
Fault-tolerant Clock Synchronization using Precise
Time Protocol Multi-Domain Aggregation

Eleftherios Kyriakakis∗§, Koen Tange ∗§, Niklas Reusch∗, Eder Ollora Zaballa†,
Xenofon Fafoutis∗, Martin Schoeberl∗, and Nicola Dragoni∗

{elky, kpta, nikre, eoza, xefa, masca, ndra}@dtu.dk
∗DTU Compute, †DTU Fotonik,
Technical University of Denmark

Abstract—Distributed real-time systems often rely on time-
triggered communication and task execution to guarantee end-
to-end latency and time-predictable computation. Such systems
require a reliable synchronized network time to be shared among
end-systems. The IEEE 1588 Precision Time Protocol (PTP)
enables such clock synchronization throughout an Ethernet-based
network. While security was not addressed in previous versions
of the IEEE 1588 standard, in its most recent iteration (IEEE
1588-2019), several security mechanisms and recommendations
were included describing different measures that can be taken to
improve system security and safety. One proposal to improve
security and reliability is to add redundancy to the network
through modifications in the topology. However, this recommen-
dation omits implementation details and leaves the question open
of how it affects synchronization quality.

This work investigates the quality impact and security proper-
ties of redundant PTP deployment and proposes an observation
window-based multi-domain, PTP end-system, design to increase
fault-tolerance and security. We implement the proposed design
inside a discrete-event network simulator and evaluate its clock
synchronization quality using two test-case network topologies
with simulated faults.

Index Terms—time-sensitive networking, precise time protocol,
clock synchronization, fault tolerance, availability, safety

I. INTRODUCTION

Modern Cyber-Physical Systems (CPS) are becoming in-
creasingly connected to the Internet through the advancements
of Fog Computing and Industrial Internet of Things. Thus
nowadays, security becomes an essential factor in the design of
such systems, in addition to the traditional safety and reliability
requirements [1], [2].

Time-triggered communication is often used in distributed
CPS that require strict guarantees on the timing of messages.
Such systems need a high precision global notion of time to be
shared among the nodes in the network to achieve synchronous
scheduled communication and computation [3], [4]. Time-
Sensitive Networking (TSN) [5] is a newly developed standard
that aims to enable deterministic real-time communication for
mixed-criticality traffic while preserving the high-bandwidth
capabilities of Ethernet. It is developed by the TSN Task
Group as an extension to the 802.1 Ethernet standard and
consists of many sub-standards for different components. TSN
uses a profile (802.1 AS-Rev [6]) of the IEEE 1588 Precision
Time Protocol (PTP) standard [7] to enable accurate clock

§These authors contributed equally to this work.

synchronization. Although PTP has been in use for decades,
recent research indicates that this protocol’s security and
safety aspects have been overlooked, leaving it vulnerable
to time synchronization attacks [8]. An attack on an automated
factory’s network time would disrupt the communication
and computation schedule leading to missed deadlines and
messages. This could have catastrophic consequences both
in the production line and operating machinery, as well as
possibly endanger human lives or the environment.

To address some of these issues, the IEEE Precise Networked
Clock Synchronization Working Group has included various
security measures in the updated IEEE 1588-2019 standard [9].
This updated standard proposes several measures involving
redundancy to mitigate security and safety issues due to
unavailable links. To support the proposed redundancy, the
standard recommends using a voting algorithm to derive a
converged clock offset from the multiple domains. However,
no further information is given, leaving the algorithm’s choice
and its implementation to the user.

While distributed consensus and voting algorithms are exten-
sively studied [10], to our knowledge, no such work exists in
the context of highly time-sensitive PTP networks. We explore
the concept of fault-tolerant clock synchronization within
TSN and propose a multi-domain synchronization scheme
that uses redundant paths combined with frame aggregation
and a time-based observation window to achieve secure and
fault-tolerant operation. We evaluate the proposed approach
by simulating three test-case network topologies in a discrete-
event network simulation tool OMNeT++ [11]. The achieved
clock synchronization is compared against standard PTP end-
systems and evaluated regarding two metrics, accuracy as
average mean and jitter as the standard deviation of the clock
offset. The proposed multi-domain design is able to preserve
microsecond precision despite the existence of network failures.
The contributions of this paper are:

• A fault-tolerant PTP end-system design that supports
multiple synchronization domains.

