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Abstract—Multicore platforms are nowadays widely used for
audio processing applications, due to the improvement of compu-
tational power that they provide. However, some of these systems
are not optimized for temporally constrained environments,
which often leads to an undesired increase in the latency of
the audio signal. This paper presents a real-time multicore audio
processing system based on the T-CREST platform. T-CREST is a
time-predictable multicore processor for real-time embedded sys-
tems. Multiple audio effect tasks have been implemented, which
can be connected together in different configurations forming
sequential and parallel effect chains, and using a network-on-
chip for intercommunication between processors. The evaluation
of the system shows that real-time processing of multiple effect
configurations is possible, and that the estimation and control of
latency ensures real-time behavior.

I. INTRODUCTION

Multiprocessor systems are frequently found in the field of
audio signal processing. Some examples are audio software
environments that run on multicore processor computers,
or embedded audio multicore platforms that are found in
many applications, such as hearing aids or portable mobile
devices [1].

It is frequent in audio signal processing systems that multiple
types of processing are applied to the signal. As an example,
guitarists use many different audio effects to process the guitar
signal before it arrives at the loudspeaker. These effects could
be distortion effects, filters, delays, and so on. Usually, the
effects are connected in a sequential way, where the output
signal of one effect is the input of the next one in the chain.
But it might also be the case that the signal is split into parallel
chains to be processed separately, and then merged together,
forming a more complex graph. An example of this is shown
in Figure 1.

In this work, we focus on real-time audio processing
applications, which means that the processing must be applied
within an interval of time that ensures that the input-to-output
latency of the signal is imperceptible for the human ear. The
temporal behavior of the processing system must be completely
predictable in order to provide real-time guarantees. To achieve
this, the elements of the system, such as the buffers of each
effect that processes the signal, need to be designed in a way
that the input-to-output latency is kept under a certain limit.

This paper presents a real-time audio processing system
targeted to the time-predictable T-CREST multicore platform.
T-CREST is a network-on-chip (NoC) based platform for
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Fig. 1. Example of sequential and parallel chains of audio effects.

hard real-time applications. In this work, typical digital signal
processing (DSP) algorithms for audio applications have been
implemented. The effects can then be connected together in the
same way as shown in Figure 1 in the multicore platform. The
effects are statically mapped to different cores, and the NoC is
used as the main communication resource between processor
cores. The three main contributions of this paper are:

o The design and implementation of a flexible and scalable
real-time audio processing system, supporting different
setups and combinations of audio effects in the multicore
platform;

o The real-time software implementation of common audio
effects, with strong focus in worst-case execution time
(WCET) predictability and reduction;

o A fully functional open-source real-time application,
serving as a use case for the T-CREST platform and,
potentially, for other real-time multicore architectures.

The architecture presented in this paper represents an
alternative approach to conventional audio processing systems,
where the latency is a result of fixed buffer sizes and not
a design parameter, which could lead to the loss of real-
time behavior [2]. In our approach, the effects are statically
allocated on the cores of the platform, and the parameters of the
resources (processors, communication channels, buffers, and
so on) are set at compile-time in order to have full control and
predictability of the signal latency, thus guaranteeing real-time
audio processing.

Further details of the work presented here can be found
in the master thesis [3]. All the code is available in open
source. Additionally, the platform uses an audio interface and
a software API to access audio data in real time [4].

This paper is organized in seven sections: Section II
presents related work on multicore real-time audio processing.
Section III gives a brief background on topics related to
audio signal processing, and presents a general overview of



the T-CREST multicore platform. Section IV describes the
individual effects designed for the Patmos processor, and
Section V explains how multiple effects are combined together
in the multicore platform. Section VI evaluates the proposed
approach in terms of its real-time behavior. Finally, Section VII
concludes the paper.

II. RELATED WORK

As it is explained in [5], when multicore platforms are used
for real-time audio signal processing, a higher computational
power is achieved. An audio processing system is a collection
of tasks that communicate between each other. These tasks
can execute on multicore platforms. Our system uses multiple
cores for parallel tasks as well.

