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Abstract

The use of hardware accelerators to implement computationally intensive tasks in real-time systems can lead to a
reduction of the worst-case execution time (WCET). An additional potential benefit is that a WCET-analysis may be
simpler to perform because hardware generally has a more time-predictable behavior than software. The dynamic partial
reconfiguration (DPR) feature offered by modern FPGAs allows accelerators that are no longer needed to be replaced
with new ones, leading to more efficient utilization of hardware resources. This paper presents an experimental evaluation
of the potential benefits of using DPR to implement hardware accelerators in real-time systems, focusing on trade-offs
between hardware utilization, worst-case performance, and speed-up over a pure software solution. Moreover, it also
investigates the trade-off between the use of multiple specialized accelerators combined with DPR instead of the use of
a more general accelerator, and the memory footprint of the partial-bit streams. The experiments show that DPR in
combination with accelerators results in: (i) better utilization of the FPGA resources, (ii) performance that is comparable
with non-reconfigurable solutions, and (iii) tighter WCET bounds.

1. Introduction

In recent years, advances in FPGA technology have en-
abled reconfigurable computing to become viable and be
used in end-products. This empowers application devel-
opers to design and use their own hardware accelerators
(HwAs) to significantly increase the speed of algorithms by
using reconfigurable hardware.

In real-time systems, tasks need to meet their deadlines.
To guarantee that no deadlines are missed, the worst-case
execution time (WCET) of tasks needs to be determined
statically. Moving functionality from software into hard-
ware can lead to a reduction of the WCET. Furthermore,
timing-analysis of algorithms in hardware may be easier to
perform than WCET analysis of software solutions.

However, one of the issues in using FPGAs is that the size
of the HwAs is limited by the available resources, especially
considering that the FPGA cost is very sensitive to its
size. The dynamic partial reconfiguration (DPR) feature
offered by modern FPGAs [1] can be used to overcome
this limitation, by enabling run-time reconfiguration of
selected regions on the FPGA. This allows a more efficient
utilization of FPGA resources since HwAs that are only
required for limited amounts of time can be replaced when
the functionality implemented in these regions is no longer
required.

In this paper, we explore and evaluate the use of DPR
in real-time systems. The idea is to equip a processor with
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Figure 1: An FPGA with partial reconfiguration capabilities used to
instantiate different hardware accelerators during runtime.

one or more reconfigurable regions implementing hardware
to accelerate selected segments of a software application,
as shown in Figure 1. The DPR feature of FPGAs is used
for swapping between these accelerators according to the
current needs of the application. The reconfiguration con-
troller modifies the hardware in the reconfigurable region
by loading partial bit-streams stored in a local scratchpad
memory (SPM) (e.g., HwA1.bit, HwA2.bit in Figure 1).

Potential outcomes of using reconfiguration in real-time
systems are:

• Reduction of the hardware size: Implementing
different functionalities that are needed only for a
limited period of time in the reconfigurable regions
reduces the overall hardware size when compared to
a fully static solution. This enables a more extensive
use of accelerators and possible reduction of costs.
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• Simplification of the WCET analysis: Moving
the functionality performed in software into hardware
may lead to a simplification of the WCET analysis.
In general, the time analysis of hardware used to im-
plement software-equivalent tasks is often easier to
perform than analysis of a pure software solution. For
example, instruction cache related timing analysis is
not needed when using accelerators.

• Reduction of the WCET pessimism: An inter-
esting consequence of the simplification of the WCET
analysis when using hardware accelerators to perform
selected tasks, is the possibility to reduce WCET anal-
ysis pessimism. A properly designed hardware acceler-
ator may have a very limited and predictable variance
on the task execution times.

• Speed-up from hardware acceleration: In gen-
eral, executing a computationally intensive task in
hardware delivers a speed-up in the task execution
time, leading to increased system performance and
efficiency. This can apply for both the average-case
execution time for general-purpose systems and the
WCET for real-time systems. Moreover, DPR may
allow the use of more efficient accelerators specialized
in the execution of small specific tasks instead of a
generic accelerator that covers a broader task set.

• Increase of the design complexity: The hardware
architecture of a system that includes the DPR feature
is more complex. For example, the use of a dedicated
configuration controller is required, and some interface
logic may be needed to isolate the reconfigurable region
from the rest of the system during reconfiguration. We
mitigate this negative outcome by using our lightweight
configuration controller RT-ICAP, characterised by a
minimal hardware cost overhead and easy usability.

• Increase of the memory requirements: The par-
tial bit-streams associated to each configuration must
be stored in memory. Therefore, we expect an increase
in the memory resources utilisation when using DPR.
This memory increase goes against the hardware size
reduction obtained by sharing the reconfigurable re-
gion between multiple accelerators. In our approach,
we mitigate this negative outcome by applying com-
pression techniques to the stored partial bit-streams.

In this paper, we experimentally evaluate the above
mentioned potential advantages. First, we present the
reconfiguration controller that we developed to support
time-predictable reconfiguration and the associated soft-
ware tools for reconfiguration time analysis and bit-stream
compression. Then, we present a set of experiments com-
paring a pure software and a static implementation in which
non-reconfigurable HwAs are used, against a reconfigurable
approach in which DPR is used to switch between differ-
ent HwAs. The goal of the experiments is to analyze the

trade-offs between the hardware-resource utilization and
the computational performance loss due to the reconfigu-
ration time overhead of DPR, which directly affects the
overall WCET. For one of the test cases, we also investigate
whether using DPR to switch between multiple specialized
HwAs could provide a lower WCET bound with respect to
the use of a more general HwA. We also present a charac-
terization in terms of hardware resources utilization of the
controller and bit-stream compression capabilities of the
associated tool.

We carry out the evaluation on the Patmos proces-
sor [2, 3] using HwAs generated from four selected real-time
TACLe suite benchmarks [4]. We generate the hardware
from C code using the Xilinx high-level synthesis (HLS)
tool Vivado HLS [5]. We use the Patmos WCET analysis
tool platin [6] to perform the WCET analysis of the accel-
erated tasks and the reconfiguration process. Overall, the
results show that the use of DPR can lead to a significant
reduction in the hardware cost if the tasks moved into
hardware are sufficiently computationally intensive.