• A timed observation window mechanism that aims to
increase security by filtering received frames.

• A comparative analysis of clock synchronization quality
in different test-case scenarios with faults.

The remainder of this paper is structured in 6 sections:

Section II presents the fundamental concepts of PTP and fault-
tolerant synchronization and introduces the problem statement.
Section III discusses the related work in PTP security and
fault tolerance. Section IV presents the proposed multi-domain
end-system architecture and discusses the required network
topology. Section V evaluates the proposed multi-domain
design and compares its performance against the standard PTP
mechanisms by simulating different test-cases with synthetic
scenarios. Section VI provides a discussion on the safety and
security implications of the proposed multi-domain aggregation
mechanism. Section VII presents the planned future extensions
of this work. Section VIII summarizes the presented work and
concludes the paper.

II. BACKGROUND

A. Fault-Tolerant Clock Synchronization

Precise and fault-tolerant time synchronization is an op-
erational requirement of distributed safety-critical real-time
systems, such as those found in aerospace and automotive
industry. Redundancy is the key to tolerate Byzantine faults
in these systems, as any master clock can exhibit arbitrary
behaviour and provide false readings of its local clock to
connected systems. Consequently, slave clocks can misinterpret
this information either because accurate convergence algorithms
have not been implemented or simply because the in-place
redundancy is not sufficient. It can lead to drift in the relative
clock offset of the network-wide time base.

This effect has been described in research [12], [13], where
the authors have analyzed the need for 3 f +1 nodes available in
a distributed system that can tolerate f faults and have provided
static bounds for different convergence algorithms. The most
predominant algorithm of these is the Fault-Tolerant Average
(FTA), which was first introduced in [14] and is incorporated
in the fault-tolerant clock synchronization of TTEthernet [15]
that is now part of the aerospace standard AS6802 [16]. In
this work, we try to incorporate FTA principles in PTP and
evaluate its performance in TSN networks as a means to provide
fault-tolerant multi-domain clock synchronization.

B. IEEE 1588-2019 Precise Time Protocol

PTP is a hierarchical clock synchronization protocol based
on a periodic exchange of Ethernet frames that estimates the
clock offset between end-system ports configured as slaves
and masters [17]. Typically, a PTP stack is assigned to each
PTP port and is responsible for executing the protocol. A
mechanism, called a clock servo, is responsible for correcting
the device clock using a proportional-integral filter [18]. The
PTP stack on a slave port calculates the time difference from
a master by collecting four timestamps using four respective
frames:

1) SYNC, from master to slave
2) FOLLOW UP, from master to slave
3) DELAY REQ, from slave to master
4) DELAY REPLY, from master to slave

Moreover, precise time-stamping of the received/sent frames
is a crucial part of the protocol, as it directly influences the

precision of the estimated clock offset. Select hardware units
can be used for this purpose [19] . In the rest of this work,
we assume that such time-stamping units are available in all
end-systems.

PTP allows for multiple masters to exist, but only one
master’s synchronization frames are used to calibrate an end
system’s internal clock at each given synchronization cycle.
This selection is made using the best master clock algorithm
(BMCA). The BMCA works by comparing an arbitary value,
which represents the remote clock quality, connected network
end-systems advertised that in dedicated periodic frames called
ANNOUNCE frames. From this information it derives the best
clock and then it compares that to the quality of its local clock
to determine its role as a master or a slave.

