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Abstract—Chip multiprocessing design is an emerging trend
for embedded systems. In this paper, we introduce a Java
multiprocessor system-on-chip called JopCMP. It is a symmetric
shared-memory multiprocessor and consists of up to 8 Java
Optimized Processor (JOP) cores, an arbitration control device,
and a global shared memory. All components are interconnected
with a system-on-chip bus.

This paper focuses on the performance evaluation of different
hardware configurations of the multicore system. Therefore, we
vary the instruction cache sizes, the number of processors and
the memory bandwidth. Within our experiments, we measure the
performance by running three benchmarks on real hardware:
an embedded application from industry, a computationally in-
tensive matrix multiplication and a synthetic benchmark that
continuously accesses a shared data structure. Two different
field-programmable gate arrays are used for the presented
experiments.

Our results illustrate the promises and limits of the proposed
multiprocessor architecture concerning synchronization, memory
bandwidth and caching. Furthermore, we compare the perfor-
mance and size of JopCMP with a complex Java processor.

I. INTRODUCTION

It is expected that chip-level multiprocessing (CMP) will
be the future path of performance enhancements [1]. CMP
technology integrates two or more processing units and a
sophisticated communication network into a single integrated
circuit (IC). In actual desktop and server architectures, two
trends can be seen: (1) integration of two to four out-of-order
super-scalar CPUs (Intel/AMD) on a single die or (2) integra-
tion of 8 very simple in-order RISC pipelines (Sun’s Niagara
[2] and IBM’s CELL [3]). According to [4], multiprocessing
is also common in embedded systems as it combines the goals
of increasing performance, lower power consumption and cost
effectiveness.

In this paper, we propose a CMP architecture composed
of multiple Java Optimized Processor (JOP) cores and a
shared memory. The shared memory is uniformly accessi-
ble by the homogeneous processing cores. A system-on-chip
(SoC) bus connects the devices of the system. A fairness-
based arbitration unit takes care of memory contention due to
parallel memory requests; it employs a fair scheduling strategy,
which divides the memory access bandwidth into equal shares.
In contrast to existent memory arbiters of SoC buses (e.g.
AMBA [5] or Avalon [6]), the proposed arbitration process

is performed in the same cycle as the request happens. This
feature increases the memory bandwidth.

JopCMP synchronizes the access of multiple CPUs to
shared data structures by a global lock. Due to the im-
plementation of JopCMP in field-programmable gate array
(FPGA) technology, we are able to modify the number of
processing cores easily. Additionally, the size of the instruction
cache of each processor can be configured. Hence, we are
able to analyze the behavior of JopCMP in detail. We use
three benchmarks with different workload characteristics. A
real-world application from industry – a lift controller in an
automation factory – represents a medium computationally
intensive, fully parallelized application without any accesses
to shared data structures. A matrix multiplication benchmark
represents a computationally intensive algorithm. This bench-
mark offers good potential for parallelism with low synchro-
nization overheads. The third benchmark, parallel access to
a hash table, represents a workload with a high conflict on
a shared data structure. It will stress our current solution
for the multiprocessor synchronization. The results of the
experimental measurements illustrate the promises and limits
of the proposed multiprocessor solution.

The rest of the paper is structured as follows. Section 2
presents related work and delivers an insight into JOP. In
Section 3, we describe the proposed CMP architecture and the
interconnection network. Furthermore, the memory controller
and the synchronization unit of JopCMP are summarized con-
cisely. Section 4 presents the evaluation method (benchmarks
and hardware platforms) and the benchmark results. Finally,
Section 5 concludes the paper and provides guidelines for
future work.

II. RELATED WORK

The embedded system domain distinguishes between two
multiprocessor architectures: heterogeneous multiprocessors
and homogeneous multiprocessors. Heterogeneous multipro-
cessors are often tailored to specific features of the application.
The architecture of the system usually combines a core CPU
for controlling and communicating tasks and additional pro-
cessing devices for specific functions, i.e. digital signal pro-
cessing elements, interface processors or mobile multimedia
processing units.



This paper concentrates on homogenous multiprocessors.
These systems combine a number of identical CPU cores.
In the following sections, we describe three embedded multi-
processor solutions and their interconnection systems that are
available in FPGA technology. We also provide an overview
of JOP, the processor used in our multiprocessor solution.