This paper extends our work presented in [7], where we
discussed and evaluated the computational performance
vs. hardware utilization trade-offs in terms of WCET,
comparing a solution that uses hardware accelerators in
combination with DPR against a static solution. We extend
the previous work with the following additional contribu-
tions: (1) an extended discussion of the potential benefits of
DPR in real-time systems, (2) a presentation and character-
ization of our time-predictable reconfiguration controller,
(3) an evaluation of the effect of reconfiguration on the
WCET speed-up between a software solution and one that
uses hardware accelerators in combination with DPR, and
(4) an evaluation of the bit-stream memory footprint and
compression capabilities of the tool associated with our
controller.

The paper is organized into seven sections: Section 2
presents the related work. Section 3 provides the general
background related to DPR, the Patmos processor, and its
WCET analysis tool. Section 4 presents the reconfiguration
controller and the associated software tools for reconfigu-
ration time analysis. Section 5 describes the experimental
setup used to produce the results, which consists of the
hardware platform and the set of HwAs from the TACLe
benchmark suite. Section 6 presents and discusses the ex-
perimental results. Finally, Section 7 concludes the paper.

2. Related Work

The related work falls into two categories that we will
discuss below: (1) system and application level methods
and tools supporting the use of DPR, and (2) hardware
controllers used to install new partial bit-streams in the
FPGA at runtime.

2.1. Methods and Tools

The use of DPR in real-time systems represents a novel
field of research. Below we first discuss some representative
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works that address and introduce DPR in general, and then
a few works with a specific focus on real-time systems.

Comprehensive surveys of the most relevant hardware
aspects and an overview of the state-of-the-art with regards
to reconfigurable computing can be found in [8] and [9],
respectively. These works explore the challenges of runtime
reconfigurable architectures, addressing both single-chip
and multi-chip architectures.

In [10], the author studies the dynamic behavior of re-
configurable architectures, primarily focusing on the use
of DPR. The work proposes a simulation framework for
reconfigurable architectures that comprises a generic appli-
cation model and an architecture model, the combination
of which captures the dynamic behavior of the reconfig-
urable architectures. The work does not address real-time
aspects.

Another framework is the one presented in [11], called
ReCoBus-builder, which addresses component-based, recon-
figurable, non-real-time systems. It uses DPR to generate
dynamically reconfigurable systems providing one or more
runtime reconfigurable areas. The framework addresses
component-based reconfigurable architecture for non-real-
time general-purpose systems. Therefore, strict timing
constraints are not taken into account and the performance
is measured in terms of the average-case speed-up.

The work presented in [12] provides an overview of the
hardware-software partitioning, scheduling, and placement
issues and proposes an exact and a heuristic approach
for hardware-software partitioning in a system that uses
DPR. The paper takes into account key factors such as
placement implications and configuration pre-fetching for
minimizing the schedule length, but it does not address
real-time applications.

In [13], the authors present the PaRA-Sched automated
design methodology. It considers DPR in the scheduling
infrastructure aiming at improving overall performance by
masking reconfiguration time when possible. This allows
rapid exploration of the DPR during the early stages of
the design process.

The work presented in [14] proposes a software frame-
work, called FRED, which exploits HwAs combined with
DPR in the development of safety-critical real-time sys-
tems. It presents generic models of the platform and the
computational workload where a subset of the tasks is
accelerated using reconfigurable hardware. These models
allow response-time analysis to verify the schedulability of
a real-time task set under given constraints and assump-
tions. In contrast to this modeling and scheduling work,
our paper is more focused on practical design experiments.

2.2. Reconfiguration Controllers

A number of reconfiguration controllers have been devel-
oped by FPGA vendors and in academia. Again, most of
these works do not consider real-time aspects.

The XPS HWICAP reconfiguration controller [15], pro-
vided by Xilinx, is an IP core that supports DPR using a set

of software functions provided in processor-specific libraries.
The associated software library, allows an application pro-
grammer to write and read configuration bit-streams, and
it enables the modification of single look-up tables and
flip-flop properties.

The ZyCAP controller [16] is a custom controller for pro-
cessor/FPGA hybrid platforms, such as the Xilinx Zynq.
The ZyCAP controller is connected to the hard-core proces-
sor through the AXI4-Lite bus and to the system memory
where the bit-streams are stored through the AXI4 bus [17].
A direct memory access controller loads the bit-stream dur-
ing reconfiguration using the internal configuration access
port (ICAP). Software drivers are associated with the con-
troller and allow the hard-core processor to manage the
reconfiguration process. Most of the functionalities of the
above-mentioned controllers are provided by software ex-
ecuting on a processor that reads from or writes to the
controller interface. This approach is very flexible, but it
may lead to an increase the WCET pessimism, since I/O
functions may be difficult to analyze.

The PRC controller [18], provided by Xilinx, is an IP
core designed to manage DPR and targets the Xilinx 7-
series FPGAs. The controller is interfaced to a processor
through the AXI4-Lite bus [17]. When it receives a soft-
ware or hardware trigger, it can independently handle the
reconfiguration of selected regions by reading bit-streams
from a memory connected to the AXI4-Lite bus and writing
these into the ICAP interface. For this IP, only the netlist
is available making the computation of the reconfiguration
time very difficult.

The DPRM controller presented in [19] offers similar
functionality for the Xilinx Virtex-5 FPGA, but it only
supports bit-stream transfers from off-chip flash memories
into the FPGA configuration memory. This controller uses
a finite-state machine (FSM) to transfer the partial bit-
streams stored in off-chip flash memories into the FPGA
configuration memory.

The D2PR controller presented in [20] is a minimal cus-
tom DPR controller connected to the ICAP interface, which
can be configured to include circuitry for configurable er-
ror detection and correction to improve safety in DPR by
checking for data errors while loading partial bit-streams.