The IEEE-1588-2019 standard adds several security features
to PTP [9]. Most notably, it adds support for multiple types
of authenticated encryption, addressing many of the security
concerns that were present in its predecessor, IEEE-1588-
2008 [7]. However, none of the introduced features protects
against delay attacks, nor do they consider faulty master nodes
(e.g., compromised by a malicious party). A malicious master
node might try to influence the system time by announcing
high accuracy during the BMCA, subsequently moving the
time window once it has been elected. Delay attacks assume
that an attacker can control a link, and might delay messages
for an indefinite amount of time. To mitigate the impact of
such attacks, the IEEE-1588-2019 standard only includes two
recommendations: to deploy redundant master clocks; and to
deploy redundant network topologies. The first recommendation
works without any alterations to the protocol. As the PTP
protocol is a distributed algorithm, it will eventually select
one of the redundant master clocks if the primary one fails;
however, this can introduce significant time overhead that leads
to jitter. The second recommendation stands out: a PTP system
distils a logical minimum spanning tree topology with the
elected master clock as a root, and all slaves (i.e., consumers
of the synchronization signal) as leaves. A minimum spanning
tree does not allow multiple paths between any two nodes
to exist by its very definition. The solution to this is to run
multiple PTP domains in parallel, ensuring that they choose
different physical network paths for their tree topology. A PTP
domain is a numerical identifier included in every protocol
message. It allows multiple PTP systems to operate on one
network without interfering with other PTP systems.

A multi-domain setup combines neatly with the first rec-
ommendation of using multiple master clocks. With multiple
parallel domains, every slave system needs to execute a deter-
ministic voting algorithm to arrive at the same approximate time.
However, the IEEE-1588-2019 standard does not recommend
any voting algorithms. Additionally, it is left unclear what
the performance impact and effectiveness of these measures
will be. Therefore, we attempt to fill this knowledge gap by
analyzing two voting algorithms’ performance in a simulated
PTP system. Further, we explore the impact of link failures on
timing accuracy during the execution of a PTP system both
with and without redundancy in place.

III. RELATED WORK

In the broad spectrum of network attacks related to PTP,
disrupting the synchronization is the primary goal. Lack of
message authentication is one of the main attack vectors to
break master-slave synchronization. The authors of [8] analyze
the security risks associated with PTP by building a testbed
that shows synchronization disruption between PTP devices.
The tests conducted include master spoof attacks (spoofing
ANNOUNCE and SYNC packets), ANNOUNCE DoS attacks
(spamming target slave) and master clock takeover attacks.
Similarly, Lisova [20] presents a threat model that shows an
attack classification that lists several PTP clock synchronization
attacks (e.g. replay and delay attacks, flooding/DoS) that target
availability among other factors. Lisova proposes a distributed
monitoring strategy to detect if an attacker is affecting clock
synchronization. While both studies [8] [20] point out existing
threats to availability, the current work provides a fault-tolerant
design to guarantee availability.

To tackle some of the attacks mentioned earlier, IPSec and
MACSec have already been analyzed for time synchronization
[21] to provide authentication, encryption, and confidentiality.
However, neither provide any availability guarantees or fault
tolerance against a compromised endpoint or delay attacks.
We consider IPSec and MACsec complementary to the fault
tolerance algorithms and mechanism discussed in this work.

In 2014, Mizrahi published an informational Request For
Comments (RFC) with the requirements to secure time proto-
cols in packet-switched networks [22]. The document presents
a threat model and threat analysis that lists several attack
types such as packet manipulation, spoofing or replay attacks.
It focuses on listing minimum security requirements such
as authentication, authorization, confidentiality. While these
requirements could create a security basis for next versions
of time synchronization protocols, they do not guarantee
availability. Additionally, the document briefly references a
few mechanisms to protect against delay attacks or attacks
that degrade clock accuracy, such as using of multiple paths
[23]. This RFC also proposes that outliers in received time
values should be considered erroneous and be ignored. The
current study aims to fill the gap of fault tolerance, resilience
and availability that the RFC does not cover. Specifically, it
presents an implementation and evaluates its resilience to faults.

Mizrahi presents the concept of slave diversity [23] to obtain
high clock accuracy and reduce time error using multiple paths.
Similarly, Shipiner et al. present a multi-path approach [24]
that evaluates path diversity. While both studies demonstrate
the applicability of multiple path time synchronization, there
are significant differences with this work. First, Mizrahi [23]
does not tackle the master redundancy and availability features
into fault tolerance and Shipiner et al. [24] do not provide
simulation and performance results. In contrast, this work,
uses different PTP domains with multiple masters to guarantee
availability and evaluates the fault-tolerance in simulation.

...