A. LEON

Gaisler Research AB designed and implemented a homo-
geneous multiprocessor system called LEON3-FT-MP [7]. It
consists of a centralized shared memory and four LEON3-FT
processor cores that are based on the SPARC V8 instruction
set architecture [8]. Each CPU consists of a 7-stage pipeline
with separate 16 KB data and instruction caches, a memory
management unit, a floating-point unit and hardware support
for multiplication and division. All the CPUs, additional I/O
controllers and the memory controllers are connected using
two advanced high-performance buses (AHB) of the AMBA
specification [9]. One AHB runs at the CPUs’ frequency of 266
MHz and connects the processors with the memory controller
of the shared memory. Additionally the high-speed AHB
communicates with the low-speed AHB (running at 133 MHz)
using an AHB/AHB bridge. The low-speed AHB connects all
other peripheral devices with lower speed requirements to the
system. The bus frequencies reported in [7] are estimations of
a 0.13µ ASIC implementation. A prototype in a Xilinx Virtex-
4 can run at 40 MHz.

According to the AMBA specification, a CPU defines the
role of a master because it initiates the transactions with other
components (slaves). The pipelined AHB bus can integrate
up to 16 masters into an SoC. An arbiter controls the shared
system bus. AHB specifies all interface signals between the
masters and the arbiter and the arbiter and the slaves. Even
though the specification of the arbitration protocol of the
AHB is well defined, no priority strategies or arbitration
algorithms are specified. The Leon implementation of the AHB
arbiter uses fixed priorities. Our proposed JopCMP system
includes several different arbiters. For this evaluation, we use
a fair arbitration algorithm. Without a fairness-based arbiter,
a system consisting of more than 4 CPUs will not exploit
its performance. The Leon multicore system supports two
operating systems: eCos and RTEMS. Software is developed
in C/C++.

B. MicroBlaze

MicroBlaze [10] based CMPs can be designed with the
Xilinx Embedded Development Kit (EDK). MicroBlaze is a
32-bit reduced instruction set computer (RISC) optimized for
FPGA implementation. The pipeline length of the CPU can be
configured to either 3 or 5 stages. It implements the Harvard
architecture with separate instruction and data buses. The
CPU can be tailored to the application needs (i.e. peripheral
controllers or cache sizes).

Memory and peripheral devices are connected via the on-
chip peripheral bus (OPB) [11]. OPB is part of the bus
hierarchy called CoreConnect [12], an open standard for SoC

communication proposed by IBM. Xilinx provides an OPB
bus arbiter [13], [14] that can integrate up to 16 masters into
the system. The available arbitration algorithms include fixed
priority (FP) or least recently used (LRU). A full-featured
GNU tool chain is available for software development in
C/C++.

C. NIOS II

Altera’s Nios II [15] and the System-on-a-Programmable
Chip (SOPC) Builder [16] support the design and implemen-
tation of CMPs in Altera’s FPGA technology. The Nios RISC
architecture implements a 32-bit instruction set similar to the
MIPS instruction set architecture. The sizes of its instruction
and data caches are configurable. Nios II can be customized to
meet the application requirements: three different models from
non-pipelined up to a 6-stage pipeline. Examples of customiz-
able features are a floating-point unit, memory controllers and
different communication controllers. Avalon [17] is the SoC
bus used by the SOPC Builder. It connects the master and slave
components to the System Interconnect Fabric. This System
Interconnect Fabric encapsulates all connection details from
the user. While the Avalon specification can be used freely,
the System Interconnect Fabric is Altera’s property.

For multiprocessor systems, the System Interconnect Fabric
integrates an arbitration module [18]. In contrast to traditional
shared bus architectures, the interconnection allows multiple
masters to access different slaves simultaneously. This elim-
inates the bottleneck of one shared bus if one master may
access a slave and another master wants to access a different
slave in parallel. For a multiprocessor system where two or
more masters frequently access one slave (the shared memory),
the System Interconnect Fabric provides no advantage. If
several masters request data from the same slave, an arbiter
will determine which master will gain access. All other masters
are forced to wait. The arbitration logic can be configured in
the SOPC Builder. The arbitration schemes include fairness-
based shares, round-robin scheduling, burst transfers, and
minimum share value. The Nios II system supports the uClinux
operating system and the C/C++ GNU tool chain is available.

D. Java Optimized Processor (JOP)

The Java optimized processor (JOP) [19]–[21] is an imple-
mentation of the Java Virtual Machine (JVM) in hardware.
JOP translates the Java intermediate bytecodes to its own
instruction set called microcode. These microcode instructions,
implemented in hardware, are executed by the stack architec-
ture. The CPU has a 4-stage pipeline.

