions
in software with a different instruction set (sometimes called mi-
crocode). However, a processor with two different instruction sets
results in a complex design.

In JOP, this problem is solved in a much simpler way. JOP
has a single native instruction set, the so-called microcode. Dur-
ing execution, every Java bytecode is translated to either one, or a
sequence of microcode instructions. This translation merely adds
one pipeline stage to the core processor and results in no execution
overheads. With this solution, we are free to define the JOP instruc-
tion set to map smoothly to the stack architecture of the JVM, and
to find an instruction coding that can be implemented with minimal
hardware.

Every bytecode is translated to an address in the microcode that
implements the JVM. If there exists an equivalent microinstruction
for the bytecode, it is executed in one cycle and the next bytecode
is translated. For a more complex bytecode, JOP just continues
to execute microcode in the subsequent cycles. The end of this
sequence is coded in the microcode instruction. This translation
needs an extra pipeline stage but has zero overheads for complex
JVM instructions.

3.3.2 Compact Microcode
For the JVM to be implemented efficiently, the microcode has

to fit to the Java bytecode. Since the JVM is a stack machine, the
microcode is also stack-oriented. However, the JVM is not a pure
stack machine. Method parameters and local variables are defined
as locals. These locals can reside in a stack frame of the method
and are accessed with an offset relative to the start of this locals
area. Additional local variables (16) are available at the microcode
level. These variables serve as scratch variables, like registers in
a conventional CPU. However, these JVM local variables do not
retain any object related information over bytecode boundaries. As
explained in Section 3.2 those variables are not part of the root set.

1An extended stack machine contains instructions that make it pos-
sible to access elements deeper down in the stack.



Some bytecodes, such as ALU operations and the short form ac-
cess to locals, are directly implemented by an equivalent microcode
instruction (with a different encoding). Additional instructions are
available to access internal registers, main memory and I/O devices.
A relative conditional branch (zero/non zero of TOS) performs con-
trol flow decisions at the microcode level. For optimum use of the
available memory resources, all instructions are 8 bits long. There
are no variable-length instructions and every instruction, with the
exception of wait, is executed in a single cycle.

3.3.3 Flexible Implementation of Bytecodes
As mentioned above, some Java bytecodes are very complex.

One solution already described is to emulate them through a se-
quence of microcode instructions. However, some of the more
complex bytecodes are very seldom used. To further reduce the
resource implications for JOP, in this case local memory, byte-
codes can even be implemented by using Java bytecodes. During
the assembly of the JVM, all labels that represent an entry point
for the bytecode implementation are used to generate the transla-
tion table. For all bytecodes for which no such label is found, i.e.
there is no implementation in microcode, a not-implemented ad-
dress is generated. The instruction sequence at this address invokes
a static method from a system class (com.jopdesign.sys.JVM).
This class contains 256 static methods, one for each possible byte-
code, ordered by the bytecode value. The bytecode is used as the
index in the method table of this system class. This feature also
allows for the easy configuration of resource usage versus perfor-
mance.

The bytecodes that create objects (e.g. new) are also implemented
in Java for a simpler interaction with the GC2. As this bytecode
could be interrupted by a thread switch it is explicitly synchronized
with the GC thread.

4. EXACT ROOT SET SCAN
The runtime information of all classes is structured in a way that

simplifies scanning of the static references. The class variables are
divided into primitive type and reference type variables. All ref-
erence variables are found in one continues block in the memory.
Therefore, scanning the static references is trivial. Identifying ex-
actly the stack elements that contain a reference is more challeng-
ing.

First we need to discuss conservative stack scanning. It also op-
erates with the goal of identifying the root set. A simple approach
is to handle each stack value as a potential root. In this way it ex-
amines each value on the stack and tests if it contains a value that
points to either a handle (if indirection is used) or directly to an
object. This is named conservative root scanning and can keep ob-
jects artificially alive through misinterpreting a primitive element
as a reference. A value on the stack that belongs to a primitive can
accidently equal a reference value to an object that is not referenced
by any real references and thus should be garbage collected.

Another disadvantage of the conservative root set scan is that it is
not possible to move objects when no indirection (the read barrier,
or handle) is used. When the heap is compacted all references to
the moved object have to be updated. An update of a misinterpreted
stack slot would be wrong.