IF#1 IF#2 ... IF#N

offset[1]

PTP
Stack

Instance
#1

offset[2]

PTP
Stack

Instance
#2

...

offset[N]

PTP
Stack

Instance
#N

time

RTC

align

Clock Servo

Domain
#1

Domain
#2

Domain
#N

Multi-domain PTP End-System

aggregated
offset

Fig. 1: Extended PTP end-system architecture to support multi-
domain aggregation. Each domain uses a separate network
interface and PTP stack. The calculated offsets are fed into an
aggregation function, which corrects the clock.

IV. MULTI-DOMAIN NODE AND ALGORITHM DESIGN

Our proposed approach consists of multiple design elements
and considerations spread over multiple layers. Firstly, we
introduce a redundant variant of a typical PTP node. A node’s
ability to interact with singular (i.e., non-redundant) nodes is
preserved, leaving room for hybrid PTP systems. Secondly, we
discuss network topology requirements that should be taken
into account when designing redundant PTP systems. Finally,
we describe the implemented convergence algorithms.

The design proposed in this section aims to mitigate link
failures and protect against Byzantine actors on the network,
but it does not guarantee the communicated messages’ integrity
or authenticity. It is intended to complement existing resilience
and security features proposed by the IEEE-1588-2019 standard,
which provide these properties.

A. Node Architecture

A redundant PTP node has to support running PTP on n
domains at once. To this end, we design a node architecture that
maintains n parallel PTP stacks and aggregates their computed
offsets. As is usual for Byzantine fault-tolerant systems, to
protect against f faults, n should be picked as n = 3 f + 1.
Figure 1 presents the design of the proposed node. Each PTP
stack is assigned an individual network interface port and
executes isolated from the others. Using only one network
interface is possible, but it would turn this into a bottleneck
and the weakest link for each node. If the node is a slave,
each stack periodically receives PTP messages that have to
be aggregated somehow. Each stack distils an offset from the
incoming messages. The calculated offset is combined with
the latest PTP frame ingress timestamps as a tuple and fed

into a convergence algorithm. If the node is a master node, it
simply has to transmit PTP messages on every domain.

The convergence algorithm aggregates the most recently
received offsets for each domain within an observation window,
and produces a single aggregated offset correction for the real-
time clock (RTC). This convergence algorithm is transparent to
the PTP stacks, the clock servo, and any applications depending
on the synchronized time of the RTC.

B. Network Topology

To effectively mitigate link/node failures and malicious PTP
actor nodes, network paths for each domain should be entirely
disjoint. Therefore, one can specify the main goal for the
network topology is to introduce redundancy where possible.
The observation window should be tuned according to the
maximum expected latency of all the redundant domain paths.
Thus, to minimize the observation window span , a design
using redundant network paths should strive to preserve a
symmetric topology with the same number of hops between
slaves and master nodes. Further optimization on the asymmetry
of links has been investigated by [25], [26]. Note that while
a fully symmetric topology describes an ideal situation, it is
not an explicit requirement. A symmetric topology allows for
balanced network delays with equal worst-case end-to-end
latency (WCEL), and thus it is hypothesized to lead to better
convergence algorithm performance. In the remainder of this
work, we thus assume a fully symmetric topology to explore
the ideal case.

C. Convergence Algorithms

The convergence algorithm is run on each PTP slave node
individually and takes as inputs a collection of latest observed
offsets from each domain PTP stack. We implement two
different convergence algorithms for evaluation. The first offset
aggregation algorithm is a simple averaging function (AVG)
over the available offsets. The second algorithm implements a
Byzantine Fault Tolerant approach (FTA) for clock synchro-
nization.

1) Observation Window Filtering: Figure 2 illustrates how
individual PTP frames from the different PTP stacks are
converged by initiating separate observation windows. Each
received SYNC, or FOLLOW UP frame initiates a new
observation window based on the ingress timestamp over which
the convergence algorithm operates. Only frames within an
observation window time are taken into account to calculate
the converged clock offset for that specific point in time. The
duration of the observation window, controls the accepted time
difference threshold of the received master frame timestamps
from the last received PTP frame timestamp. This parameter
should be tuned proportionally to the WCEL that the PTP
master frames can experience, i.e. the longest path delay
between a redundant master and the receiving slave.

