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Abstract: More and more embedded systems are emerging based on managed

language runtime systems using garbage collected languages such as Java, Python,

or the .NET language family. Furthermore, the garbage collection (GC) process

is a bottleneck in an embedded system, effectively blocking most other processes

including mutator memory access, responding to inputs, or asserting outputs.

We demonstrate a valuable new heap memory architecture for garbage

collected embedded systems, which works by creating a direct path between

memory modules to achieve a two-fold speedup for a memory copy operation

as compared to a baseline scenario using multiplexed shared address- and data-

busses. This direct-path memory setup is generalizable, and memory modules

will continue to work as expected when not engaged in garbage collection. The

solution space is evaluated by simulating GC activity extracted from the Elephant

Track GC tracer. One particular solution is also implemented in hardware to

demonstrate the practical realization of the direct fast copy architecture.
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1 Introduction

As managed languages, such as Closure, JRuby, Jython, and Scala, that run on the Java

Virtual Machine (JVM), become more and more prevalent (Li et al., 2013), the need to

re-consider how garbage collection (GC) is done becomes evermore important. With the

miniaturization of embedded systems and Cyber Physical Systems, i.e. swarmlets (Latronico

et al., 2015) see Lee (2008), prototypes emerge based on Javascript/XML, which used to be

a technology reserved for web clients. This class of systems also includes smart watches,

drones, mobile devices, safety-critical systems (e.g. elevators) and industrial Internets of

Things (IoT) (Hoske, 2015) for applications such as smart factory automation. The need
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to invent even more efficient hardware solutions remains high. From the software side this

discussion even includes ideas on embedding scripting languages (here brought in as a

subcategory of managed languages) like Python to run on “bare metal" ARM processors, as

discussed by Pedersen et al. (2009). Moreover, IoT sensors (Swan, 2012) enable companies

to realize new business opportunities in logistics and healthcare (Fiedler and Meissner,

2013) based on micro information systems (Pedersen, 2010). The majority of these systems

are battery-powered, and thus need to cope with a well-known energy challenge related to

managed languages, since the frequent allocation and de-allocation associated with GC costs

extra processor cycles. Ongoing research into solutions that address speed (e.g. Gomes et al.

(2016)) and power consumption is particularly needed for the GC in managed languages

such as Closure, JRuby, Jython, Scala, and Java itself (Sarimbekov et al., 2013). This paper

investigates the possibility of designing fast, yet time-predictable hardware to further support

the applicability of managed programming languages with automatic GC in embedded real-

time systems. Indirectly, an additional benefit of speed is often reduced battery consumption,

since the processor is able to sleep more. We call the proposed hardware solution for

speeding up GC the garbage collection logic (GCL).

The three main contributions of this paper are as follows: (1) an analysis of the

requirements that GC places on real-time embedded systems, (2) the simulation and

verification of two alternative hardware architectures, and (3) a prototype implementation

on real hardware based on our open source software/hardware.

The paper is organized as follows: Section 2 describes related work and motivates the

focus on the copy compaction process as a critical feature. Section 3 explains copying GC,

outlines the solution space and introduces different architectures that address the realization

of the copy operation in a baseline architecture and in the new direct copy GC architecture.

Section 4 compares the solutions. In Section 5 we provide more details of the main solution,

and in Section 6 we present a simulation based on a hardware description language. A

proposed platform is implemented on a PCB and presented in . Section 8 gives a summary

and evaluation of various aspects of the solutions. Section 9 provides a conclusion and

indicates some valuable future directions for this work. All source code is available under
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a simplified open source BSD license, and links to this material are given at the end of the

paper.

2 Related Work

The focus there was on achieving GC with low blocking times to allow usage in interactive

(real-time) applications. This is similar to our work, where we aim for a highly efficient

GC to minimize blocking times due to the GC activity. A good introduction to garbage

collection techniques can be found in the survey by Wilson (1994) and in Jones and Lins

(1996).

The simplest way to avoid blocking times due to object copying is simply to avoid

moving objects at all. The real-time GC of the JamaicaVM does exactly this (Siebert, 2002).