In multicore platforms, an optimal distribution of the tasks
or threads among the computational elements of the system is
essential to utilize the resources effectively. The work presented
in [6] presents two scalable approaches for the optimization
of thread distribution in multicore platforms in object-based
real-time audio processing environments. Here, a Signal Flow
Chart is defined as a graph containing all the components that
process the audio signal. In our system, similar flow charts are
defined, and we refer to the processing components as effects.

Our work uses a similar approach to the flow decomposition
algorithm presented in [7], where a sequence of tasks is
executed concurrently by chaining their inputs and outputs
through buffers, forming sequential and parallel chains where
the audio signal is split/merged in forks/joins. The result is a
system with high computational parallelism due to pipelining
of the audio stream through the components.

Combining different types of processing cores into the same
platform might be an efficient solution to cover a wide range of
processing algorithms. It is common to find desktop computers,
laptops or other devices nowadays with multiple cores for
different purposes. As it is shown in [8] and [9], Graphics
Processing Units (GPU) are very widely used nowadays for
audio processing, and can reduce execution time considerably
due to their high parallelism in data processing. The work
presented in [10] focuses on the acceleration of real-time
audio DSP algorithms (IIR/FIR filters, modulation algorithms,
and so on) by combining the usage of CPUs and GPUs in a
multicore system. This work also states that transfers between
processors are usually an important bottleneck, and therefore
supports the need of an efficient intercommunication system.
Although the T-CREST platform used in this project consists
of homogeneous processors, the system can easily allow the
integration of different cores in the network.

The work presented in [5] explains the undesired effect that
buffering has in latency, and suggests limiting or avoiding it
when possible. In addition, the work presented in [2] explains
the importance of latency control and estimation in real-time
audio systems, which is often not considered in software-based
digital audio workstations used for live music performances.
It also provides a tool to measure the latency of hardware
components and software DSP algorithms. Prediction and
reduction of the audio signal latency is one of the main design

concerns of our work, as we are focusing on real-time audio
processing.

III. BACKGROUND

This section first classifies the audio effects used in this
work. It then provides background information regarding real-
time digital audio signal processing. After that, the concept of
homogeneous synchronous data flow is presented, and finally a
general overview of the T-CREST multicore platform is given.

A. Classification of Audio Effects

There are many different digital signal processing algorithms
that are used in audio applications, which can range from
enhancing some properties of the signal, to extracting certain
information from it. Their main computational requirements are
multiply-accumulate operations and memory access instructions.
Some of these algorithms are used to implement audio effects
for music applications [11]. The ones that have been used in
this work are classified as follows:

« Filters: infinite impulse response (IIR) filters have been
mainly used to implement equalization filters, such as low-
pass, high-pass, band-pass and band-reject filters. Comb
filters have been used for conventional delay or echo
effects.

o Modulation effects: it is common to add temporal vari-
ations to some parameters of the audio signal or the
effects. In the tremolo effect, the amplitude of the signal
is modulated, while in the vibrato effect, the pitch of the
signal is altered. More complex modulation effects include
variations of filter parameters: in the wah-wah effect, the
central frequency of a band-pass filter is modulated, while
the chorus effect modifies the length of 2™ order comb
filters.

« Non-linear processing effects: they are also known as
wave-shaping effects, and are used to enhance the char-
acter of the signal by adding some harmonic content to
it. The overdrive effect is very commonly used in music
applications, and applies subtle wave-shaping to the signal.
On the other hand, the effect known as distortion can be
much stronger, as it generates a higher harmonic content.

B. Real-Time Audio Signal Processing

The most common operations required in audio signal
processing are multiply-accumulate and memory load/store
instructions, to access buffered audio samples, filter coefficients
or other parameters [1].

An important property of a real-time digital audio processing
system is that the processing time per sample must be smaller
than the sampling period in order to avoid interruptions in the
output signal. This is shown in Equation 1, where 7, is the
processing time per sample and Fy is the audio sampling rate.