Each thread has a local stack area. This thread private data
is accessed very often. Therefore, JOP caches this data in a
so-called stack cache [22]. Additionally, a kind of instruction
cache (called method cache [23]) limits the memory access
frequency and increases the processing power. Complete meth-
ods, shared among all the threads, are cached there. According
to the JVM specification [24], the heap stores the shared data
of the VM. All objects that are created by a Java application
are stored on the heap. Caching of these objects is not



implemented. A typical JOP configuration contains the CPU
core, the method and stack cache, a memory interface and
several I/O controllers.

JOP is designed for embedded real-time systems where
the analysis of the worst-case execution time (WCET) of all
threads is possible. Hence, a couple of typical architectural
advancements, used to increase the average processing power,
have been omitted. Examples include branch prediction or
out-of-order execution. Nevertheless, JOP shows good av-
erage performance and lower logic resources consumption
in comparison to other Java processors. Therefore, our Java
multiprocessor system is based on JOP.

E. Discussion

According to [25], the inter-core communication in CMPs
offers more bandwidth than traditional backplane buses used
for building traditional SMPs. Additionally, the latency of
a transfer is much lower on an SoC bus. The described
multiprocessors are still using backplane style buses that are
not appropriate for a SoC interconnection. Furthermore, there
is no use for a complex bus hierarchy in our design. Our
system consists of a couple of CPUs connected to a single
shared memory. Therefore, our choice of the interconnection
network is the simple SoC bus called SimpCon [26], which
is further described in Section III-B. Moreover, we use a
fairness-based arbitration algorithm. To our knowledge, Leon’s
IP library does not include a fair arbiter. A disadvantage
of Nios II based multiprocessor systems is that data cache
coherency is not supported. The data caches are disabled for
a multiprocessor system. In our proposed solution, we limit
data caching to the thread private JVM stack.

JOP is open source and freely available for academic
research. Every single part of the processor core can be
customized and configured. JOP is technology independent
(like LEON) and has been ported to FPGAs from Altera,
Xilinx, and Actel. This property avoids a lock-in to a single
FPGA vendor, as it is the case for MicroBlaze and Nios.

III. OVERVIEW OF JOPCMP

According to [4], a multiprocessor system consists of 3 ma-
jor subsystems: processing elements, memory and an intercon-
nection network. JopCMP implements the symmetric (shared-
memory) multiprocessor (SMP) model [1]. JOPs provide the
basis of the homogeneous CMP as depicted in Figure 1.
These processing elements perform computations in parallel.
Instructions and data are stored in a single shared memory.
The interconnection network is responsible to connect multiple
processors with the memory. An arbiter is part of this network
and controls the memory access to the shared memory. An
SoC bus is used to connect the processing cores to the arbiter,
and the arbiter to the shared memory. The arbiter acts as slave
for each JOP and as master for the memory controller. We
are convinced that synchronization of shared data is a further
major subsystem of an SMP. It is responsible to coordinate
access to shared objects. Following sections describe the
elements in more detail.

Fig. 1. Overview of JopCMP.

A. Memory Hierarchy

JOP’s memory hierarchy with its caches (see Section II-D)
and the shared memory architecture fit very well to each other.
JOP does not support caching of Java objects. Hence, cache
coherency and consistency issues cannot arise. The instruction
cache is read-only and therefore not an issue. The stack
cache contains only thread local data and no cache coherency
protocol (e.g. snooping) is needed. Avoiding such a protocol in
an FPGA saves resources and does not impair the maximum
clock frequency of the CMP. Our multicore solution avoids
cache coherency conflicts by design.

B. Interconnection Network

The selection of the interconnection network topology is a
major design decision of a multiprocessor architecture. We use
a SoC bus with a central arbitration unit.

Traditionally, a bus is a set of wires that connects multiple
masters and multiple slaves of a system on a printed circuit
board. A master initiates each communication. All commu-
nication channels between the interfaces of the exchanging
devices represent the so-called backplane bus. The bus arbiter
implements a certain priority algorithm that controls this
shared bus. If multiple masters request access to the bus, the
arbiter will allocate the shared bus resource to one master.
All other masters are forced to wait. Consequently, multiple
masters cannot concurrently drive the bus.

The simple SoC interconnect (SimpCon) [26] is used to
connect SoC components on a single IC. This synchronous on-
chip interconnection is intended for read and write transfers
via point-to-point connections. Only a master can initiate a
transaction via a write or a read request. In comparison to other
commonly used SoC buses like Avalon [18], this specification



does not work like a backplane bus. The master’s driven
control, address, and data lines are only valid for a single clock
cycle. A slave has to register any signals (e.g., the address) that
are needed for several clock cycles. Consequently, the master
can continue to execute its task until the data of an access
is needed. Furthermore, the slave can early inform the master
(up to two cycles ahead) when a bus transaction will finish.
Therefore, pipelined memory accesses and consequently fast
data transfers are possible.