The first option is to work with a split stack [15] such that one
stack is used only for references (ie. the root set) and the other stack
is used only for primitives. The main drawback of this option is the
need for additional typed bytecode instructions for the type-less

2The Java implementation of new in JVM.java actually invokes a
method from the GC class

bytecodes (e.g. dup, pop) that manipulate the stack. Furthermore,
the split stack solution complicates the frame handling on invoke
and return resulting in high overheads for method invokation.

A second option is to save this type information during runtime
using a second stack (that can be one bit width as we only need
to distinguish references from primitives), which contains the type
information. This type stack has to be manipulated simultaneously
with the value stack. In this case the type-less bytecodes are not
an issue anymore. However, implementing this additional stack in
software introduces a lot of overhead.

The third method is to extract this information from the class
file (and the bytecodes) offline. This is possible due the fact that
each PC maps to a unique configuration of the operand stack and
local variables [12]. It is done by simulating the program execution
while keeping track of the local variables and the stack operands.
Accordingly, this information makes it possible to mark which lo-
cals or stack operands are primitives and which are references to
a heap object. A requirement for this to work is that the program
counter (PC) is mapped to a record that contains this information.
It should be noted that this stack map could also be constructed dur-
ing run time but it would be likely to consume too many resources
to be feasible.

4.1 Program Counter Mapping
On the host where the Java application is compiled for the target,

we perform the program simulation that maps each PC to the type
(primitive or reference) in the local variables and the stack. We
build a table that maps each possible PC value inside a method to
the information about the stack layout.

There are two kinds of variables in each stack frame that poten-
tially can hold references: the local variables and the stack operands.
Common for both is that the type changes during execution. For ex-
ample, a local variable in a given slot is used for a given interval of
the PC. This interval is not necessary the full length of the method
code. Furthermore, Chap. 7.2 in the Java Virtual Machine specifi-
cation encourages reuse of local variables [18].

However, it is not common that a reference type variable is reused
in a primitive type variables place, but it can be the case. Therefore,
in order to scan the root set, we need to know the type (reference
or primitive) of each local variable for each value of the PC. The
stack operands are the second source of references. The operands
can also be references and need to be included into the root set.
Even more than the local variables the operands changes very of-
ten for each value of the PC. So we need the same PC to operand
mapping such that it is known which of the operands are references.

In summary, a Java program can be annotated with information
that contains information regarding the type of the local variables
and the stack operands for a given value of the PC. This information
can be made available to the embedded JVM in a number of ways.

4.2 Implementation
The local and operand type information for each PC can be ob-

tained using a JVM stack simulator as described before. We have
created an open source stack simulator based on the verifier3 from
the Byte Code Engineering Library [9] that verifies the Java class
according to the rules in Pass 3, Chap. 4.9.1 the JVM specification
version 2 [18].

With this stack simulator we extract the type information for
each local variable and each stack operand for each value of the
PC. That is the main flow of the simulator. Then there are a few but
important exceptions that must be dealt with. First, our simulator
detects if the type (reference or primitive) of a local variable slot
3...bcel.verifier.structurals.Pass3bVerifier



depends on the control path leading to this PC. This control path
property is the so-called Gosling property, which is also discussed
in [1]. It depicts that the local variables and the stack operands must
contain the same types regardless of how a given PC was reached.
Or in other words: The variable type is not dependent on the con-
trol flow. This property simplifies the verification of Java class files
and also the generation of the stack map.

However, one exception to this Gosling property is allowed: The
code that is executed for finally is implemented by a form of
mini-method [1] that gets called by the bytecode jsr. It is al-
lowed that this code is reached from different paths with differ-
ent stack type layouts. Therefore the type information is control
flow dependent. It is rare and we did not encounter it in our ex-
periments, which is expected as we do not use exceptions in the
JVM. One solution to this issue is to inline [3] the bytecode so
the control flow independency also holds for these mini-methods.
Furthermore, Sun’s Java compilers version 1.4.2 and later compile
finally blocks without subroutines.

4.3 Stack Map Packing
A possible problem is that the type information for the locals and

the operands for each PC can be verbose to the extent that it pro-
hibits an effective implementation. The direct (but verbose) way to
pack this information is to create a small record with the same num-
ber of bits as the maximum number of locals and stack operands.
These small records are then appended for each value of the PC
for each method. We would also need to pad the operand(s) posi-
tion(s) in the bytecode with the same bit pattern as the PC of the
instruction (or any bit pattern as these positions are not accessed).