1
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Another characteristic of real-time audio processing systems is
that the latency of the signal from input to output must be kept
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Fig. 2. Example of two actors with different data rates on a SDF model.

within an acceptable time interval. In music applications, the
processing must be perceived as instantaneous by the human
ear. Usually, latency values of just a few milliseconds are
considered acceptable [2]. In this work, a latency limit of 15
ms is used as a reference: under this value, the human ear is
incapable of noticing any delay.

C. Homogeneous Synchronous Data Flow

The implemented multicore audio processing system is an
example of a homogeneous synchronous data flow (SDF) [12]
application. SDF is a model of computation where a digital
signal is processed by actors in a static order of execution.
When an actor has enough input tokens, it fires (i.e., starts
the computation) to produce output tokens. In homogeneous
SDF, the actors have a static data rate, which is the amount of
tokens they need in order to fire.

Audio processing is a multi-rate SDF model, where the
firing rates of the actors in the system might not be identical.
Figure 2 shows an example where actor A produces M tokens
each time it fires, and actor B requires N input tokens to fire.

Balance equations need to be defined, to guarantee the correct
communication and synchronization of all actors in the system.
The balance equation for the simple example of Figure 2 is
shown in Equation 2, where ¢, indicates how many times actor
X must fire in order to have a constant data rate in the overall
system.

qaM = qpN 2

D. The T-CREST Multicore Platform

The T-CREST platform [13] is used for the implementation
of the audio processing system. The goal of the T-CREST
project is to develop a fully time-predictable multicore proces-
sor for embedded hard real-time applications. For this, many
resources are available, the most important ones for this project
being the Patmos processor, the Argo NoC, and the Platin time-
analysis tool. All these components have been designed for
WCET reduction and predictability. The version used in this
work is a 4-core platform, as shown in Figure 3, that runs on
an Altera DE2-115 FPGA board [14].

Patmos is a RISC-style time-predictable processor [15]. It
is the main computational resource of the T-CREST platform,
and has been used here for the computation of audio processing
algorithms. Patmos has a set of local memories that allow faster
data and instruction access and tighter WCET bounds. These
are the data and instruction caches and scratchpad memories
(SPM), which can be explicitly used by the programmer.

Patmos has I/0O devices mapped to the local memory address
space. Among others, an audio interface [4] is found here,
which implements the communication between the processor
and the WM8731 audio CODEC [16] found in the DE2-115
board.

\?} \R}
Fig. 3. Representation of the 4-core T-CREST platform. The Argo NoC is
shown with its network interfaces (NI), routers (R) and links between routers.

Argo is a time-predictable statically-scheduled NoC [17],
which implements the message-passing between the Patmos
processors of the platform. Argo uses time-division multiplex-
ing to share its hardware resources over time, allowing data
packets to travel from source to destination within a guaranteed
time interval, making Argo ideal to reduce and pre-estimate
WCET. In the audio processing platform, the audio signal
travels through the Argo NoC from core to core.

The Platin tool kit [18] has been used for WCET analysis
of each one of the implemented audio effects. Platin uses a
model of the Patmos processor and information of the compiled
program to analyze the WCET bound of a given function.
WCET analysis is essential for any real-time system: in audio
processing, it is used to know if real-time processing is possible,
and how many audio effects can be processed together in the
platform (i.e., how much processing can be applied to the audio
signal before any audio interruptions could happen).

IV. DESIGN OF AUDIO EFFECTS FOR THE PATMOS
PROCESSOR

Multiple audio effects have been implemented in software,
using an object-oriented style approach, where each audio
effect is represented by a different class. This modular approach
is common in audio signal processing, because it allows to
easily instantiate effects and combine them with others. The
parameters of each effect are stored as a data structure in
the local SPM of Patmos. This ensures single-cycle access to
parameters, essential for a short WCET, as it avoids relying
on caches. In most effects, a block of the latest audio samples
needs to be buffered. These samples can be stored in the SPM.
However, in some cases, larger audio buffers need to be kept
in the external SRAM memory.

Figure 4 shows the flow of the audio signal in the single-core
T-CREST platform. The input and output buffers are part of
the audio interface component, and each effect is processed in
software inside the Patmos processor.