C. Fairness-based Arbiter

SimpCon is well suited for on-chip point-to-point con-
nections. We introduce a central arbiter to connect multiple
masters (JOPs) to one slave (memory controller). This arbi-
tration device controls the memory access of multiple CPUs
to the shared memory. An adequate priority policy has to be
implemented to resolve competing memory requests of the
CPU cores. If memory request contention happens, only one
master is granted access and all others are forced to wait.

Usually, the arbitration policy of the arbiter depends on
the application needs. An example of a dynamic arbitration
scheme depending on the CPU priorities is described in [27].
Each CPU of the system is assigned a unique priority. If
memory access contention occurs, the CPU with the highest
priority will be granted access. This arbitration policy can
be used for real-time systems where one CPU executes hard
real-time1 tasks and the other ones execute tasks with minor
requirements regarding deadlines. Consequently, the hard real-
time CPU gets the highest priority of the system.

In this paper, we analyze the performance of a balanced
CMP. Therefore, an arbitration policy is implemented that
guarantees fairness among the CPUs accessing the shared
memory. Furthermore, starvation of any CPUs is prohibited.
Each CPU in the system is assigned a unique CPU identity
(CPUID), starting from 0 up to the number of CPUs-1. Our
fair arbitration policy uses a wrapping counter. It changes the
permission, which CPU is allowed to access the memory.
The value of the counter has the same range as the CPU
identities. At the time of completion of the prior memory
access, the counter is advanced. If the new counter value
equals a requesting CPUID and the memory is ready to execute
a memory access, the memory access will be processed and
the current value of the counter will be halted until completion
of the data transmission. In the case that the CPU with CPUID
that equals the value of the counter does not want to access
the memory, the counter is immediately advanced.

Figure 2 shows an arbitration scenario of a 2-way CMP
system with 2 cycles memory access time. The signals clk and
counter are internal signals of the arbiter. All other signals are
either input or output signals of the arbiter illustrated by the
signal’s name. Furthermore, the subscripts indicate whether
the signals belong to a specific CPU (denoted by the CPUID)
or to the memory controller. Some SimpCon signals, i.e. the
signals for write access, are disregarded in Figure 2.

1A hard real-time task has to deliver its results on time. A single miss of
a deadline may result in a disastrous accident.
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Fig. 2. Memory access arbitration of the fairness-based arbiter.

At the first clock cycle, both CPU0 and CPU1 want to
perform a read access to the shared memory simultaneously.
CPU0 is immediately allowed to perform the read access
because the counter’s value equals to 0 and the memory is
idle (rdy cnt inM equals to 0). Consequently, the read enable
signal of the memory (rd outM) is driven high and the memory
address (addr outM) is asserted. The read request of CPU1 is
registered in the arbiter. It has to wait until completion of
the memory access of CPU0, indicated by the value 0 of
signal rdy cnt inM and by the received data on data inM
and data out0 accordingly. At completion of the memory
access, the counter is already incremented by one and the
registered memory access of CPU1 is processed. When the data
is available, the counter already equals to 0. Other than CPU1,
CPU0 does not request a memory access and the counter is
advanced in the following cycle. CPU1’s access is not granted
because the counter value equals to 0 in the current clock
cycle. In the next cycle, the registered memory access of CPU1
is processed.

This arbitration algorithm implements a fair partitioning
of the memory bandwidth. The more CPUs are part of the
system the higher is the probability that the counter matches
the CPUID with a pending memory request after a successful
access. Therefore, a high workload will result in a saturation
of the memory bandwidth. In case of low contention between
several CPUs, this scheme wastes memory bandwidth (and
performance) because delays of memory access grants are



introduced.
The arbiter performs the arbitration decision in the same

cycle as the request arrives. Therefore, we have a zero-cycle
arbitration protocol. No additional cycle is lost for arbitration
and the memory access latency is not affected. Zero-cycle
arbitration latency is an advantage in comparison to existing
arbiters like AMBA [9] and Avalon [18], which always use an
extra cycle for a so-called bus request phase. Consequently,
each access takes more time. This fairness-based arbiter is
implemented at Register Transfer Level (RTL) in VHDL. The
arbitration process is primarily implemented in combinational
logic without considerably decreasing the clock frequency of
the whole system.

The arbiter is fully scalable with respect to the number of
connected masters. Compared to existing arbiters like AMBA
[9] or CoreConnect [13] the maximum number of connected
masters is not limited to 16. Hence, the application determines
the quantity of connected masters.