Objects and arrays are split into fixed sized blocks and are never moved. This approach

trades external fragmentation for internal fragmentation.

In a manner similar to the JamaicaVM approach, the Metronome GC splits arrays into

small chunks called Arraylets (Bacon et al., 2003). Metronome compacts the heap to avoid

fragmentation and the Arraylets reduce blocking time when copying large arrays. Both

approaches, the JamaicaVM GC and Metronome, have to pay the price of a more complex

(and time consuming) array access.

Another approach to allowing interruption of GC copy is to perform field writes to both

copies of the object or array (Huelsbergen and Larus, 1993). This approach slows down

write accesses, but these are less common than read accesses.

Nilsen and Schmidt propose hardware support, the object-space manager (OSM), for

real-time GC on a standard RISC processor (Nilsen and Schmidt, 1992). The OSM redirects

field access to the correct location for an object that is currently being copied. Nilsen

and Schmidt’s approach assumes that the hardware support is part of a (single) memory

chip, whereas we propose a GC hardware that supports direct copy of objects between two

standard memory chips.
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Compared to GC with a fixed block size (e.g., the JamaicaVM approach), a compacting

GC avoids internal fragmentation. Blackburn et al. (2004) describe some of the main forms

of compacting GC. A generational collector distinguishes between a so-called nursery

region, which is reserved for newly created objects, most of which die young. Later on

in this paper, we focus on testing our solutions on the nursery region since this region

will also benefit significantly from faster copying time. Some recent software for precise

GC tracing named Elephant Track (Ricci et al., 2011) has been developed, which Li et al.

(2013) and Sarimbekov et al. (2013) apply to analyse the typical size of objects as well as

characteristics for generational GC using a nursery region.

The benefit related to compacting GC, and then also to generational GC, is the additional

memory bandwidth that is consumed by the object copy and the handling of the object

relation is avoided. Field and array accesses respectively need two and three memory

accesses for an object layout with a handle indirection. In the JamaicaVM, the cost of the

field and array access varies and depends on the location of the field or the layout of the

array. In the average case, the cost of a field access is close to one and that of an array access

close to two memory accesses (Siebert, 2000). With the jvm98 benchmarks SPEC (1998)

executing on the JamaicaVM, most arrays are allocated contiguously instead of as a tree of

fixed sized blocks. However, in the worst case a tree needs to be traversed and 2+d memory

accesses are needed for a tree of depth d.

Hardware support can be used to avoid blocking mutator threads during object

copy (Schoeberl and Puffitsch, 2008, 2010). This non-blocking copy unit can be interrupted

by a thread with a higher priority than the GC thread. Afterwards, the copy unit resumes

with the copy process when the GC thread is active again. The copy unit also redirects

object field reads and writes to the correct part of a possibly partially copied object. A

particular non-blocking copy unit has been evaluated by an implementation in the context

of the Java processor JOP (Schoeberl, 2008). The resulting maximum blocking time due to

the object copy is 120 ns (12 clock cycles at 100 MHz). In contrast to the presented direct-

path-copy, the JOP GC copy unit is part of the processor and handles just a single memory.



6 R. U. Pedersen and M. Schoeberl
Our proposal is also tightly integrated with the memory, but benefits from two memory

chips that represent the source and target of an object copy.

Meyer presents a hardware implementation of Baker’s read-barrier (Baker, 1978) in an

object-based RISC processor (Meyer, 2006). It is stated that the cost of the read barrier is

between 5 and 50 clock cycles. The resulting minimum mutator utilization (MMU) for a

time quantum of 1 ms was measured to be 55%. Close interaction between the RISC pipeline

and the GC coprocessor allow redirection for field access in the correct semispace with a

concurrent object copy. It is not explicitly described in the paper when the GC coprocessor

performs the object copy. We assume here that the memory copy is performed in parallel

with the execution of the RISC pipeline. In that case, the GC unit steals memory bandwidth

from the application thread.