WCET analysis of each effect is essential to guarantee
that all of them can be processed in real time. The chosen
audio sampling rate is Fy = 52.083 kHz, which is equivalent
to a sampling period of 1536 clock cycles, for the 80 MHz
processing clock of Patmos. Those 1536 cycles set the limit
for real-time processing, thus it is important to guarantee that
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Fig. 4. Representation of the audio signal flow on the single core T-CREST
platform, with input and output buffers of the same size, N.

all the effects can be computed in a shorter amount of cycles
in all cases. The results of WCET analysis are shown in the
evaluation in Section VI.

From the WCET analysis, an utilization value can be defined
as shown in Equation 3, for a sampling period of 1536 cycles.
The utilization of each effect gives an idea of how much the
computational resources of the processor are being used.

_ WCETrx
Urx = 334 ®)

As an example, if an effect a has U, = 65%, it means that the
processor will be computing during at most 65% of the time,
and it will be idle at least for 35% of the time.

V. AUDIO PROCESSING IN THE T-CREST PLATFORM

This section presents the multicore audio processing platform
and is divided in 3 subsections. At first, the static task
allocation is explained; after that, some technical characteristics
are presented, which explain how the effects are computed,
synchronized and communicated; finally, the calculation of the
latency of the signal is shown.

A. Static Task Allocation

Our system is designed in a way so that audio applications,
consisting of sequential or parallel chains of effects, can be
described in a higher level of abstraction. We have designed a
task allocation tool that uses the higher level description of the
audio application, consisting of effects and connections, and
decides how they are mapped to the cores in the T-CREST
platform. The tool then creates header files that contain
information about the audio application (effect allocation,
required effect connections, buffer sizes...). These header files
are compiled together with the main audio processing program,
which consists of a set of libraries that define the parameters
and methods of each DSP algorithm, the API for the audio
interface, and the NoC message passing API.

The individual effects can be seen as tasks. The static task
allocation tool follows the same order as the audio signal
through the effects, and decides which task is mapped to which
processor core. To do this, it must have prior knowledge of
the utilization values of all the tasks to decide whether any of
them can be combined in the same core: this can be done if the
utilization of this processor is kept under 100%. Additionally,
the tool establishes the required connections between cores.
After the off-line allocation, the task distribution is static during
execution. If two or more tasks are combined in a single
processor, the computation is done in an interleaving way,
where the processing of each task is alternated with the others.

This leads to a simple and clear approach where no complex
scheduling is needed, therefore reducing the overheads due to
context switching.

B. Processing and Intercommunication

It is common in digital audio signal processing to combine
algorithms which operate on a single audio sample, such as
filters or delays, with others which operate on blocks of samples,
such as the fast Fourier transformation (FFT). The T-CREST
audio processing platform supports combining effects with
different data rates. This feature provides the system with
flexibility and a high scalability in terms of the effects that
can be added to the platform.

As previously mentioned, the audio effects are connected to
each other forming sequential or parallel chains. In sequential
chains, the data dependencies are clear, as effect i+ 1 will
need the results of effect i to start processing. However, the
available parallelism of the multicore platform can be exploited
using a pipelining approach. This means that effects i and i+ 1
can process different data packets simultaneously, achieving
computational parallelism.

The effects in the multicore platform are connected through
virtual channels, which can be NoC channels, when the
connected effects are on different cores, or same-core channels,
when the effects are allocated in the same Patmos processor.
Each NoC channel has send and receive buffers on its ends
(i.e., in the SPMs of the cores it connects), which must be
of the same size. On each NoC sending operation, the whole
buffer of samples is transferred from the sender to the receiver.
The channels in the same core are represented by memory
locations: in this case, the sender and receiver tasks simply
agree on a SPM address to exchange the audio data packets.

The size of the send and receive buffers affects the perfor-
mance of the system directly. The buffers need to be at least
as big as the data rates of the effects that the virtual channel
connects. As an example, if a FFT effect processes a block
size of 128 samples, then the buffers connected to this effect
need to be at least 128 samples in size. However, keeping
the buffer sizes to the minimum increases the amount of NoC
send/receive operations done per sample, which means higher
overhead due to data transfers between cores. Larger buffer
sizes reduce this overhead as fewer transfers are executed, but
this has higher memory requirements and increases the latency
of the audio signal.