D. Memory Controller

The memory controller is the interconnection between the
arbiter and the shared memory. Controllers for different types
of memory are available for the SimpCon bus. The controller
supports pipelined read and write commands. Pipelining of
SimpCon, the arbiter, and the memory controller allows back-
to-back reads from the memory. Furthermore, due to the
definition of the SimpCon interconnect, it is possible to use the
registers in the IO cells of the FPGA for all latency-sensitive
SRAM signals (address bus, data bus, and control lines).

E. Synchronization

Shared memory SMP systems need a synchronization mech-
anism. The CPUs exchange data by reading and writing shared
data objects. In order to ensure that a CPU has exclusive access
to such an object, synchronization is necessary.

Therefore, we introduced a synchronization unit in hardware
that controls one global lock. If one core wants to access a
shared object, it will request the lock using the synchronization
interconnection depicted in Figure 1. JOP will be granted
access if no other processor of the system is holding the lock.
Otherwise, it must wait until the other processor completes
accessing the shared object.

The hardware lock allows fast implementation of the byte-
codes monitorenter and monitorexit that are used by
the JVM for synchronization. For short critical sections, this
feature compensates for the less reactive behavior of a single
global lock. A side effect of a single lock is the avoidance of
deadlock by design. Further information on synchronization
of JopCMP can be found in [27].

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our CMP
architecture. We present and compare the performance of our
multicore depending on the number of processors and the
size of their instruction caches. The benchmarks highlight that

several processors working in parallel outperform a unipro-
cessor that executes the same workload sequentially. Two
different hardware platforms set up the basis of the presented
experiments. Furthermore, we include FPGA synthesis results
and compare performance and size of JopCMP with the
complex Java processor picoJava [28].

A. Benchmarks

Using a multi-core system, application development is more
complex because the application code has to be spread out
among different processors. We evaluate the CMP with three
different benchmarks:

• a real-world embedded application from industry (Lift),
• a matrix multiplication (MMul) and
• an application that is operating on a hash table (HTable).

Our benchmark methodology is as follows: Lift and
HTable are executed several times (16384 and 256 respec-
tively). This workload is distributed evenly on the multi-
processor versions. The benchmark MMul performs automatic
distribution of the workload.

1) Lift Application: Lift is a real-world example with
industrial background. This embedded application is a lift
controller used in an automation factory. Lift is part of the
embedded Java benchmark suite called JavaBenchEmbedded,
as described in [19]. In fact, the benchmark is written to
measure uniprocessor performance. Nevertheless, we use it for
executing several Lift tasks on multiple CPUs concurrently.
Consequently, this benchmark presents a medium computa-
tional, fully parallelized application without any accesses to
shared data structures and synchronization needs.

2) Matrix Multiplication: The benchmark MMul is designed
to give some idea about the performance of a computationally
intensive algorithm with good potential for parallelism. The
benchmark multiplies two matrices of dimension 100x100.
This calculation results in 1 million multiplication operations.
Each row of the resulting matrix is calculated by a single CPU.
A synchronization variable secures that the next idle CPU
takes the next unsolved row until the result is achieved. The
benchmark measures the elapsed time for the calculation. MMul
is classified as a parallel workload – computational intensive
with low synchronization overhead.

3) Hash Table Access: Hash tables are often used data
structures to manage and lookup different data objects. Each
value of a hash table is associated with a key. The key permits
efficient access to the value. HTable presents an interesting
application for the JopCMP; multiple CPUs access the shared
data structure in a tight loop leading to severe synchronization
conflicts. HTable measures the elapsed time until a fixed
number of read, insert and delete operations are performed.

B. Hardware Platforms

We use two different hardware platforms for our evaluation.
They differ in FPGA technology and memory bandwidth.



TABLE I
EXECUTION TIME AND MEMORY BANDWIDTH UTILIZATION OF LIFT,

ALTDE2 @ 90 MHZ

1 KB Cache 2 KB Cache 4 KB Cache

Number of Time Util. Time Util. Time Util.
JOP Cores (ms) (%) (ms) (%) (ms) (%)

1 1255 40 1158 32 1158 32
2 769 66 662 56 662 56
4 613 83 484 77 484 77
8 595 85 459 81 − −

1) Altera DE2 Board: The system has been prototyped
on Altera’s Development and Education Board (DE2 Board)
with a low-cost Cyclone II (EP2C35) FPGA. It has a capacity
of 33,000 logic elements (LEs) and 483,000 bits of on-chip
memory. This FPGA can be populated with up to 8 JOP cores.
The DE2 Board contains 512 KB SRAM connected via a 16-
bit data bus. A single read operation for a 32-bit data item
takes 4 clock cycles. On the DE2 board, we run all systems
with the same clock frequency (90 MHz). This frequency is
the maximum value that all different configurations can run
and that can be configured with the PLL.