Maas, Asanovic, and Kubiatowicz propose to add hardware support for GC into a

standard processor (Maas et al., 2016). They argue that today’s common usage of managed

languages with GC in large server-side applications calls for the introduction of hardware

support for GC within the CPU. We completely agree with this line of reasoning. However,

we aim initially to support embedded systems and we add GC logic externally to a standard

RISC processor, CISC CPUs, or softcore processors like JOP or Altera/Intel Nios II.

Bacon, Cheng, and Shukla present a GC implemented in an FPGA (Bacon et al., 2012).

The GC supports uniform objects, which are objects of similar size and layout. The idea is

that the GC is used in pipelined hardware design, where each pipeline stage has its own heap

and GC. Furthermore, their implementation uses only on-chip memory inside the FPGA,

which is usually quite small. In contrast to Bacon et al.’s work, we support arbitrary object

sizes using external memories to speed up the GC copy process.

3 Garbage Collection: Copying

In this section we introduce the GC copy process and provide examples which motivate our

design decisions. The focus is on the copy process for a generational GC.
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To avoid fragmentation, GCs usually perform some form of compaction (Wilson, 1994).

In our discussion, we assume a copying GC with two semispaces, hereafter called fromspace

and tospace. We label the first concrete memory chip A and the second concrete memory

chip, if present, B.

Figure 1 illustrates the GC process. The stack and static fields are traversed for potential

live references, which point to objects on the heap (Pedersen and Schoeberl, 2006). These

initial references form the root set. Further live references are identified by traversing the

root set for references to other live objects, which subsequently are traversed for references

to additional live objects.

In the figure, three objects are hosted in the fromspace. Objects 1 and 3 are alive (a

live reference points to each) and can be accessed from a running program (i.e. a mutator

thread). During GC, These two objects will be copied to semispace tospace. Then the

memory area of semispace fromspace, that starts at address StartAddrRamA and ends

at TopAddrRamA, can be reclaimed and is guaranteed to be defragmented (it is empty).

Note that tospace was empty before the copy process and now holds the live objects. As

only live objects are copied into tospace, this semispace is defragmented as well.

Object 1, with which we begin, is copied from semispace fromspace to semispace

tospace in an implementation dependent manner. If the copy process were to be performed

by a standard processor, the data would automatically be copied into the memory cache

before being written back into the main memory of the other semispace. Therefore, the

copy phase of the GC trashes all data cache content. This process involves more steps and

increases the time the system either has to halt the mutator thread or monitor the allocation

of new objects and access to objects that are being copied while blocking input/output

operations. With our proposed direct copy unit (a) we avoid trashing the data cache, and

yet (b) we speed up the copy process by a direct link between the two memory chips.

The GC copy process steps are (see Figure 1):

1 The root set contains a reference to live Object 1

2 Object 1 is located in semispace fromspace in A via the object reference table
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Figure 1: Garbage collection process

3 Object 1 is then copied to tospace in B

4 Object 3 is referenced by Object 1

5 Object 3 is also located via the object reference table

6 Object 3 is then copied to tospace

7 Finally tospace is flipped to become fromspace and vice-versa.

In our proposal the object copy is atomic. Therefore, we need to optimize this object

copy process. However, the GC thread can be interrupted by a mutator thread after each

copy. Therefore, the mutator thread(s) execute a snapshot-at-beginning write barrier (Yuasa,

1990) when writing into reference fields of an object. In this paper we assume that the GC

thread has a period limited by its maximum possible period (similar to a paper by Schoeberl

(2010)), which will not be the highest priority in the application.

The focus of this paper is on Steps 3 and 6: The object copy process. Here the per-object

copy process is blocking and usually not thought to be interruptible. However, the direct

copy process is not different from any other GC that would need to move objects. Here the

process is just at least twice as fast since there is no on-chip data cache or buffer (see e.g.,

Figure 2, GCL direct) involved before the object is written to the destination address.

It is possible to implement the object reference table in different ways (cf. Chap. 30,

Formal Specification of the Object Memory in relation to Smalltalk (Goldberg and Robson,
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1983)). The fastest possible setup is when the object table is placed inside the GCL, using

internal SRAM, since this is single-cycle read/write, and it does not require further databus

sharing between memory components physically hosting the semispaces in memoryA orB.