The goal is to define the buffer sizes in a way that ensures
balance between the following three constraints:

o Memory requirements: the send/receive buffers are located

on the SPM, which has a limited size.

o NoC transferring overhead: execution time increases when

more NoC send operations are performed.

« Latency: the overall latency of the audio signal is directly

proportional to the buffer sizes of the effects in the system.
For this purpose, the overhead reducing factor (ORF) term
is introduced. The ORF defines by how much the buffers of
each effect are increased, compared to the minimum required.
Continuing with the same example as above, if a ORF of 4
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Fig. 5. Example of audio effects FX0 to FX4 mapped to cores PO to P3 on the T-CREST platform, showing the communication channels between effects, Cyy.

The input and output buffers of the audio interface are also shown.

is applied, the 128-sample block FFT will have send/receive
buffers of 512 samples. This means that the NoC transfer
overhead is reduced by 4, but the audio latency added by this
larger buffers also increases by 4. The ORF of each effect
needs to be set depending on the data rate of the effect: it
shall be smaller for effects with higher data rates, and larger
for single-sample effects.

Each effect can be seen as an individual processing unit with
a receive buffer (connected to the NoC or to another effect in
the same core), a processing function and a send buffer. The
execution steps performed in all effects are the same:

« First, the effect receives the audio data on its receive buffer
from the previous element in the system, which might
be more than one if the effect is a join (i.e., it merges
parallel paths).

o The samples are then processed, following the DSP
algorithm that the current effect implements. When this is
done, the processed samples are stored in the send buffer.

« Finally, the effect sends the data from its send buffer to
the next element in the system, which again might be
more than one if the effect is a fork (i.e., it splits the
signal into parallel paths).

This modular approach, where effects are independent
processing units that can be mapped onto different cores,
together with the possibility to map multiple effects to the same
core, provides very high level of flexibility and scalability of the
audio processing system, since it allows to exploit parallelism
and to properly combine effects to maximize the utilization of
each core of the platform.

An example of a possible set of effects is shown in Figure 5,
where effects FX0 to FX4 are shown with their receive and
send buffers. These effects have been statically mapped to
Patmos processors PO to P3. The input buffer B; is located in
the audio interface and receives the input audio signal, which is
then processed in effect FX0. After that, the signal is split into
two parallel paths, which makes FXO a fork effect. The parallel
signals are processed separately, and then merged together in
the join effect FX4. Finally, the audio samples are stored in the
output buffer, By, until they leave the system. FX2 and FX3
are allocated in the same core. The communication channel Cy3
is a same-core channel, while the rest are all NoC channels.

The effects in the system use the flow-control communication

paradigm to exchange data: they constantly poll requesting data
on their receive buffers, and send data from their send buffers
as soon as it is available. The processors do not get stuck at
sending because multiple buffers are available in the same NoC
channel, which means that the processor can perform a NoC
send operation again, even if the previous one was not yet
completed. In this case, the data is simply written to the next
available buffer. Flow-control communication was chosen due
to the variability in execution time of the effects, which depends
on multiple factors, such as instruction and data cache hit/miss
rates. This communication paradigm provides the system with
elasticity, as the audio samples might be located in different
elements of the platform at different times.

The audio signal flows from processor to processor through
the Argo NoC. The TDM scheduling, which provides commu-
nication guarantees within a certain time bound, makes the
Argo NoC a very suitable intercommunication resource for
real-time audio processing, as the latency of the NoC can be
precisely pre-estimated. Moreover, Argo allows overlapping
of communication and computation: this is because when a
Patmos processor sends a packet of samples n to the NoC, it
can directly start processing the next group of samples, n+ 1,
while the packet 7 is still traveling through the NoC.