The second way to pack this reference marking information is to
realize that the bit patterns formed by appending the marked local
variables and the operands generates very limited number of dif-
ferent patterns for the PCs of each method. We can construct the
PC to operand mapping using the same technique as with the Java
constant pool. The PCs of the method are now an index into this
small pool of unique patterns.

However, we need additional information in the target to make
the stack maps work. One piece of needed information is the num-
ber of instructions for each method. The second and third pieces of
information are the maximum number of local variables and stack
operands. We save this information in a 32 bit word just before the
method code address and at run time we can access this informa-
tion word. It also marks if the method has any type information
in the memory just below this information word. This word is not
counted as overhead as the method information structure of the JOP
JVM system can hold the necessary information; it is implementa-
tion specific.

To explain this PC mapping we provide an example. The source
code for this example is from the char charAt(int index)
method in String.java that compiles to the bytecodes shown in
Figure 1. Next, we will look at the stack properties of this code and
analyze how each of the slots for the local variables and each of
the slots for the operands looks for each value of the PC. The this
reference is in the first local slot throughout the code as depicted in
the associated LocalVariableTable in the Figure 1.

Table 1 shows the result of the analysis for
java.lang.String.charAt(I)C in Figure 1. The column PC
shows the address of the instruction (in column Instr.). The charAt
method has 2 arguments and maximum operand stack size is 2; that
is what the next 4 columns show. The last column, p, enumerates
the unique bit patterns. In this example there are 3 unique pat-
terns each of length 4 bits giving 12 bits for the pattern pool of this
method. Now each PC has to be mapped to the corresponding pat-

Source code from String.java:
public char charAt(int index) {

return value[index];
}

Output from javap -c -verbose:
public char charAt(int);

Code:
Stack=2, Locals=2, Args_size=2
0: aload_0
1: getfield #3; //Field value:[C
4: iload_1
5: caload
6: ireturn

LocalVariableTable:
Start Length Slot Name Signature
0 7 0 this Ljava/lang/String;
0 7 1 index I

Figure 1: Example bytecode from String.java

00 0101 0101 1000 1000 1010 1001 unused

Figure 2: Packing the GC info

tern and with 3 unique patterns the requirement for the index width
becomes 2 bits. Since the method length is 7 we need 14 bits for
the indices. In total we have used 26 bits. Comparing to directly
encoding the bits for the 2 locals and the 2 operands would have
resulted in 28 bits. In this example, the encoding saved 2 bits. For
longer methods and for larger numbers of arguments, locals and
operands the results will be more significant, which will be demon-
strated empirically later.

In Figure 2 it is shown how the code of Table 1 is packed. The
figure outlines why this can lead to reduction in the packed infor-
mation because PC {1-4} point to the same pattern. It should be
noted that PC {2,3} are just padding up the operands of PC 1.

An optimization for the memory consumption would be to store
the stack map only for PC values that actually point to the start of
an instruction. This would avoid the padding as seen in the former
example. However, the calculation of the correct index into the ta-
ble would be very time consuming as the code from the method
start up to the current PC value needs to be analyzed.

Table 1: Indexed program counter
PC Instr. l[0] l[1] o[0] o[1] p

0 aload 0 1 0 0 0 1
1 getfield 1 0 1 0 2
2 - 1 0 1 0 2
3 - 1 0 1 0 2
4 iload 1 1 0 1 0 2
5 caload 1 0 0 1 3
6 ireturn 1 0 0 0 1



Table 2: Stack Map Memory Usage (words)
All Only Ref.

Raw Indx. R.Indx. Raw Indx. R.Indx.

Hello 3,033 1,158 1,132 1,916 972 960
DoAll 4,503 1,894 1,859 3,194 1,621 1,601

% 294 119 117 200 101 100

4.4 Target Root Set Scanning
The root set scan on the target JOP board is initiated by the GC.

For each thread the stack is examined one frame at a time. Each
frame is associated with one method, which owns a stack map with
the necessary information to scan the local variables and the stack
for potential references. The 32-bit garbage collection information
structure contains enough information such that the packed stack
map can be unpacked and used to identify the references.

5. EXPERIMENTS
Experiments are conducted with two example programs, which

are part of our distribution. One is the famous Hello World program
and the other is a larger program4 for this embedded system. Note,
that both examples also include the necessary library classes. We
compare the overhead of the stack maps for these two programs.