Since the size of both A and B can be decided as the system is designed and implemented, it

is also possible to use a larger SRAM for A than for B and reserve this space for the object

table. The object reference table, also referred to as object handle table, is a useful construct

as we work with managed languages, since the objects can be accessed without using direct

pointers. Each object in the object table has a reference and a (physical or virtual) memory

address pointed to. The memory address points to a word in the active semispace. When

the object has been copied, the object reference table (see Figure 1) is updated accordingly.

In the case that the object copying process can be done in a autonomous manner, the GC

thread can update the object reference table concurrently.

Table 1 shows an extension of our former example. Assume that at some point we have

had 9 different objects allocated in one semi-space on the heap. Three objects (object 1,

object 2, and object 3) are already familiar from Figure 1. It is evident from the table below

that only 4 of the 9 objects are alive, and that objects 0, 2, 4, 6, and 8 should be garbage

collected.

Table 1: Copy objects marked alive from fromspace to tospace

fromspace

Obj. ID Addr Size Alive

0 0x000 0x10 0
1 0x010 0x20 1
2 0x030 0x30 0
3 0x060 0x40 1
4 0x0A0 0x50 0
5 0x0F0 0x60 1
6 0x150 0x70 0
7 0x1C0 0x80 1
8 0x240 0x90 0

⇒

tospace

Obj. ID Addr Size Alive

1 0x000 0x20 1
3 0x020 0x40 1
5 0x060 0x60 1
7 0x0C0 0x80 1

After GC, i.e., copying the live objects to the other semispace, the memory will look as

in Table1 (right side). The 4 copied objects are all of different sizes and if the copy process
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were executed on a word-wide databus it would take 1 cycle/word to copy each object from

fromspace to tospace.

4 GC Copy Performance Analysis

This section discuss aspects of the design space w.r.t. GC performance. Our quantification

includes databus width, operating frequency, and possible bus utilization. Figure 2 shows

two different architectures for the GCL: (1) the GCL shared and (2) the GCL direct

architectures.

4.1 GCL Architectures

The baseline architecture for a GC copying process is first to copy objects into a cache or

small FIFO buffer in the processor and then write them back out to the tospace again. We

call that the GCL shared setup (see Figure 2). In other words, when there are live objects

in fromspace that need to be copied, for compaction, into tospace, one way to accomplish

this is to read each word from fromspace into the GCL and then write it back out to

tospace. It is possible to refine this with a small FIFO queue (e.g. Figure 2 GCL shared).

We propose the following novel garbage collection logic (GCL) direct architecture

that includes a direct connection between A and B, the memories hosting tospace and

fromspace, it is possible to get the two memories to read and write respectively to/from

one another directly (e.g. Figure 2 GCL direct). It is novel since the authors have not found

previous work where external memory ICs have been directly connected to stream live

objects from one to the other before. It is valuable since this approach potentially frees the

databus up for other work in concurrent systems. Logically and in implementations, the

approach is to connect each corresponding data signal between the two memory ICs, A and

B. So if for example each data signal is called DQ, the approach is to connect ADQ1
to

BDQ1
and so forth until the whole databus is connected. Note that both memory ICs are

still also connected to the GCL so they can continue to work as separate memory modules

when not engaged in GCL direct activity.
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Figure 2: GCL shared with fromspace and tospace sharing one memory module and
GCL direct with a bridged databus between each memory module, A and B, serving
fromspace and tospace respectively

We evaluate the new direct architecture against the shared baseline architecture. The

baseline architecture is when the one memory module hosts both of the semispaces, but has

to do its job with one shared address- and databus. The GCL direct is where each memory

module still has its own address and control path, but the data path is now connected to

botyh memories. We compare (see Section 5) these solutions with respect to bus utilization,

pin usage, logic element (LE) usage, and maximum achievable frequency.

4.2 Performance Analysis

The direct copying performance P in bytes/s (B/s) depends on the width W in bytes of the

databus, the clock frequency fclk, and the bus utilization Ubus. For example, if there are 25

wasted (e.g. overhead) clock cycles for each 100 cycles in a copy operation Ubus would be

75%.