Argo provides all-to-all communication, which means that
equal bandwidth channels are available between all processor
cores in the system, 4 in this case. The NoC bandwidth is the
amount of packets transferred per TDM period. In the 4-core
version, the TDM period is equal to 18 cycles, which is 125ns
for the 80 MHz source clock. Each packet consists of 64 bits
of data. Therefore, the bandwidth of each Argo channel is
64/0.125 = 512 Mbits/s. As we use internally 32-bit samples,
this results in a bandwidth of 16 million samples per second.

C. Latency

The latency of the audio signal can be defined as the
difference in time between the moment when the first sample
is output from the system and the moment when the first
sample was input: it is therefore equivalent to the amount of
samples that are inside the system at all times, when measured
in sampling periods. The real-time audio processing T-CREST
platform is designed to control and predict the latency, to
ensure that it does not exceed a given limit, which is 15 ms in



this case. The latency is statically set for each setup of effects:
the WCET of all the effects and the worst-case NoC transfer
time are known, and this allows to calculate the maximum
time that it can take for a sample to travel and be processed
inside the platform. The decided latency of the system must
be greater or equal to this time value. In our case, the chosen
latency is the minimum required.

There are 3 factors that contribute to the processing time,
and therefore to the minimum latency: they are the audio
interface buffers (L;p), the processing of the effects (Lrx), and
the NoC transfers (Ly,c). The minimum latency (L,,) is shown
in equation 4.

Ly = Lio+Lrx +Lyoc (€]

e Ljo can be described as an ‘intentional’ latency: this is
because the input buffer, of size N, is allowed to get
full before processing starts (i.e., N samples are input in
the system initially, before computation starts). Therefore,
Ljo = N. This is done so that the samples can move among
the elements of the system as explained, providing the
system with elasticity.

o Lpy is caused due to processing applied to the signal, and
depends on the buffer sizes of the effects in the setup.
For any effect in the system, it is assumed that the worst-
case processing time per sample is equal to the sampling
period, because this is a requirement for real-time audio
processing, as explained in Section III-B. This means that
if an effect processes blocks of n samples, it will take
as long as n sampling periods in the worst-case. This
allows us to relate the latency of effect computation to
samples, instead of to execution time. The total latency
of each effect, measured in samples, is equal to the size
of its send buffer: if the send buffer is, for example,
of size 4n, it will take a maximum of 4n samples until
the buffer is transferred to the next element, so this is
the accumulated latency. To know the total latency of
all the effects, the sizes of the send buffers need to be
summed. For effects that are mapped to the same core,
only the last of all send buffers needs to be taken into
account (the one that sends to the NoC). For parallel
signals, only the longest one needs to be considered. In
the example of Figure 5, the effect buffering latency would
be Lrx = Blyo+ max(Bgy,, Bhys) + Bhys, Where By,
is the send buffer size of effect i in samples. Only the
maximum between By, and By 5 needs to be considered.

o Lyoc happens because the transfer of data from source to
destination through the Argo NoC is not instantaneous.
The latency value is derived from the worst-case packet
latency of the NoC, which is equal to the TDM period: 18
cycles in the all-to-all schedule. In other words, the worst-
case latency to transfer one packet from one processor
to another is 18 clock cycles. A packet might contain
one or two audio samples, so, in the worst case, we
consider that it transfers a single sample. The worst-case
latency for transferring the whole message buffer between
two cores i and j through the NoC channel C;; is then

18- B;j, where B;; is the size of the NoC channel buffer
measured in samples. The latency units can be converted
from clock cycles to sampling periods by dividing the
value by 1536, the sampling period. To calculate the
latency of the NoC, the longest path of NoC channels
needs to be considered when parallel paths are found. If we
refer to the example of Figure 5 again, the total latency of
the NoC is Ly,c = max(Lcm +Lc,,, Ly, —|—LC34). Lc,; =0,
as it is a same-core channel.

VI. EVALUATION

This section evaluates the T-CREST audio processing plat-
form in terms of its real-time behavior. First, the WCET of all
the implemented effects are analyzed, and the variability of
execution time for different buffer sizes is also shown. Finally,
we present a comparison between the expected and measured
latency for different combinations of effects.