Table 2 displays a comparison of the memory usage of the stack
map in 32-bit words for the two Java programs test.Hello and
jbe.DoAll. We compare all stack mapping algorithms against the
best performing and set the index to 100 for the best performing
algorithm. The experiments have been performed for a situation
where all (”All” in the table) methods have its PCs mapped to a
bit map. It has also been done for a simple reduction (”Only Ref.”
in the table) where just the methods with at least one reference
for some value of the PC are bit mapped. For each of these two
approaches we investigate three different ways of packing the bit
maps. The first packing method (”Raw”) is one bit record of the
length for all locals and the maximum size of the operand stack
for each PC. The second method (”Indx.”) is mimicking the con-
stant pool and uses an index for each PC to map into the unique
bit patterns for every method. The index uses no more bits than
necessary and can vary from method to method. In addition, the
unique patterns have the length of the sum of number of local vari-
ables and the maximum number of stack operands. Finally, the last
way (”R.Indx.”) of packing is a small optimization over ”Indx.”. It
reduces the information because it does not map the local or stack
map bits if they are zero for all method PCs.

It is clear that the indexed approach (”Indx.” and ”R.Indx.”) is
better than the ”Raw” approach. Furthermore, the obvious idea of
not mapping bit maps for methods which never use a reference as
local or operand are also good. But the last optimization of exclud-
ing the local or stack bits from the unique patterns if all are only 0
does not result in much memory usage reduction. It also adds a lit-
tle more code on the target to decode the bit maps, so we conclude
that the combination of ”Only Ref.” filtering and ”Indx.” packing is
the most useful packing approach of those analyzed here.

5.1 Runtime Performance
The experiments are conducted with JOP running on an Altera

Cyclone EP1C6Q240C8 FPGA [2] clocked at 80 MHz with a mem-

4A collection of benchmarks for embedded Java systems named
jbe.

Table 3: GC performance with and without root set scan
Conservative Exact

Threads Root Scan∗ GC∗ Root Scan∗ GC∗

1 160 72,598 583 72,396
10 575 74,484 2,647 76,031

∗measured in µs

ory access time of 2 cycles. Our primary interest and goal with the
experiment is to measure the overhead of the root scan process and
compare it to the total collection process time. Accordingly, we
have timed the root scan process (ie. a synchronized block) and
the time to complete a GC.gc() invocation. The static references
are grouped into one block in memory and this block of references
is also scanned each time the GC process is initiated. Accordingly
it is included in the timing experiments.

A potential disadvantage of the exact root set scan is the over-
head that it adds to the garbage collection process. An advantage
of using stack maps like we do here is that no overhead is encoun-
tered during execution and allocation, as it is only during garbage
collection the exact root set scan is invoked to scan the stacks of all
threads. In order to isolate the delay effects of the context switch
effects on the root set scan itself we allocate no additional objects
with reference type variables. If we allocated too many objects,
perhaps in deeply linked structures then, we would get indications
of the performance of the object traversal speed of the garbage col-
lector which is not the aim here. Accordingly, we start a number
of threads and then measure the time it takes to run the garbage
collector with and without the exact root set scanner. These threads
do nothing except wake up every two seconds but they still have a
small stack of 15 words.

Column 1 in Table 3 shows the number of threads, column 2
shows the execution time in µs for the conservative root scan itself,
column 3 shows the time for the total conservative GC process,
forth column shows the execution time for the exact root scan, and
the fifth column shows the time for the total exact GC process. The
root set scan is inside an interrupt disabled code area and there-
fore we measure the time that the GC thread blocks other real-time
threads for root scanning. Table 3 shows that the root scan overhead
is low for a low number of threads. For one thread it even yields
a total GC cycle time that is lower than the conservative scanning.
The results are encouraging as the tradeoff for the longer blocking
time is offset by the potential advantage of an exact root scan.

6. DISCUSSION
The discussion of the exact root set scan and the associated stack

map information emphasize the flexibility of the system in a real-
time multi-threaded environment.

The precise root set scan approach has some advantages over the
conservative root set scan. Namely that the execution environment
retains a predictable state as there is no risk that a set of primitives
that look like potential object references interferes with the garbage
collector. As JOP is a hard real-time JVM execution environment,
we do not allow that any thread does not return control to the sched-
uler outside its pre-allocated period.