P = W ∗ fclk ∗ Ubus (1)

For an example of a 36-bit SRAM with an actual datawidth of 4 bytes (B) since the 4

extra bits (almost always used for parity bits) are often overhead in terms of the object data

word size, a clock speed of 100 MHz, and 75% efficiency of the copying (bus utilization),

the copying performance, P (MB/s), is

P = 4B ∗ 100MHz ∗ 0.75 = 300MB/s. (2)
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In the simulation analysis (see Section 5) W is set to 4 bytes, even if there are 4 extra

parity bits available, fclk is set to 200 MHz, and Ubus will vary depend on the design. This

is also further quantified in Section 6 using benchmark data.

5 Garbage Collection Logic Simulation

We simulate the different architectures using SystemVerilog (IEEE, 2012) HDL and CAD

tools.

5.1 Size and Data Width

SRAMs come in sizes ranging from smaller 2-Mb (megabit) units up to currently 144-Mb.

Datawidth (often the same as word size) ranges from 18-bit to 72-bit. There is an insignificant

reduction in the number of address pins needed for a 72-bit wide SRAM compared to a

18-bit word version, but it all adds up to less board space needed in an implementation. A

promising property from a perspective of further reducing maximum GC blocking time is

the idea of using 72-bit data width.

The other advantage of 18-bit, 36-bit, and 72-bit, vs. traditional 16-bit, 32-bit, and 64-bit

memory widths is that these extra (parity) bits can be useful in aiding the GCL module

during the GC process. Those extra 4 bits (if one is using a 36-bit memory module) can be

used to mark or tag during the GC process: (1) They can tag which words hold a reference

and (2) help identifying the references from the root set easier as opposed to manually

walking the stack as in Pedersen and Schoeberl (2006). Some bits can change meaning

depending on the state of the system such that even more use cases can be realized. To

name one use case outside GC processing, one could use these bits to mark code and data

coverage in response to test cases of code coverage and data flow analysis.

Least pins: The GCL shared has one address bus and one data bus. The data is read

from memory A into the GCL, and then (via a small FIFO) written back to tospace also in

the same A memory. The HW “cost" is 20 address lines, 36 data lines, and 8 control lines
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(cf. Table 2) = 64 pins/balls. However, the bus utilization in terms of copying is at most

50% (Ubus = 0.50 in Eq. 1).

Most pins: The GCL direct has one shared bus line that is controlled concurrently by

two independent address- and control-lines for A and B. The HW pin cost is

2 x 20 + 36 + 2 x 8 = 92 pins/balls. However, the bus utilization in terms of copying is now

at most 100% (Ubus = 1.0 in Eq. 1).

In Section 6 on experimental data the two upper bounds are reduced slightly due to extra

cycles spent looking for live objects.

5.2 Memory Types and Signals

There are several different kinds of SRAM. Some are pipelined, some have zero-turn-around

(ZBT) time between consecutive back-to-back read and write operations, and some have

dual data ports (one for write and one for read). We will briefly outline the key functionality

of these different SRAM types, and then discuss how these are implemented by one specific

vendor, Integrated Silicon Solution Inc. (ISSI). The main signals and how they differ are

discussed for the ISSI SRAMs. Similar SRAMs are offered by other market leading vendors,

such as Cypress.

The pipelined SRAMs are faster than the flow-through SRAMs. A pipelined SRAM

can operate at 200 (or 266) MHz which enables (even) faster GC than if a flow-through

SRAM of 100 or 133 MHz is used. The ZBT no-wait option is useful for fast switching

between read and write cycles that are interleaved, as needed for the GCLs in Figure 2, but

also during normal mutator operation with constant load/store operations to the stack(s) and

heap(s). This comes at the expense of some more complexity in the implementation. If we

have a setup with a shared data bus and shared address bus, then we are better off with the

ZBT no-wait options for both the flow-through and the pipelined SRAMs.