A. WCET Analysis of Audio Effects

The Platin time-analysis tool, introduced in Subsection III-D,
has been used to analyze the WCET bounds of all the
implemented effects individually. This analysis is needed to
ensure that the Patmos processor is capable of processing
each one of these effects in real time. The Platin tool uses a
configuration file containing information about the processor in
Platin meta-information language format. In this configuration
file, the most important parameters that affect to execution time
are stored, which are the cache sizes and associativity values,
and worst-case memory access times among others. Platin
uses this information to analyze WCET of a given function,
combining the trace analysis with the memory access delays.

For the evaluation, the processor and the model used in
Platin are configured with data and stack caches of 4 KB each,
and a method cache with 8 KB and 16 methods. For both the
WCET analysis and the experimental measurements, cold and
warm cache situations are analyzed, as execution time strongly
depends on it. The execution time required to process a single
audio sample is measured between the instant when processing
of each effect starts, until it finishes (the processed samples
are located in the send buffer).

Table I shows the results of the WCET analysis of the audio
effects, which are compared to experimental measurements.
Column 2 and 3 show WCET analysis results of the effects
with cold cache and with warm cache. Column 4 and 5 show
execution time measurements with cold cache and with warm
cache. The last column shows the processor utilization, which
is computed by dividing the WCET values (warm cache) by the
sampling period of 1536 clock cycles, as shown in Equation 3.

The results presented in Table I verify that the execution
time is always larger when caches are cold, due to the stalls
caused by main memory access. Table I also shows that, as
expected, the measured execution times are smaller than the
values given by Platin (except for the cold cache values of the
filter effect, which could be due to small precision differences
between the hardware processor and the software model).



TABLE I
WCET ANALYSIS USING THE PLATIN WCET ANALYSIS TOOL AND EXPERIMENTAL EXECUTION TIME MEASUREMENTS OF ALL THE EFFECTS FOR A SINGLE
SAMPLE, MEASURED IN CLOCK CYCLES. COLD AND WARM CACHE SITUATIONS ARE SHOWN. THE UTILIZATION OF EACH EFFECT IS ALSO PRESENTED,
DERIVED FROM WARM WCET ANALYSIS.

Platin Platin Experimental Experimental
Effect WCET (CC) WCET (CC) meas. (CC) meas. (CC) Utilization (%)
cold cache = warm cache  cold cache warm cache

Filter 4999 475 5058 336 30.9

Tremolo 2167 331 207 84 21.6

Vibrato 3514 837 441 252 54.5

Delay 3646 808 1749 504 52.6

Wah-wah 6292 846 4192 336 55.1

Chorus 5127 1029 1369 336 67.0

Overdrive 1874 113 1518 84 7.4

Distortion 3714 1014 3097 1008 66.0

Finally, the utilization values of Table I confirm that real- Exec.

time processing of all the effects is possible, as the values time (CC)
are all below 100%. The WCET values used to calculate the 1400
utilization correspond to the Platin analysis with warm caches, 1200 \\
as this is the stationary situation during execution (due to static 1000 =
allocation, each effect is continuously processed in the same 800
processor, so its relevant data and instructions will be kept 600 \ -
in the local caches). As the first column of Table I shows, 400
cold cache WCET values exceed the sampling period of 1536 200
cycles. However, cold cache situations happen very rarely while 0 ; , . 8 16
processing: only in the very first time, or when there is a context Buffer
switch. In those situations, the flow-control communication =¢=Filter ~@=Vibrato =t=Delay ==Distortion (sa:iﬁes)

paradigm that we use ensures that there are enough samples
in the output buffer, so the output audio data stream is not
interrupted.

The plot shown in Figure 6 presents measurements of
execution times of 4 effects with different receive/send buffer
sizes, all of them in warm cache situations. The execution time
values are shown per sample. The same cache parameters as
mentioned before are used, and processing happens in a single
Patmos core as well. However, here we measure not only the
time required for the DSP algorithm computation of the effect,
but also the NoC receiving and sending operations, which each
processor needs to perform together with the algorithms when
it processes audio in real time. This is why the values for
a single sample buffer are all greater than the warm cache
values of Table I. The NoC transfers cannot be analyzed with
the Platin tool because it only contains a model of a single
processor, but not of the multicore platform with the NoC.
That is why the values shown are measured experimentally.