The architecture of the last two controllers is the most
similar to our RT-ICAP controller, presented in Section 4.
However, they only offer the transfer of bit-streams from a
memory to the ICAP interface, while our controller offers
additional functionalities, such as support of bit-stream
decompression, and a register-based (status/control) inter-
face.

3. Background

In this section, we present the general background related
to DPR, the Patmos processor, and its WCET analysis
tool.
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3.1. Dynamic Partial Reconfiguration

DPR is a feature of modern FPGAs that allows runtime
modification of an operating FPGA [1]. Partial bit-streams
can be loaded into the FPGA to reconfigure selected regions
without affecting the functionality of other parts of the
device. A system that uses DPR can be conceptually
divided into two main parts: a non-reconfigurable static
part configured at boot-time with a full bit-stream, and a
run-time reconfigurable part, which may consist of many
independent reconfigurable regions. Each of these regions
can be reconfigured multiple times during run-time with
different partial bit-streams without interfering with the
functionality of the static part.

For Xilinx FPGAs, DPR is performed by loading a par-
tial bit-stream through one of the FPGA configuration
interfaces. For this work, the ICAP (internal configuration
access port) is used to provide access to the configura-
tion memory and partially reconfigure the FPGA after its
initial configuration. Modifying the content of the configu-
ration memory corresponds to a change in the hardware
implemented on the FPGA. The ICAP is a streaming in-
terface accessible from the hardware implemented on the
static part of the FPGA and for DPR purposes it receives
a partial bit-stream as a continuous input stream. The
hardware architecture of a system that includes the DPR
feature is more complex. The use of a dedicated configura-
tion controller to operate the ICAP interface and manage
the partial bit-stream transfer is required and some border
logic may be needed to isolate the reconfigurable region
form the rest of the system during reconfiguration.

The time needed to perform a reconfiguration is propor-
tional to the size of the partial bit-stream to be transferred
over the ICAP, which depends on the size of the region
to be reconfigured. For example, assuming the widest
possible interface (32 bits) and the fastest possible clock
(100 MHz) for the ICAP, the reconfiguration time of a re-
configurable region of 500 slices (which can accommodate
a double-precision floating-point adder) is 300µs [21].

The reconfiguration time is an important parameter since
it introduces a time overhead of DPR that needs to be
considered every time a HwA is reconfigured, leading to a
computational performance loss compared to a fully static
approach (not using DPR), since it increases the WCET.

3.2. The Patmos Processor and the Worst-Case Execution
Timing Analysis Tool ‘platin’

The processor used in this work is Patmos [2]. Patmos
is a time predictable, dual-issue, RISC processor used in
the T-CREST [22] multi-core platform and it has been
developed specifically for use in real-time applications. The
architecture of the processor is organized in a way that aims
to reduce the WCET and simplify its analysis. For example,
the processor pipeline is designed to avoid timing depen-
dencies between instructions. Special WCET-optimized
instruction, data caches, and local private SPMs are also
used.

In real-time systems, the calculation of the WCET is
fundamental to determine the system ability to respond in
time. For this reason, several commercial tools and research
prototypes have been developed to satisfy this need [23].
Patmos is supported by an LLVM-based compiler, also
developed with a focus on WCET [24] and by the WCET
analysis tool platin (portable LLVM-based annotation and
timing analysis integration) [6]. platin is a comprehensive
tools framework for WCET-aware compilation and WCET
analysis integrated with the infrastructure of the LLVM-
based compiler. Analogously to the compiler, platin offers
dedicated support for the specific architecture of Patmos
(e.g., cache modeling) and, besides other functionalities, it
allows the derivation of tight WCET bounds using static
methods.

The platin tool uses static analysis to compute the
WCET of a certain code segment. This means that, in
order to estimate the WCET, it only examines the soft-
ware structure without code execution on real hardware.
The tool works at both the bit-code level, which is the
intermediate representation in LLVM, and at the machine
code level. It uses the information generated and preserved
during the compilation process to determine a control-flow
graph annotated with flow facts provided by the user (e.g.,
loop iterations bound). The control-flow graph, combined
with low-level timing information of the processor archi-
tecture, is therefore analyzed for the longest paths, which
corresponds to a safe upper bound of the WCET of the
analyzed code segment.

In this work, we use the platin tool in combination
with reconfiguration time information provided by our
convbitstream tool (presented later in Section 4.2) and the
HwA execution time information to compute the WCET
of a software task running on the Patmos processor and
using reconfiguration.

4. The RT-ICAP Reconfiguration Controller

In this section, we present the reconfiguration controller
RT-ICAP and the associated software tool for reconfigu-
ration time analysis that we have developed to support
time-predictable reconfiguration.

4.1. Architecture and Functionality

The reconfiguration process must be managed by a con-
troller interfacing the FPGA configuration memory with
the logic implemented on the FPGA itself. Since we tar-
get real-time systems, the time-predictability specification
must also apply to the reconfiguration techniques. Most
of the controllers presented in the related works offer a
range of functionalities that are not strictly required by
our approach to support reconfiguration, such as read-back,
LUT-based reconfiguration, etc. These additional func-
tionalities increase the hardware complexity and therefore
the complexity of the hardware-level reconfiguration time
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Figure 2: A block diagram of the RT-ICAP reconfiguration controller
interfaced with a processor, the bit-stream SPM, and the ICAP.

analysis. Moreover, for some controllers, the detailed ar-
chitecture is not public, making it impossible to perform a
precise and reliable analysis.