Neither GC shared nor GC direct has to make use of the chip select lines CE, CE2,

and CE2n. GC shared does not use them because there is only one memory IC in that

particular canonical setup. GC direct does not need to disable either of the two memory

ICs. Actually, when GC direct copies live objects between the two semispaces, it needs to
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Table 2 Main signals for memory control

Symbol Note

A Address bus
CKE HIGH: no changes in clock enable (keeping its state)
ADV HIGH: burst counter increments. New addresses are loaded when ADV is low

LOW : new addresses are loaded
↑ WE LOW : data is written into the system (all BW are low)
OE LOW : asynchronous output is enabled
DQ Data inputs/outputs
BWa−d Byte write
↑ CE Not chip enable.

have both memory ICs enabled. One the other hand, it would be possible that for example

memory IC B was disabled when memory IC A was used for normal activities by the

mutator. This would further reduce power consumption when no GC process is active. But

this is not necessary because it is easy to “NOP" either of the memory chips by driving

OE high while performing a dummy read operation. As the chosen IC then tri-states its

outputs, the other memory IC(s) can freely use the databus for other purposes than direct

GC activity. All in all, this can save another 2 x 3 = 6 control pins in the GC direct setup.

One pin can be saved and that is the clock enable pin CKE, since the clocking of the

memory ICs is on at all times during either meaningful operations or NOP operations.
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6 GC Trace Benchmark

This section is dedicated to the various experiments on the GCL shared and direct

architectures. To create a realistic test scenario, we need experimental data which can give

us information about GCL shared and GCL direct performance in the managed language

scenario.

To this end, we use data from two papers (Li et al., 2013; Sarimbekov et al., 2013) which

use the Elephant Track software (Ricci et al., 2011). The work by Li et al and Sarimbekov et

al describes the object lifetime of JVM objects in terms of known benchmark suites. When

we combine information about typical size (i.e., between first and third quartile of box plots)

and the nursery information, we get valuable information on how to test the proposed GCL

architectures. Blackburn et al. (2004) describe the nursery as follows: “The generational

collectors divide newly allocated nursery objects from mature objects that survive one or

more collections, and collect the nursery independently and more frequently than the mature

space".

Li et al. configure the nursery size to 4 MB. We do the same for the SRAM that we

are modelling as it allows us to use the collected numbers per benchmark for the nursery

collection. Sarimbekov et al. collected object sizes for the same benchmarks and we use

the typical interval of sizes in their study to generate simulation data. We fill a heap with

4 MB of objects generated according to the studies of how Java, Closure, Jython, and JRuby

compare across the benchmarks of spectralnorm, revcomp, regexdna, nbody, knucleotide,

fasta, and binarytrees. It is impossible for us to know which benchmark might be more

likely in a real world situation, and accordingly we sample uniformly and generate objects

from each of these 7 benchmarks with equal probability. We also only included benchmarks

which were reported in both studies and for all 4 languages (Java, Closure, Jython, and

JRuby). Listing 1 shows how we generated test data for the GCL simulation.
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Listing 1: Object table generation for Closure simulation

1 // CLOSURE benchmark heap generation

2 // spectralnorm ,revcomp ,regexdna ,nbody ,knucleotide ,fasta ,binarytrees

3 parameter NUSERY_CUT // Nursery: see Sarimbekov et al 2013 reference

4 =(0.1007+0.1385+0.3365+0.0339+0.0628+0.0450+0.0272) /7.0;

5 integer unsigned objsize [][2] //Obj. sizes: see Li et al 2013 reference

6 = ’{’{24 ,48}, ’{24,48} ,’{24 ,48}, ’{24,24} ,’{24 ,24} , ’{24 ,32}, ’{24,24}};

7 //... some declarations omitted ...