2) Cycore Board: The Cycore FPGA board contains the
older Cyclone I FPGA (EP1C12) from Altera. It has a capacity
of 12,000 LEs and 239,000 bits of on-chip memory. A 1 MB,
15 ns SRAM is connected via a 32-bit data bus. With this
SRAM, it is possible to perform a 32-bit memory read in two
cycles for system frequencies up to 100 MHz. Therefore, the
memory bandwidth is two times higher than the bandwidth of
the Altera DE2 board.

C. Measurements

To evaluate JopCMP, we compare the performance of dif-
ferent multicore configurations with the single JOP version
under varying workloads and FPGA platforms.

As it is expected that the memory bandwidth will restrict
the number of useful cores we also measure the consumed
bandwidth. We have integrated a memory access counter into
the memory controller to measure the number of cycles the
memory bus is busy. Equation 1 gives the memory load relative
to the available memory bandwidth. The resulting memory
bandwidth utilization depends on the size of the instruction
cache. It decreases with larger cache sizes because memory
access frequency drops as well.

UtilizationMem.Bandwidth =
MemoryAccessTime

ExecutionTime
(1)

Table I shows the measured execution time and memory
bandwidth utilization of Lift running at a frequency of 90
MHz on the Altera DE2 board. The first column gives the
number of JOP cores of the system. Additionally, the size of
the instruction cache is varied between 1, 2 and 4 KB for
each CPU. The execution time and the memory bandwidth
utilization are measured for each combination of number of

TABLE II
EXECUTION TIME AND MEMORY BANDWIDTH UTILIZATION OF MMUL,

ALTDE2 @ 90 MHZ

1 KB Cache 2 KB Cache 4 KB Cache

Number of Time Util. Time Util. Time Util.
JOP Cores (ms) (%) (ms) (%) (ms) (%)

1 2957 52 2957 52 2957 52
2 1932 79 1932 79 1932 79
4 1773 86 1773 86 1773 86
8 1771 86 1771 86 − −

CPUs and cache size. A 4 KB cache version of 8 cores is
missing, as it does not fit into the available FPGA. One JOP
with an instruction cache of 2 KB executes Lift in 1158 ms
and the measured memory bandwidth utilization is 32%. A
dual-core performs about 1.8 times faster than a single JOP.
Actually, a 4-processor system with 1 KB of cache nearly
doubles the performance of a single-core. The same system
with more cache experiences a speedup of 2.4, no matter if
either a 2 KB or a 4 KB instruction cache is used. Using more
processors does not provide significantly better performance.

Furthermore, Table I gives information on the memory
bandwidth utilization (denoted Util.) of the system. The uti-
lization decreases with larger caches. Nevertheless, no real
difference between 2 KB or 4 KB can be seen. We conclude
from this measurement that the kernel of the Lift benchmark
is small enough to fit into the 2 KB cache. Although the
consumed memory bandwidth does not reach the theoretical
possible 100%, we see only minor performance differences
between a 4-core and 8-core system.

Table II depicts the results of the measurement of MMul on
the DE2 platform. The computationally intensive algorithm
demonstrates its good potential for parallelism. The speedup
of the CMPs consisting of 2 and 4 cores comes up to our
expectations with speedups of 1.5 and 1.7 accordingly. 8 cores
provide no additional significant speedup. We assume that
a combination of high memory conflicts and increased syn-
chronization cost becomes noticeable. The memory bandwidth
utilization remains constant at 86% independent of a 4- or 8-
way CMP. Increasing the cache size does not result in any
performance improvements or any change of the consumed
memory bandwidth.

Table III shows the measurements of HTable running at
a frequency of 90 MHz on the DE2 board. Unlike Lift and
MMul, this benchmark results in a small performance slowdown
comparing a single JOP with a 2-core system with 1 KB
of cache. Only slight speedups with the 2 KB and 4 KB
versions can be seen. This originates from the application’s
characteristics. It combines low computational demands with
high synchronization overhead. Nevertheless, CMPs with more
CPUs cover this overhead by introducing more processing
power. The 8-core JopCMP with 2 KB of cache is about 1.6
times faster than the comparable single-JOP. HTable’s high



TABLE III
EXECUTION TIME AND MEMORY BANDWIDTH UTILIZATION OF HTABLE,

ALTDE2 @ 90 MHZ

1 KB Cache 2 KB Cache 4 KB Cache

Number of Time Util. Time Util. Time Util.
JOP Cores (ms) (%) (ms) (%) (ms) (%)