Our RT-ICAP reconfiguration controller [25] is open-
source and supports time predictable DPR in the Virtex-
5, -6, and the 7-series FPGAs from Xilinx, using the ICAP
interface. The controller is designed to assist processor-
initiated partial reconfiguration of computation resources
such as hardware accelerators in the same way as a direct
memory access controller assists in moving data, making
DPR and its timing analysis straightforward and easy,
resulting in a small hardware implementation. Figure 2
shows a block diagram of our reconfiguration controller.
The RT-ICAP controller is connected to the Patmos pro-
cessor through an OCP interface [26], to a local SPM, and
to the ICAP interface of the FPGA. An SPM is a rela-
tively small private memory associated to a processor and
characterized by a single clock cycle access-time. In our
architecture, the SPM is used to store the reconfiguration
bit-streams and it also acts as a local general-purpose mem-
ory for the processor. The fact that the SPM is not strictly
dedicated to only store bit-streams is one further element
that distinguishes our RT-ICAP controller from the ones
discussed in the related work.

The processor controls and manages the functionality
through a set of 32-bit registers. A control FSM manages
the ICAP interface, the registers, and all the functionali-
ties of the controller. The status register can be read by
the processor to monitor the controller/reconfiguration sta-
tus. The control register can be written by the processor
to manage the controller operations. Assuming that the
needed bit-streams are stored in the SPM, to initiate a re-
configuration, the processor configures the bs addr register
with the SPM address that points at the beginning of the
bit-streams and the bs length register with the length of
the bit-streams. By writing the start command into the
control register, the controller starts the reconfiguration

process by autonomously fetching the bit-stream from the
bit-stream-SPM and loading it into the FPGA configu-
ration memory through the ICAP interface. The status
register reports the controller status, including the end of
the reconfiguration process.

Having the bit-streams stored in the SPM allows the
controller to achieve the maximum transfer speed of the
ICAP interface since there is no possible memory access
bottleneck as in the case where the bit-streams must be
fetched from main memory (on-chip or off-chip). The RT-
ICAP can also support a bit-stream transfer directly from
the processor as a sequence of writes. In this case, the
processor is tasked with the copying of the bit-stream from
an off-chip memory directly to the ICAP interface, and the
controller only manages the transfer protocol of the ICAP
interface. In this work, we use the controller only with the
bit-stream placed into the local SPM.

The size of the SPM is a limiting factor since it constrains
the number of bit-streams that can be locally stored and,
therefore, loaded at the maximum speed of the ICAP in-
terface. To overcome this limitation, our controller uses
lossless run-length encoding (RLE) compression techniques
to decrease the size of the partial bit-streams. The bit-
streams are compressed by the software tool associated
with the RT-ICAP (presented in the following subsection)
and it is decompressed in hardware by the controller. We
opted to use a simple RLE compression instead of more
advanced techniques (such as Huffman, Arithmetic, Lempel-
Ziv, etc. [27, 28, 29]), due to its simplicity, which results in
a small hardware implementation for decompression and
easy timing analysis. The main idea used in the RLE
compression technique is to store sequences of repeated
characters (called ‘data run’) as a single character and a
character occurrence count. Therefore, in the compressed
bit-streams, a data run appears as an escape value to signal
the beginning of a compressed sequence, followed by the
count and the data itself. Our RLE technique is used in ad-
dition to the frame-based compression offered by the Xilinx
tools. A frame is the configuration memory segment corre-
spondent to the smaller allowed reconfigurable region, and
its size is in the order of KB. Since the two techniques work
at different levels of data granularity, our RLE compression
can further increase the compression ratio obtained using
the Xilinx native compression [25].

4.2. Tool Support and Timing Analysis

The RT-ICAP controller is supported by a software tool,
named convbitstream. It compresses the bit-streams, con-
verts them to the format required by the RT-ICAP con-
troller and, most importantly, it computes the reconfigura-
tion time the controller takes to perform the reconfiguration
for each compressed bit-streams. The reconfiguration time
is from the moment the processor initiates the reconfigura-
tion and until the partial bit-stream is entirely written into
the FPGA’s configuration memory and the reconfigurable
region is ready to be used. This time interval is needed to

5



perform WCET analysis at application-level when using
the reconfiguration feature.

The reconfiguration time depends on the properties of
the RT-ICAP controller architecture and on the properties
of the compressed bit-streams, it can be computed using
Equation (1). It consists of the clock period Tclk multiplied
by a number of clock cycles as a sum of three contributions:
the cycles needed to initialize and finalize a reconfiguration,
the cycles required to transfer the compressed bit-streams
into the RT-ICAP controller, and the additional cycles
needed to expand compressed data runs and write these
into the configuration memory of the FPGA.

Trec = Tclk{noh + ns +

nr∑
i=1

(Ri len − 1)} (1)

More specifically, noh is the overhead required by the
RT-ICAP controller for starting and finishing a reconfig-
uration. ns is the amount of words in the compressed
bit-streams, which includes the number of simple uncom-
pressed characters, the number of compressed data runs,
and the number of escape sequences. Writing a word into
the ICAP interface takes one clock cycle. The third con-
tribution is due to decompression and it accounts for the
number of additional clock cycles required for writing re-
peating characters into the ICAP interface. Here, Ri len is
the number of times a compressed character repeats in the
i-th data run and nr is the amount of data runs. During
these decompression intervals the interface towards the
SPM stalls.

5. Experimental Setup

This section describes the experimental setup used to
produce the results. More specifically, we describe the
hardware platform and the set of HwAs from the TACLe
benchmark suite that we use [4].

5.1. Hardware Platform

The hardware platform used in our experiments is shown
in Figure 3. The I/O devices are connected to the Patmos
processor using a bus that implements a subset of the
open-core protocol (OCP) [26]. The HwA is connected
to a shared memory (HwA-SPM) for data exchange with
Patmos and to a controller (HwA-ctrl) used to manage
the HwA and provide the current status to the processor.
For communication with the HwA-ctrl, the HwA uses the
ap ctrl hs interface protocol, as defined in [5, p. 89].

The HwA-SPM is divided into a certain number of banks
decided at synthesis time. The HwA-SPM appears as a
single address space to the processor, but the banks can be
accessed in parallel by the HwA to increase the memory
bandwidth towards it. Note that the HwA-SPM is not the
local SPM of Patmos, which is used by the processor to
store easily accessible data and instructions.