8 task initObjHandles ();

9 adroffset =0;

10 for (int unsigned index =0; index <MAXNUMOBJ; index ++) begin

11 bench= // sample random object from any benchmark

12 $urandom_range($size(objsize ,1) -1,0);

13 benchsize= // sample a size within boxed sizes

14 objsize[bench][ $urandom_range($size(objsize[bench],1) -1,0)]/4;

15 if ($random <NUSERY_CUT)

16 mark =1; //will survive collection (->tospace)

17 else

18 mark =0;

19 objref[index]<=’{oid:index ,adr:adroffset ,size:benchsize ,mrk:mark};

20 adroffset=adroffset+benchsize;

21 end

22 endtask

Table 3 shows the SystemVerilog simulation results with the test data from the

benchmarks for the two architectures. We can observe that copying with GCL direct takes

about half the time of copying with GCL shared. This shows that we achieve our goal of a

two-fold speedup. The number of allocated objects ranges from 124,436 to 141,110 for the

benchmark data related to GCL shared. For GCL direct the number of allocated objects

ranges from 124,276 to 141,079. The GC collection time lies between 5.864 and 5.940 ms

for GCL shared, and between 2.930 and 2.967 ms for the GCL direct setup. This confirms

the previous statement that the performance of GCL direct is twice that of GCL shared.

The test setup is broad in the sense that 4 different languages are included: Java, Closure,
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Jython, and JRuby. Furthermore, we generate nursery heaps for these languages both for

the GCL shared and GCl direct architectures.

Table 3 Experimental results for using GCL shared and direct on benchmark data

Java1 Closure1 Jython1 JRuby1

GCL # obj. time (ms) # obj. time (ms) # obj. time (ms) # obj. time (ms)

shared2 124,436 5.864 141,110 5.940 128,834 5.888 126,498 5.878
direct2 124,276 2.930 141,079 2.967 128,782 2.938 126,283 2.935

1 See Li et al and Sarimbekov et al Li et al. (2013); Sarimbekov et al. (2013)
2 Note that the numbers for direct copying (i.e. # obj : See Listing 1 and Section 9.

7 GCL Within Host FPGA

Using an FPGA as the host for the GCL module is a flexible solution. Assuming that one

chooses an FPGA with a sufficient number of pins/balls, it is possible to have each memory

module independently connected to the GCL FPGA and the copying process can consist of

moving in data from one memory module and, on the next cycle, writing it out to the other

memory module. However, one still has to decide on the command interface to the GCL

FPGA. Should it be seen as a pure SRAM from the main CPU/FPGA or would one want to

expose some control registers using an embedded protocol or bus standard as a command

interface? We implement a solution that exposes the SRAMs with their standard signals

such as write enable (WE), output enable (OE), etc., but we also provide extra control

signals as needed for the GCL direct solution to work (see Figure 2).

Figure 3 show the main functionality of the different parts of the PCB. Of special interest

is the direct GC connection. In addition the two SRAM modules from ISSI are visible

adjacent to the Max10 FPGA from Intel.

7.1 GC Copying PCB Module

We implement the architecture(s) on the IS61NVP51236B-200B3 version of ISSI

synchronous pipelined single cycle deselect SRAM. We chose the 2.5 V version over a 3.3 V
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SRAM2
Control

SRAM1
Control

GCL 
FPGA

Direct Databus

SRAM2
Addressbus

SRAM1
Addressbus

AB
Internal

Figure 3: Overview of main functionality on GCL PCB

version to avoid having an extra voltage level present in the design. It was not possible to

buy this memory IC in small quantities, however ISSI provided samples upon request.

PCB routing: In a CAD system, such as EagleCAD, the maximum number of layers

for the Maker edition are 6, and to achieve routing from a high-density FPGA, the vias must

be smaller. The routing is possible with a BGA with 1.0 mm pitch and 0.1 mm trace and

trace clearance width.

Maximum clock frequency: It is possible to estimate the maximum clock speed

for a design using the TimeQuest Timing Analyzer from the Altera/Intel Quartus Prime

development suite (Altera, 2010). We have performed this static timing analysis for the

design called GCL direct (see Section 4) and the maximum frequency is estimated to be

between 296 MHz to 330 MHz, depending on the operating temperature.

Resource usage: The implemented GCL direct module uses 3 input pins, 56 output

pins, 36 bidirectional pins, and 156 logic elements. The Max10 devices have between 2 K

and 50 K logic elements.