1 413 27 410 26 410 26
2 423 29 408 26 408 26
4 341 31 346 29 344 29
8 263 32 262 30 − −

Lift MMul HTable
1 1158 2957 410
2 662 1932 4082 662 1932 408
4 484 1773 346
8 459 1771 262
Lift MMul HTable

1 1 1 1
2 1,74924471 1,5305383 1,00490196
4 2,39256198 1,6677947 1,1849711
8 2 52287582 1 66967815 1 56488558 2,52287582 1,66967815 1,5648855
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Fig. 3. Performance comparison of JopCMP, running three different
benchmarks.

synchronization demands are easily noticeable by the figures
of the memory bandwidth utilization. These results show a
very small increase when adding more CPUs to the CMP.

Figure 3 summarizes the measured execution times of the
configurations with 2 KB cache size. The horizontal axis
describes the number of CPUs and the vertical axis illustrates
the relative speed-up. The relative speedup is the relation
between the execution time on a single core and a multi core
version. We can see different saturation points for Lift and
MMul. Interesting is the result of the HTable benchmark: it
only shows a significant speedup with many cores and we do
not see the saturation at 8 cores. For this benchmark, it would
be interesting to run a 16-way multicore version.

TABLE IV
EXECUTION TIME AND MEMORY BANDWIDTH UTILIZATION OF LIFT,

CYCORE @ 60 MHZ

1 KB Cache 2 KB Cache 4 KB Cache

Number of Time Util. Time Util. Time Util.
JOP Cores (ms) (%) (ms) (%) (ms) (%)

1 1506 24 1455 18 1455 18
2 844 45 779 35 779 35
3 661 57 578 48 − −

TABLE V
PERFORMANCE AND SIZE OF JOPCMP RELATIVE TO PICOJAVA IN THE

SAME FPGA BOARD

Number of
JOP Cores Performance Size Memory

1 0.55 0.11 0.12
2 0.95 0.22 0.24
4 1.30 0.43 0.47
8 1.38 0.84 0.94

Table IV shows Lift benchmark results based on the
Cycore FPGA board. Running at a clock frequency of 60
MHz, the 2-way CMP with 2 KB cache is 1.9 times faster
than JOP. The system consisting of three processors is 2.5
times faster. In comparison to the DE2 board, the memory
bandwidth utilization of 48% of the 3-core CMP with 2 KB
cache is lower than every 2-core configuration of the DE2
platform. The measurements confirm that the memory of the
Cycore board is about 2 times faster than the memory on the
DE2 board. Synthesis results show that JopCMP can achieve a
maximal clock frequency of 60 MHz on the Cyclone I FPGA.
This is reasonable because the Cyclone I series is an older
technology compared to Cyclone II. Furthermore, a 3-way
JopCMP with 2 KB cache size is the maximum that can be
integrated into this FPGA.

D. Comparison with a Complex Java Processor

picoJava II [28], Sun’s hardware implementation of the
JVM, consumes more resources than JOP. An interesting
comparison is whether a single, complex processor or a
multiprocessor based on simple processors performs better
for multi-threaded workloads. In the server domain Sun has
chosen to implement 8 simple RISC cores (with a 6-stage in-
order pipeline) in the CMP Niagara [2] while Intel and AMD
still use their complex super-scalar out-of-order architectures.

Puffitsch has implemented the picoJava II in an FPGA [29]
on the same board (DE2) that we use for our evaluation.
picoJava II runs at 40 MHz in the Cyclone II. The resource
consumption is 27,562 LEs and 381 KBit memory when
configured with 16 KB instruction and 16 KB data cache.

Puffitsch could run the Lift and the HTable benchmark
in the picoJava FPGA implementation. Table V shows the
comparison between picoJava and various versions of JopCMP
with 2 KB instruction cache. The performance of the Lift
benchmark and the resource consumption are given relative to
picoJava. picoJava executes the Lift benchmark in 632 ms. A
single JOP needs 1158 ms for the same workload. That means
that picoJava is about two times faster at 40 MHz than a single
JOP version at 90 MHz. Note, that the resource consumption
(LEs and memory for the caches) of picoJava is much higher
than for JOP. The two-processor configuration is 5% slower
than picoJava and consumes 1/5 of the FPGA resources. A 4-
way processor configuration of JOP is about 30% faster than
picoJava, but consumes less than half of the resources.

The benchmark HTable executes in 165 ms on picoJava.