Figure 6 shows the reduction of execution time per sample
that is caused when the ORF increases. In this case, all the
effects process a single sample, so the minimum buffer size
required is 1 sample. It is shown how different ORFs, up to
16, reduce the execution time per sample due to the reduction
of overheads caused by NoC transfers. Table II shows this
reduction for the 4 effects when an ORF of 16 is applied.
The reduction is calculated as the difference relative to the

Fig. 6. Execution time per sample, measured in clock cycles, of 4 effects for
different buffer sizes ranging between 1 and 16 samples.

TABLE I
EXECUTION TIME PER SAMPLE OF 4 EFFECTS WITH ORF VALUES OF 1 AND
16, AND PERCENTAGE OF REDUCTION.

Exec. Exec. Exec.

Setup time (CC) time (CC) time
ORF=1 ORF =16 reduction (%)
Filter 744 362 51.3
Vibrato 829 320 614
Delay 1138 544 52.2
Distortion 1433 1016 29.1

maximum value, e.g., (744 —362)/744 = 0.513 for the filter.
Reductions of execution time per sample range from around
30% to around 60%, depending on the effect.

B. Latency Verification

Table III shows the estimated and measured latency values
for 4 different effect setups. Each setup is a combination of
effects which can be processed in real time, as shown. The
effects are connected to each other and mapped to cores in the
platform, as decided by the static task allocation tool. It is not



TABLE III
ESTIMATED AND MEASURED LATENCY VALUES, SHOWN IN SAMPLES AND
IN CLOCK CYCLES, FOR 4 DIFFERENT SETUPS OF EFFECTS.

Setup Estimated Estimated Measured
(samples) (CO (CO)

a 80 122880 116396

b 96 147456 141764

C 128 196608 188804

d 160 245760 237944

relevant which effects are processed and in which order, as
the focus here is on the latency. The estimated latency of each
setup has been pre-calculated theoretically, given the buffer
sizes and NoC communication requirements, following the
equations presented in Subsection V-C. It shall be noted that
the latency of the audio interface buffers, L;¢, is not considered
here, but only that of the elements found within the software
system. All the calculated latency values need to be rounded
up to a multiple of the buffer size of the first and last effect,
which is 16 samples (i.e., an ORF of 16 is applied).

Table III shows that the measured latency is not exactly
the same as the estimated one, but it is in a similar range

(usually, a difference up to some thousands of cycles is found).

This is due to the flow-control communication used, where
the elements of the system do not exchange data at constant
rates, but rather as soon as it is available. What we measured
in the last column of Table III is the difference between the
point in time when a sample was read from the input buffer of
the audio interface, and the point when the same sample was
written to the output buffer. We can verify from the table that
this latency is in a similar range as the estimated value, always
a little bit below it. That means that the sample is written a
little earlier than expected in the output buffer, and then it will
reside there until it leaves the system. Even with this small
divergence, it is verified that the samples arrive at the output
buffer before they have to leave the platform, so the system is
able to run at the pre-estimated latency.

VII. CONCLUSION

This paper presented a real-time audio processing multicore
system based on the T-CREST platform, where the available
parallelism of the multicore system allows processing multiple
audio effects simultaneously. The platform is flexible, as effects
with different data rates can be connected in the desired setup,
and scalable, because new effects or processing cores can be
integrated into the system.

The main concern of our design was on the time predictability
of the system, thus the focus on WCET analysis, and on the
latency of the signal. We have implemented a set of effects that
can be connected to each other and processed in real time. The
latency of the signal can be pre-calculated, and the parameters
of the system can be tuned to control the latency.

Finally, the evaluation confirms that it is possible to process
multiple effects with different interconnection requirements in

real-time, and that the system is able to run at the pre-estimated
latency.

SOURCE ACCESS

The source code of the work presented in this paper and
the full T-CREST platform is available at https://github.com/
t-crest/. The entire work is open-source under the terms of the
simplified BSD license.
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