Direct Garbage Collection 19

Direct
Databus

Figure 4: Printed circuit boards for GCL direct
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Figure 5:

The chosen approach was to move a complete nursery region (i.e. all the live-objects)

from memory A to memory B (see Section 3). In this case we found that 4 MB was a valid

size based on the numbers from the Elephant track software (Li et al. (2013); Sarimbekov

et al. (2013)). Each of the copied objects are handled according to the process illustrated in

Figure 1.

As we evaluated the two solutions relative to one other (see Figure 2), based on the

resources used (e.g. board space and LEs), speed, and implementation complexity, we found

that GCL direct was closer to optimal. This is summarized in Table 4.

In Section 5, we considered the influence of width (the number of bits and size of the

databus) as a design parameter. The fundamental speed of the copying process is of course



20 R. U. Pedersen and M. Schoeberl
Table 4 Comparison between GC shared and the new GC direct architectures on speed and

complexity

Solution GCL shared GCL direct

Speed1 2

Complexity3

1 Measured in bytes per second.
2 More black is better.
3 Measured as pins used.

directly proportional to the width of the databus. If size permits, it would be advantageous

to go for SRAMs with 72-bit widths over both 18-bit and 36-bit.

The actual two-fold speedup is documented both in the analysis section, Section 4.2,

and by the GC trace benchmark simulation in Section 6. The simulation confirmed the

analysis that (a) GC direct was twice as fast as GC shared and (b) the time used for the

GC process is less than 3 ms even with a simulated size of the nursery region of 4 MB,

which is relatively large for embedded systems.

A realization of GC direct on a recent FPGA from Intel (formerly Altera) was possible

on a 6-layer board offering evidence that GC direct is also practical. Normally, such designs

would use up to 8-16-layers, but the open source hardware files we provide show how to

route and fabricate the real PCB using only the Maker edition of EagleCAD.

8.1 Future Work

Future work in terms of functionality for the embedded systems discipline should include

extending the GCL direct architectures to other kinds of memory such as different DDR.

Some DDR memories now have an SRAM-like interface making them easier to work with

compared to previous DDR memories. Furthermore, they are larger (over 1 Gb) compared

to the available SRAMs (72-Mb to 144-Mb). This can be useful in certain multicore systems

(e.g. Patmos by Schoeberl et al. (2015)) or certain datastreaming systems, such as new

embedded systems similar to DEMoS (Ulslev Pedersen, 2016), and also in hard real time

data mining systems Pedersen (2006).
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9 Conclusion

As the Internet of Things (IoT) and cyber-physical systems are on the rise (Fiedler and

Meissner, 2013; Latronico et al., 2015), so is the need for better and more efficient software

and hardware in this space. This development can be supported by managed languages that

offer advantages such as object orientation and managed memory systems with garbage

collection (GC). In this paper we have worked with, and provided an architecture for, SRAM

ICs to provide solutions to an important problem: That the SRAM is a major bottleneck in

managed language GC-based systems. GC is a perpetual bottleneck, and we have analyzed,

simulated, and implemented a new architecture, GCdirect, that offers a two-fold speedup,

with no significant drawbacks in complexity except for the pins needed for an extra set of

extra address- and control-lines.

The two conclusive things to be learnt from this paper in terms of designing for

minimizing the maximum GC time can be summarized in two design strategies for

configuring SRAMs in order to achieve fast GC:

1 Consider using zero-wait-state SRAM with the GCdirect setup to achieve an important

two-fold speedup as compared to GC shared.

2 Consider using an FPGA to implement the GCL direct module.

Upon publication, the open source code for this paper is available for download at Github

https://github.com/gclrt/gcl1 and it can be tested at EDA Playground

https://www.edaplayground.com/x/uEh.

The suite of CAD tools used in this paper were ModelSim Intel FPGA Starter edition

10.5b, Quartus Prime 16.1.1, Aldec Riviera Pro 2015.06 on EDA playground, and Autodesk

Eagle 8.0.0. Eurocircuits produced the PCBs. The FPGA is an Max 10 10M50 with 484

balls/pins.
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