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Abstract—Unmanned aerial vehicles, or drones, have drawn
extensive attention during the last decade together with the
maturity of the technology. Often, real-time requirements are
needed when they are deployed for critical missions. The increas-
ing computational demand for drones leads to a shift towards
multicore architectures. However, the timing analysis of multicore
systems is a challenging task due to the timing interference
between processor cores. In this demonstration, we deploy a
parallelized flight controller system on a multicore architecture.
We provide timing analysis of the system, and test it with a
processor-in-the-loop setup, which includes a flight simulator
connected to the flight controller running on a time-predictable
multicore platform.

Index Terms—real-time systems, flight controller, multicore.

I. INTRODUCTION

Drones are being deployed in numerous projects, and their
usage is expected to soon grow considerably [4]. The prolifera-
tion of multicore architectures has paved the way for replacing
radio-controlled navigation with on-board real-time tasks that
adapt the flight path.

Typically, an autonomous drone operates by reading inertial
sensors to predict its current attitude,1 after which a controller
updates actuators. Thus, it can carry out mission objectives
without any remote-control.

Real-time tasks may be mapped to multiple dedicated cores
on the same chip and cooperate with each other via inter-
core communication mechanisms. Timing analysis of real-time
systems deployed on multicore architectures is considered a
challenging task due to timing interference, introduced by
concurrently running tasks on different processor cores [1].

This demonstration presents a time-predictable multicore
architecture for a flight controller. Figure 1 shows the setup of
the demonstrator. The control loop runs on a dedicated pro-
cessor core, while a parallelized version of the state estimator
algorithm is off-loaded onto two different cores with a fork-
and-join operation when the estimator function is called.

We use the T-CREST multicore processor [6], [8]. The T-
CREST platform contains several Patmos [9] cores connected
to several communication options: (1) a shared, external mem-
ory with a time-predictable memory arbiter [7]; (2) a shared
scratchpad memory [10]; and (3) to the Argo network-on-
chip [3].

1Attitude is an avionics term, meaning the orientation of the drone relative
to the horizon.
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Fig. 1. System overview: The estimator is parallelized and mapped to two
different cores, and connected to a flight simulator for processor-in-the-loop
testing.

There is a lack of literature on fully analyzable multicore
flight control systems. In recent work, Cheng et al. [2] intro-
duce an end-to-end timing analysis for a drone flight control
system considering a set of tasks in a communication pipeline,
each mapped to a separate virtual processor that runs on a
single physical processor.

In another work, Rocha et al. [5] port prototype avionics
applications to the time-predictable T-CREST multicore pro-
cessor. The applications are based on the Integrated Modular
Avionics concept, which goal is to reduce hardware by sharing
resources without any interference among applications. How-
ever, in this paper we aim to port traditionally sequential flight
control systems to multicores.

The contribution of this demonstration is a parallelized
time-predictable flight controller deployed on a multicore
architecture.

II. THE FLIGHT CONTROLLER

Drones are equipped with sensors that provide information
about the current attitude of the drone. One of the most com-
mon sensors is an inertial measurement unit, which measures
accelerations, rotation rates, and the magnetic field of the earth
to determine the drone orientation.

The flight controller periodically, (a) reads the inertial
measurement unit sensor, (b) integrates (fuses) data coming
from the sensors with a state estimator algorithm, (c) computes
the control law, and (d) updates the actuators to maintain the
body balance.

The flight controller is implemented as cascaded PID con-
trollers, which consist of a high-level controller and a set



TABLE I
RESULTS FROM WORST-CASE EXECUTION TIME ANALYSIS FOR SINGLE

CORE

Function Clock Cycles

Estimator (pitch and roll) 486,398
High- and low-level controllers 17,189

Control loop 532,399

of low-level controllers. The high-level controller mimics
pilot/user input, thus implementing predefined flight-modes.
The low-level controllers include a longitudinal controller
(pitch control) and a lateral controller (roll control). The low-
level controllers update actuators to keep the reference attitude
according to high-level controller commands.

An estimator algorithm, a Kalman filter, is used for sensor
data fusion for extracting otherwise unmeasurable variables
from the system, as the measurement data is highly uncertain.
The estimator fuses pitch and roll degrees to be used by
the longitudinal and lateral controllers, respectively. When the
estimator is parallelized, two estimator instances deployed on
two different cores predict the pitch and roll degrees separately.

III. EVALUATION AND DEMONSTRATION

For the demonstration, we use a processor-in-the-loop setup,
as illustrated in Figure 1. In the setup, the flight controller
is deployed on a dedicated T-CREST multicore platform
interacting with a flight simulator, which runs on a Windows
computer. The flight controller and the host computer commu-
nicate over a serial line. We use a commercially available flight
simulator (XPlane 11). The flight simulator exchanges data in
the form of UDP packets, It provides the requested sensor data
as an output, and obtains the actuator update values from the
flight controller as an input. An interfacing program is used to
convert the UDP packets into a serial communication data for
interfacing the simulator with the embedded flight controller
running on the T-CREST platform. The sensor data is read
and sent at 20 Hz, which is also the frequency of the control
loop.

Table I provides worst-case execution time analysis results
of a traditional single core flight control system. Here, the
estimator algorithm becomes a bottleneck for the control loop
by taking nearly 91% of its execution time. Therefore, the
estimator algorithm is parallelized to run on two different cores
fusing pitch and roll values separately. In the T-CREST plat-
form, however, access to the main memory is TDM arbitrated,
and increasing the number of processor cores also increases the
memory access cost for the sake of time predictability. When
external memory is used, this nature of the platform prevents
a possible speed up that can be obtained by parallelizing the
application.

The source code for the flight controller is available in open
source at: https://github.com/predict-drone/flight-control.

IV. FUTURE WORK

As a future work, we will extend this work to cover inter-
core communication concepts including exploring on-chip
shared memories and a network-on-chip. We aim to compare
the different inter-core communication concepts. Additionally,
we will further explore parallelizable estimator algorithms for
flight control systems.

V. CONCLUSION

In this demonstration, a flight controller system is paral-
lelized and deployed on a time-predictable multicore processor
platform. The flight controller is evaluated with a processor-in-
the-loop testing setup. In this setup, we use a flight simulator
running on a host computer connected to the controller. Timing
analysis of the system shows that the estimator dominates the
execution time and therefore is the candidate for paralleliza-
tion.
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