TABLE VI
SYNTHESIS RESULTS ON THE CYCLONE II FPGA (EP2C35)

Number of Resources On-chip Memory Frequency
JOP Cores (LE) (%) (KBit) (%) (MHz)

1 3,033 9 45 10 110
2 6,196 19 90 19 104
4 11,946 36 180 38 101
8 23,252 70 360 76 96

On this synthetic, lock intensive benchmark picoJava is almost
three times faster than JOP. picoJava uses two lock registers to
cache the last two obtained locks. This hardware feature allows
execution of bytecodes monitorenter and monitorexit in 3
and 2 cycles when the lock is found in one of the lock registers.
JOP needs for those operations with the global lock 18 and
20 cycles.

E. Synthesis Results

Table VI shows the utilization of different multicore systems
within the FPGA device EP2C35 on the DE2 board. The size
of the instruction cache of all JOPs is configured to 2 KB.
With such a small cache, the utilization of logic elements and
on-chip memory is balanced. However, 2 KB instruction cache
and 0.5 KB data cache (the stack cache) are very small, even
for embedded processors. For a CMP system based on FPGA
technology, we would prefer devices with a different LE to
on-chip memory ratio.

Surprisingly, the frequency does not change significantly
with the number of JOP cores in the system. The timing
analysis results are obtained with Altera Quartus II. The
maximum frequency varies between 110 MHz (for a single
JOP) and 96 MHz (for an 8-way CMP). Using the phase-
locked loop (PLL) of the FPGA, the clock frequency of all
configurations is configured to 90 MHz.

Our arbiter scales quite well with respect to the maximum
clock frequency. The arbiter performs the arbitration decision
with zero cycle latency without hurting the maximum clock
frequency with more bus masters.

V. CONCLUSION AND FUTURE WORK

We have shown that even in a medium sized low-cost
FPGA it is possible to run 8 cores of a Java processor in
parallel. The performance enhancements of factors 1.7 and
2.5 with 2- and 4-way cores for a real-world application
are promising. We did not expect a linear improvement in
speed. A speedup logarithmic to the number of cores would
satisfy future processing demands as the number of transistors
that can be integrated into a single chip is still increasing
exponentially.

However, 2 out of 3 benchmarks saturated at 4 cores. For
the benchmarks with almost no synchronization like Lift
and MMul, the bottleneck is the memory bandwidth. The
access to the hash table needs a lot of synchronization. For
this benchmark, the memory bandwidth utilization is almost

independent of the numbers of processors or the instruction
cache size.

The bandwidth of the memory is limited on the DE2 board
due to the narrow 16-bit interface to the SRAM. It even limits
the performance of a single processor. A comparison between
the performance of the Cycore board and the DE2 board shows
that the Cycore board running at 2/3 of the clock frequency is
not that much slower. We conclude that the configuration of
the DE2 memory interface limits the usable number of cores
to four.

We estimate that fast memory and caching can increase the
number of useful cores to about 8. However, additional cache
memories are not an option with the logic to memory relation
of current FPGAs. The on-chip memory is the limiting factor
for the configuration with 8 cores. For 8 cores, we had to limit
the instruction cache to 2 KB. Reducing the instruction cache
further to 1 KB does not impair the performance of the small
benchmarks. However, we see a performance reduction in the
application benchmark Lift: a 4-processor version with 2 KB
instruction cache performs better than an 8-processor version
with 1 KB instruction cache. Even the two-processor version
with 2 KB cache is almost as fast as the 8-processor version
with 1 KB cache.

Comparing our JopCMP against a complex Java processor,
such as picoJava II, we conclude that a multiprocessor version
of a simpler and smaller architecture is more efficient (per-
formance/die area) for parallel workloads. With independent
instances of the application benchmark Lift a 4-core version
of JopCMP is 1.3 times faster than picoJava with a die area
of about 45% of picoJava.

We saturate the memory access up to 86%. Theoretically,
100% bandwidth utilization is possible. We have not saturated
the memory bandwidth, as the arbiter does not yet fully
support the pipelining of the SimpCon specification. The
pipeline is flushed on a switch between cores. We assume that
an enhancement of the arbiter will result in 100% utilization
of the memory bandwidth with 8 cores.

For applications with lot of inter-thread communication,
the single global lock is clearly the bottleneck (as seen
by the hash table test). We consider two different paths of
enhancements: (1) adding hardware for several, independent
locks and (2) implement a hardware transactional memory.
Hardware transactional memory is the more complex solution.
However, it results in an automatically finer grained locking
that will improve the performance of the concurrent hash table
access.

In this paper, we have evaluated the Java CMP system with
respect to average case throughput. However, JOP is designed
as a real-time processor to simplify the WCET analysis. The
ultimate goal of our research is a Java multiprocessor archi-
tecture for embedded real-time systems that can be analyzed
with respect to the WCET of individual tasks.
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