Both the HwA and the HwA-SPM reside in the reconfig-
urable region, since the number of memory banks used is
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Figure 3: An overview of the hardware platform used for the experi-
ments. All the I/O devices are connected to the processor using the
OCP bus.

specific for the HwA and, therefore, needs to be reconfig-
ured together with the HwA.

The reconfiguration is managed by the RT-ICAP con-
troller presented in Section 4. The RT-ICAP controller can
modify the content of the FPGA configuration memory
through the ICAP interface. Therefore, by writing a partial
bit-stream (stored in the bit-stream SPM) into this mem-
ory, the content of the reconfigurable region is dynamically
modified. The dashed arrow in the upper right corner of
Figure 3 characterizes this dependency.

Assuming that the bit-streams are available in the bit-
stream SPM, the full operational flow of the system to use
the HwA is as follows:

1. Patmos requests the RT-ICAP controller to reconfigure
the needed HwA;

2. Patmos moves the data to be processed into the HwA
SPM;

3. Patmos activates the HwA by interacting with the
HwA controller;

4. When the HwA has finished, Patmos can read the
processed data from the HwA SPM.

Step 1 can be skipped if the reconfigurable area does not
need to be reconfigured. During step 3 when the HwA is
running, the processor is free to execute other operations.

5.2. Benchmarks and Hardware Accelerators

The HwAs used in this paper are based on code from four
benchmarks from the TACLe suite [4], which is a collection
of open-source C programs, for timing analysis and real-
time related research. For the selected benchmarks, the
computationally intensive part of the program is identified
and moved into hardware. The benchmark is then modified
to interact with the HwA to perform the section of the
program that was moved into hardware. When DPR is
used, the reconfiguration of the dynamic region with the
needed HwA is performed before using the HwA.
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The HwAs used in this paper are generated using Xilinx
Vivado HLS, which is an automated design process able
to transform high-level language code, such as C, into
functionally equivalent synthesizable RTL HDL code [5].
In our case, it is used to transform C code from the TACLe
real-time benchmarks into VHDL.

The benchmarks have been chosen to be representative of
HwAs working on large data sets, small data sets, and data
streams. The data type used in all the benchmarks, where
not differently specified, is single-precision floating-point.
In the following, we list and provide a brief description of
the functionality of each benchmark and the characteristics
of the associated HwA:

• Matrix multiplication: This benchmark executes
the matrix multiplication between two square matri-
ces. For this benchmark, we have generated different
specialized HwAs for matrices of size 4×4, 16×16, and
32×32. Moreover, we have generated a generic HwA
for matrix multiplication which can take any given
matrix size up to 32×32. This is used to analyze
how the specialized HwAs combined with partial re-
configuration perform in comparison with a generic
HwA.

• Matrix inversion: This benchmark computes the
matrix inversion operation on a square matrix. For
this benchmark, we have also generated HwAs for
matrices of size 4×4, 16×16, and 32×32.

• 2D FIR filter: This benchmark performs a bi-
dimensional FIR filtering on a matrix of size M×N
using a 3×3 coefficient mask. This kind of filtering
is commonly used for smoothing or sharpening bi-
dimensional data sets. More specifically, the bench-
mark computes the cross-correlation between a 4×4
area surrounding each value and the coefficient mask.
Zero-padding is performed at the matrix edges to sat-
isfy the filter conditions. For this benchmark, we have
generated a HwA for a matrix of size 3×3, correspond-
ing to the minimum input matrix size.

• Filterbank: This benchmark implements a filter-
bank with FIR filters for multi-rate signal processing.
The input signal is passed into eight different FIR
filters. The filtered signals are then down-sampled and
up-sampled again. The up-sampled signal is passed
through a second set of FIR filters and finally the
outputs are summed together. Typically, some data
processing is performed between the down-sampling
and the up-sampling. In our benchmark, we do not
perform any processing. For this benchmark, we have
generated a HwA where the input data and the two
sets of filter coefficients are passed as arguments.

Table 1: Hardware resources characterization of our RT-ICAP con-
troller compared with other designs presented in related works.

Controller
Target
FPGA

Hardware resources

FF LUT BRAM

RT-ICAP Artix-7 105 289 0
PRC [18] Kintex-7 1 270 1 075 0
ZyCAP [16] Zynq-7000 806 620 0
DPRM [19] Virtex-6 77 109 0
D2PR [20] Virtex-6 112 249 0
XPS HWICAP [15] Virtex-5 745 741 3

6. Results and Discussion

This section presents the experimental evaluation of the
use of DPR in real-time systems. At first, we present
the hardware characterization of our RT-ICAP controller.
This is followed by the results obtained with the use of the
benchmarks in terms of reconfiguration overhead, hardware
utilization, bit-stream size and compression, comparison
with a pure software solution, and trade-offs between spe-
cialized and generic HwAs.

All the results presented in this section are produced
using Xilinx Vivado and HLS (v16.4) and targeting the
Xilinx Artix-7 FPGA (model XC7A100T-1CSG324C). The
size of the reconfigurable region used in all the experiments
is 1500 slices, which contains 6000 look-up tables (LUTs),
12000 flip-flops (FFs), 30 block-RAMs (BRAMs), and
40 digital signal processing (DSP) elements. All the syn-
thesis and implementation properties of the tools were set
to their defaults. For Xilinx HLS, optimization directives
have been used aiming to balance the area vs. performance
trade-off of the generated accelerators. The data size used
for the ICAP interface is 32 bits.

6.1. RT-ICAP Hardware Characterization

Before evaluating the potential benefits deriving from the
use of DPR in real-time systems, we present an evaluation
of our RT-ICAP controller. Table 1 presents the hard-
ware resource utilization for our controller and the other
controllers introduced in the related works, in terms of
FFs, LUTs, and BRAMs. For these controllers, the results
presented in the table are retrieved from the respective
publications. The second column of Table 1 specifies the
target FPGA used to produce the results. As previously
mentioned, for our controller, the results are produced us-
ing the Xilinx Artix-7 FPGA. Even if the results for the
other controllers are produced targeting different FPGAs,
they are quantitatively comparable, since all FPGAs use
6-input LUTs.