The root set scan process can be tailored toward the scheduling
of the real time garbage collector. There are two cases we can dis-
cuss here:



• GC thread has lowest priority

• GC thread does not have lowest priority

The GC collection and the associated root set scan is convenient
when the GC thread is assigned the lowest priority. That guarantees
that it will not preempt any of the higher priority threads, which in
turn ensures these threads’ stack frames all have a PC the points to
the instruction following the invoke. More specifically, the higher
priority threads will have a top stack frame belonging to the method
waitForNextPeriod() as the top frame. In this way, we now have
a set of so-called gcpoints, which are specific places in the code
that GC can take place. It means that we will be able to reduce the
overhead of the full stack map that is shown in Table 2.

6.1 GC Scheduling
In [32] we argued that a periodic scheduled garbage collector

can keep up with the demands of real-time threads. The GC is
scheduled like any application thread. As the period of the GC
thread is the longest and the deadline is the period the GC thread
gets the lowest priority. With rate monotonic or deadline mono-
tonic scheduling that means the GC thread will never preempt an
application thread.

The application threads release the processor at known points
(e.g. in [6] with waitForNextPeriod()). These points in the ap-
plication are similar to GC preemption points [23]. That means that
we exactly know all possible thread states when the root set scan-
ning is performed. Knowing these thread states means knowing
which methods can be on the stack for each thread. This knowl-
edge has two implications:

1. We can omit the stack map information for all methods that
can never be on the stack

2. The maximum stack height for each thread is known and we
can bound the execution time of the root scanning

In summary, in the event that the GC is not assigned the lowest
priority we are back in a situation that needs full stack map in-
formation. Because now the GC thread can preempt an executing
thread at any valid value of the PC. This configuration can be useful
for an application that executes for a long time and the low priority
is used to ensure that it takes CPU cycles when none of the higher
priority threads are executing. It is possible to avoid the full stack
maps for code that is executed only by the threads with higher pri-
ority than the GC thread. For methods that are executed by threads
with a lower priority than the GC thread we still need the full stack
map.

6.2 WCET Analysis of Stack Walker
This section presents an analysis for illustrative purposes of the

wcet.gc.GCStkWalk.swk method. This method scans the stack of
a thread for references using the pre-compiled stack maps. Each
method frame on the stack is inspected for references which are
subsequently used in com.jopdesign.sys.GC.gc to get the exact
root set. In order to schedule the garbage collector thread such that
we are guaranteed completion within a given period, it is necessary
to analyze it with respect to WCET [33]. Here we limit the analysis
to the swk method itself. If we cast the problem in an integer linear
programming (ILP) setting, it becomes possible to determine the
WCET of the swk method [27]. The WCET for the swk is 35,235
machine cycles for one stack frame scan and an additional 34,797
cycles for each additional frame on the stack. For example, if the
call tree has a depth of 5 methods then the stack walker would take
approx. 175,000 cycles. These example numbers are obtained from
running the wcet.StartGCStkWlk benchmark.

7. CONCLUSION AND FUTURE WORK
In this paper we presented an efficient way to find references

in Java thread stack frames exactly. Due to features of the Java
processor, we used for our implementation, that a thread can only
be interrupted at bytecode boundaries it is possible to find all root
references in the static fields and the stack frames. No internal
processor registers have to be considered.

The presented solution for the problem of finding exact roots in
the stack frames collects information about the stack layout from
the class file during link time. Each method is annotated with in-
formation about the stack layout for each address. This stack map
information can be retrieved by indexing the table with the program
counter (which is part of the stack frame).

The organization as a table for each possible program counter
table constitutes some memory overhead, but the access to this in-
formation is done in constant time. Therefore, this operation is
WCET analyzable. To reduce this memory overhead we have pre-
sented two ways to pack this information. We achieved an reduc-
tion by about 60% compared to the raw information. The access to
the packed information is still in constant time.

As future work we consider changing the Java processor to im-
plement a typed stack. Practically this adds one bit to the 32-bit
on-chip stack. The main issue for this implementation is the stor-
age of this 33rd bit in main memory when the on-chip stack gets
exchanged with the main memory. With this hardware implemen-
tation of a typed stack we can compare it against the solution pre-
sented in this paper.

We do not implement the scheduling, but the reduction of the
stack map due to the knowledge can be valuable. Finally, at present
we scan all thread stacks atomically; in future work we plan to work
on incremental root scanning to reduce blocking time.
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