From the results, we can observe that our controller is
comparable in size to the controller D2PR [20] (synchronous
version without error check) and relatively bigger than the
controller DPRM [19]. Among the different controllers,
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Table 2: Contributions to the WCET in clock-cycles and the number
of times (N95%) the HwA has to be used to reach a performance
that is 95 % of the one of a system that uses a static HwA.

Benchmark
Software

(Csw)
Hardware

(Chwa)
Reconfig.

(Trec)
N95%

Matrix mult.
- 4×4 3 203 42 133 436 781
- 16×16 30 345 1 107 130 786 79
- 32×32 114 816 8 351 133 823 21

Matrix inv.
- 4×4 2 307 793 130 772 802
- 16×16 21 363 12 168 131 885 75
- 32×32 78 859 55 223 130 071 18

2D FIR filter 3 174 137 132 098 758

Filterbank 46 450 216 264 132 152 10

these two are the most similar ones to our RT-ICAP con-
troller, in terms of the architecture. However, they only
offer simple transfer of bit-streams from a memory to the
ICAP interface. Our controller offers additional function-
alities, such as support of bit-stream decompression, and
a register-based (status/control) interface. With regards
to the other controllers listed in Table 1, our RT-ICAP
is considerably smaller. This is due to the fact that it
does not implement those functionalities that are not time-
predictable or not needed by our reconfiguration approach,
such as bit-stream read-back.

6.2. Reconfiguration Overhead

The first set of results is related to the WCET of the
benchmarks and aims to characterize the overhead of re-
configuration over actual computation time.

Three factors contribute to the WCET of a benchmark:
Csw, Chwa, and Trec. The first contribution Csw is the
WCET of the software section of the benchmark produced
by the platin time-analysis tool. This includes the WCET of
the data transfer to and from the HwA-SPM and the WCET
of the setup of the HwA. The second contribution Chwa is
the time needed by the HwA to perform the computation in
the worst-case. This result is produced by the Vivado HLS
tool. The third contribution Trec is the reconfiguration time
needed to perform the reconfiguration of the reconfiguration
region. This time interval is produced by the convbitstream
tool using Equation 1. All time periods are measured in
clock cycles.

Table 2 presents the values of these three contributions
for all the benchmarks considered in this work. The total
WCET of a benchmark that uses DPR is denoted Ctot dpr

and it can be calculated using equation (2), where N is
the number of computations executed by the HwA after a
reconfiguration.

Ctot dpr = Trec +N (Csw + Chwa) (2)

5 6 7 8 9 10 11 12 13 14 15 16 17 18

10.84 12.73 14.55 16.29 17.96 19.56 21.10 22.59 24.02 25.40 26.73 28.01 29.25 30.45

54.60 59.07 62.73 65.80 68.40 70.63 72.57 74.27 75.77 77.10 78.30 79.37 80.35 81.23

82.15 84.67 86.56 88.04 89.23 90.20 91.01 91.70 92.29 92.80 93.25 93.64 93.99 94.31

10.60 12.45 14.23 15.94 17.58 19.16 20.68 22.15 23.56 24.92 26.23 27.50 28.72 29.91

55.97 60.40 64.03 67.04 69.59 71.77 73.66 75.31 76.77 78.07 79.23 80.27 81.21 82.07

83.75 86.08 87.83 89.19 90.27 91.16 91.90 92.52 93.06 93.52 93.93 94.28 94.60 94.89

11.14 13.07 14.93 16.70 18.41 20.04 21.61 23.12 24.58 25.98 27.32 28.62 29.88 31.09

90.86 92.26 93.30 94.08 94.71 95.21 95.63 95.98 96.27 96.53 96.76 96.95 97.13 97.28
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Figure 4: Plot showing the performance when using DPR relative to
the performance when using static HwAs for values of N ∈ [1, 20].

The reconfiguration time, Trec, represents an overhead, and
the effect of this overhead is reduced with the number of
times the HwA is used. The last column of Table 2 shows
the number of times the HwA has to be used in order to
reach a performance that is 95 % of the performance of
a system that uses a static HwA. To obtain this values,
the same accelerators have been used for both the reconfig-
urable solution and the static one. It is possible to observe
that, for the HwAs that perform computationally intensive
tasks, such as Matrix multiplication and Matrix inversion
for 32×32 matrices and Filterbank, the value of N95% is
very low. Low values of N95% show that the reconfigurable
solution may be particularly beneficial, even if only a small
number of computations are required, since the loss of
performance is compensated for by lower hardware cost as
discussed in the next subsection.

Figure 4 provides additional insight into the relation
between reconfiguration overhead and the number of times,
N , that the HwA is used. The figure shows the performance
when using DPR relative to the performance when using
static HwAs for values of N ∈ [1, 20]. In the figure, it is
possible to observe how results for similar benchmarks tend
to cluster together. In the top of the plot, we can find the
curves related to Filterbank and the benchmarks operating
on 32×32 matrices. Right below, in the second group, we
can find the curves related to the benchmarks operating
on 16×16 matrices. For these two groups, the solution
using DPR becomes comparable to the static approach, in
terms of computational performance, for low values of N .
Finally, the curves related to the 2D FIR filter and to the
benchmarks operating on 4×4 matrices are located in the
lower part of the plot, showing that it is unlikely that a
real application can benefit from using DPR.

6.3. Hardware Utilization

One of the advantages of using DPR is the possibility of
reducing the hardware utilization in the case when some of
the hardware resources implemented in a system are only
utilized for a limited amount of time, since the HwAs can
be loaded in the reconfigurable regions when needed.

Table 3 shows the hardware utilization results for the
main components of the hardware platform (shown in Fig-
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Table 3: Hardware utilization results for the hardware platform
and for all the HwAs used in the experiments.

Entity LUT FF BRAM DSP

Patmos 4 931 3 602 8.5 4
HwA controller 7 4 0 0
ICAP controller 289 105 0 0

Matrix mult.
- 4×4 1 270 1 138 0 20
- 16×16 1 979 2 523 0 20
- 32×32 2 763 4 048 0 20

Matrix inv.
- 4×4 2 051 2 017 0.5 5
- 16×16 3 425 3 725 0.5 20
- 32×32 4 080 4 636 0.5 20

2D FIR filter 1 816 1 987 0 10

Filterbank 5 126 7 411 3 10

Generic matrix mult. 2 912 4 037 0 5

ure 3) and for all the HwAs used in the experiments, in
LUTs, FFs, BRAMs, and DSP elements.

Considering a hypothetical application that includes all
the functionality of the benchmarks used in this work, it
is possible to observe that the minimum size of the recon-
figurable region should be enough to contain the largest
hardware requirements across all the HwAs. In our case,
this corresponds to 5 126 LUTS, 7 411 FFs and 3 BRAMs
to fit the Filterbank HwA, and 20 DSP elements to fit the
Matrix multiplication and Matrix inversion HwAs require-
ments. In a static solution, where all the HwAs need to
be implemented, the total hardware cost would be roughly
equal to the sum of the hardware resources of each HwA.
This leads to a relevant saving in the hardware cost since
the required minimum size of the reconfigurable region is
the 23 % of LUTs and the 27 % of FFs of the estimated
hardware cost of a static solution.

Taking the hardware resource utilization results and the
performance results presented in the previous subsection
into account, we can observe that, for a value of N suffi-
ciently high, DPR leads to a more efficient use of FPGA
resources, while maintaining comparable computational
performance.

6.4. Bit-Stream Size and Compression Ratio

As previously mentioned, the size of the bit-stream SPM
limits the number of bit-streams that can be locally stored.
The convbitstream controller performs an RLE compression
on the raw bit-stream to maximize this number. Table 4
reports the size, the reconfigurable region utilization, and
the compression ratio of the partial bit-streams for all the
benchmarks. The bit-stream size shown in the table refers
to the bit-stream compressed with both the Xilinx native
compression and our RLE compression. The utilization

Table 4: Size, reconfigurable region utilization, and compression ratio
of the bit-streams for all the benchmark. The compression ratio ac-
counts only for the RLE compression performed by the convbitstream
tool.

Benchmark
Bit-stream
size (KB)

Rec. region
utilization

Compression
ratio

Matrix mult.
- 4×4 209.3 35 % 2.3
- 16×16 274.3 62 % 1.7
- 32×32 328.1 83 % 1.5

Matrix inv.
- 4×4 217.9 49 % 2.2
- 16×16 336.1 86 % 1.4
- 32×32 354.5 94 % 1.3

2D FIR filter 233.8 49 % 2.1

Filterbank 369.8 100 % 1.3

is defined as the percentage of the reconfigurable region,
in term of slices, used by the hardware accelerator imple-
mented in it. The compression ratio is defined as the size
of the uncompressed bit-stream divided the by the size
of the compressed one, and it only accounts for our RLE
compression performed on bit-stream already compressed
with Xilinx native compression.

From the results, we can observe that the RLE compres-
sion produces bit-streams ranging from 1.3 to 2.3 times
smaller than the original size, with an average compression
ratio of 1.7. This leads to a memory saving of 1.5 MB over
a total size of 3.7 MB needed for storing all uncompressed
bit-streams. As expected, the compression delivers a higher
ratio for those accelerators that have lower utilization of the
reconfigurable region, since these bit-streams contains long
runs of zeros for the unused logic. Moreover, it is very inter-
esting to observe that bit-streams already compressed with
the Xilinx native compression can be further compressed
using RLE, due to the fact that the two compression tech-
niques work at different levels of data granularity. Xilinx
compression works at a level of frames, while the RLE
compression operates at a level of 32-bit words.

6.5. Comparison with Software

In this set of experiments, we evaluate the speed-up in
terms of WCET between the solution that uses hardware
accelerators in combination with DPR and a pure software
solution. As previously explained, using a reconfigurable
solution instead of a static one introduces an overhead that
decreases with the number of computations N executed
by the hardware accelerator after a reconfiguration. For
this set of experiment, we evaluate the speed-up assuming
N = N95% (reported in the last column of Table 2). Table 5
presents the WCET and the speed-up results for all the
benchmarks considered in this work. All WCET listed
in the table are normalized with respect to N in order
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to show the WCET time of a single execution. However,
the speed-ups are calculated as ratios between the total
WCETs for N = N95%.

The Patmos processor is not equipped with a floating-
point unit. Therefore, to execute floating-point operations,
it utilizes equivalent software functions from the LLVM
project [30]. Comparing a solution that uses floating-
point accelerators (matrix multiplier, matrix inverter, etc.)
against software running on a processor that is not equipped
with a floating-point unit can produce biased results, since
the speed-up does not characterize the ability of the hard-
ware accelerator to exploit parallelism, but mainly the
speed-up related to faster floating-point operations. To
have a fairer comparison, in addition to the results where
the floating-point operations are executed in software, we
also present results for the software benchmark that uses
32-bit integer data instead of single-precision floating-point,
since these operations are supported in hardware by the
processor. For the pure software solution, the data to be
processed is placed in the local SPM as it is done in the
accelerator-based solution. This avoids data cache misses
to be accounted into the WCET.

The first column of the table reports the WCET of the
reconfigurable solution Ctot dpr computed using the values
presented in Table 2. The second and third columns present
the WCET of the pure software solution obtained with the
WCET analysis tool platin for floating-point Csw fp and
integer data types Csw int, respectively. Finally, the last
two columns show the speed-up calculated as the ratio
between the WCET of the solution that uses hardware
accelerators in combination with DPR and a pure software
solution

From the results, we can observe that the speed-up re-
sults for the software using floating-point data type are very
high. As previously mentioned, this can be explained by
the fact that Patmos is not equipped with a floating-point
unit. The speed-up results for the software using integer
data type are more realistic and give a concrete grasp of
the value that can be obtained by using reconfigurable
accelerators, showing speed-ups for the WCET from 1.2
to 4.1. In one case, for the 4×4 matrix multiplication, the
speed-up is less than 1. This means that the reconfigurable
accelerator solution performs worse than the software one.
This can be explained by the fact that the execution time
of the benchmark is dominated by data transfer and the
acceleration provided by using hardware is not enough to
compensate for the reconfiguration overhead. In contrast,
the execution time of the Filterbank benchmark is domi-
nated by computation with little data transfer, leading to
a speed-up of one order of magnitude higher than the other
benchmarks.

It should be noted that the results presented in Table 2
are obtained using a soft-processor implemented on an
FPGA. This is the Patmos processor used in the scope of
this work. In general, if a hard-processor is used, we can
expect a reduction of the speed-up results presented above.

6.6. Specialized vs. Generic Accelerator

The goal of this experiment is to determine what benefits
a very specific HwA combined with DPR may bring com-
pared to a generic one, since the reconfiguration feature
can be used just to change the type of specialized HwA
based on current requirements.

As previously mentioned, for Matrix multiplication we
have generated specialized HwAs for matrix sizes of 4×4,
16×16, 32×32, and a generic HwA which can take in input
matrices of any size up to 32×32, which includes additional
logic and requires additional computation time for man-
aging and setting-up the computation for different matrix
sizes. The idea is to investigate the trade-offs between
using DPR to switch between multiple specialized HwAs
and using a more general HwA, in terms of WCET and
hardware utilization.

Table 6 shows the WCETs for both the specialized HwAs
and the generic one in clock cycles for the Matrix multi-
plication benchmark for the three different matrix sizes.
Table 6 also shows the reconfiguration time for the special-
ized HwA.

Contrarily to the experiment presented in Subsection 6.2,
where the solution using reconfiguration is always slower
than the static one, in this experiment the solution using
reconfiguration can be faster than a static solution since
the specialized HwAs are faster than the generic ones.

Therefore, after a certain amount of computation, the
overhead introduced by the reconfiguration time will be
compensated for by the difference in speed between the
specialized and the general HwA. The value N100%, shown
in the last row of Table 6, is the threshold value of N
(number of times the HwA is used) in which the general
and the specialized HwAs, including reconfiguration, are
equivalent in performance. For values of N > N100%, the
use of the specialized HwA combined with reconfiguration
outperform the general HwA.

In terms of hardware, it is possible to observe from Ta-
ble 3 that the minimum size of the reconfigurable region
should be enough to contain the specialized Matrix multi-
plication HwA for size 32×32, which is smaller than the
hardware resources needed to implement the generic HwA
(last row of Table 3).

7. Conclusion

In this paper, we have experimentally evaluated the
potential advantages from utilizing hardware accelerators
in combination with the DPR feature of FPGAs, using
four representative test cases derived from the real-time
TACLe benchmark suite. We have also presented our hard-
ware/software infrastructure supporting time-predictable
reconfiguration, consisting of the RT-ICAP controller and
the associated software tools convbitstream.

The experiments have shown that in the case where an
application performs a sequence of tasks in a way that
allows different HwAs to be loaded into the reconfigurable
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Table 5: WCET and relative speed-up for the solution that uses hardware accelerators in combination with DPR and pure
software solutions using floating-point and integer data types.

Benchmark
HwA + DPR

(Ctot dpr)
Software (float.)

(Csw fp)
Software (int.)

(Csw int)
Speed-up
(float.)

Speed-up
(int.)

Matrix mult.
- 4×4 3 416 208 451 1 725 61.0 0.5
- 16×16 33 108 13 072 787 71 493 394.9 2.2
- 32×32 129 540 104 301 204 530 534 805.2 4.1

Matrix inv.
- 4×4 3 263 280 084 48 894 85.8 15.0
- 16×16 35 289 14 607 172 497 190 413.9 15.1
- 32×32 141 308 113 617 924 2 169 670 804.0 15.4

2D FIR filter 3 485 471 460 4 155 135.3 1.2

Filterbank 275 929 864 106 383 15 279 271 3 131.6 55.4

Table 6: WCET results for general and specialized HwAs, reconfigu-
ration time for the specialized HwAs, and the minimum number of
operations N100% for which it is convenient to use DPR.

4×4 16×16 32×32

General HwA 8 028 49 438 152 933
Specialized HwA 3 245 31 452 123 167
Reconfig. time 133 436 130 786 133 823

N100% 28 8 5

region when needed, the use of DPR can lead to a signif-
icant reduction in the hardware cost if the tasks moved
into hardware are sufficiently computationally intensive.
In our benchmarks, this was observed for computation-
ally intensive tasks, such as the Filterbank and the bench-
marks operating on 32×32 matrices. In comparison with
a pure software solution, the reconfigurable solution de-
livers speed-ups, in term of WCET, ranging from 1.2 to
4.1. The experiments performed to analyze the trade-offs
between specialized and general HwAs suggested that, for
computationally intensive tasks, the use of the specialized
HwAs combined with reconfiguration is advantageous with
respect to the general HwA, both in terms of performance
and hardware utilization.

Finally, we have also shown by our RT-ICAP controller
is comparable or smaller in size than others controller de-
veloped in academia or industry and the supported RLE
compression can substantially reduce the bit-streams mem-
ory footprint, producing bit-streams from 1.3 to 2.3 times
smaller than the original size.

Source Access

The source code used for synthesis is available
at https://github.com/A-T-Kristensen/patmos_HLS/
tree/master/hls and the code required to run on the
T-CREST platform is available at https://github.com/

A-T-Kristensen/patmos/tree/patmos_hls. The RT-
ICAP controller and the convbitstream tool is available
at https://github.com/t-crest/reconfig. The full
T-CREST platform is available at https://github.com/
t-crest/. The entire work is open-source under the terms
of the simplified BSD license.
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