The windowed decision algorithm is listed in Algorithm 1.
This algorithm takes a new (incoming) offset o from its local
clock as input, together with its ingress time i and PTP domain
d. The algorithm’s output is an approximate offset and ingress

Master Node D

Master Node C

Master Node B

Master Node A

t4t3t2timestamp: t1

4th Observation Window
Aggregated Frames: {D, C, B}

Slave Node

Frame A

Frame B

Frame C

Frame D Tim
elines

Fig. 2: Observation windows are generated by new SYNC/-
FOLLOW UP frames. Received frames that are within the
time window are used in the aggregated offset calculation.

Algorithm 1 Windowed Decision Algorithm

1: procedure WINDOWEDDECISION(o, i,d) . Executes a
windowed decision algorithm using the latest received
timestamps

State: S . A table d −→(od , id) mapping all domains d ∈ D
to (offset, ingress) tuples

2: S[d]← (o, i)
3: S′←{x−→(ox, ix) ∈ S where |i− ix| ≤WINDOW}

4: ia←

{
0 if |S′|= 0
Σx∈S′ ix
|S′| otherwise

5: oa← FTA(S′) or AVG(S′)
6: return (oa, ia)
7: end procedure

time, which can be used by the clock servo to correct the RTC.
First, it stores the tuple (o, i) in a table structure using the
domain as an index, ensuring that only one offset per domain
is considered. After this, the table S is filtered to S′, excluding
offsets that were not received within a given delta WINDOW from
the new ingress timestamp. Then, the ingress of all offsets in S′

are averaged to ia, and an approximate offset oa is calculated
using either the FTA or the AVG algorithm.

2) Averaging Algorithm (AVG): The AVG consists of a
simple averaging function that extracts all offsets from the
given map and returns the average of these, or 0 if there are
no offsets.

3) Fault Tolerant averaging Algorithm (FTA): The FTA [14]
is an algorithm that provides bounded clock synchronization
even in the presence of faulty and possibly malicious mas-
ter clocks (see also Section II). Algorithm 2 describes the
implemented FTA algorithm.

In the general case where k faults should be tolerated, this
algorithm drops the earliest and last k offsets and averages the
remaining offsets. First, usable offsets are extracted from the
given map structure S′, and special assignments are made for
the 2k most extreme offsets. Then, it distinguishes 3 cases:
firstly, if there is only one offset, we return that offset; secondly,
if there are only two offsets, their average is returned, and
finally, if there are three or more offsets, it drops the extremes

Algorithm 2 Fault Tolerant Algorithm

1: procedure FTA(S) . Executes a fault-tolerant
convergence algorithm over a set of offsets

2: if |S|= 0 then
3: return 0
4: end if
5: O = {ox|x ∈ S}
6: omin← k earliest offsets in O
7: omax← k latest offsets in O
8: if |O|= 1 then
9: return omin

10: else if |O|= 2 then
11: return omin+omax

2
12: else if |O| ≥ 3 then
13: O′← O\{omin,omax}
14: return Σx∈O′ x

|O′|
15: end if
16: end procedure

and returns the average of the remaining offsets.
The first two cases will usually only trigger if there are

remote failures, and the system does not receive enough offsets.
In this case, the failures are regarded as faulty nodes, thereby
exceeding the number of tolerated faults, and the most we can
do is a best-effort execution of the algorithm. The third case
covers the standard execution of the algorithm. By dropping
the 2k outer offsets, adversaries are forced to operate within
a limited time offset range. By taking the average of the
remaining offsets, adversaries would have to control more
master nodes than our model tolerates to have a considerable
effect on the aggregated offset. For a formal proof, we refer
the interested reader to [14], [12].

V. EVALUATION

To demonstrate the fault-tolerance of the proposed redundant
PTP scheme and evaluate the synchronization quality, we
generate two test-case network topologies 1. These topologies
are simulated witin the OMNeT++-4.6 [11] discrete-event
network simulator using our extended version 2 of a PTP
simulation library named LibPTP [27]. LibPTP [28] is a
complete simulation framework for OMNeT++ that allows
the simulation of standard PTP devices. To the RTC oscillator
noise and yield more realistic clock drift results, we utilize
a Power-law noise library (LibPLN [29]) as described in the
LibPTP documentation [27]. All experiments are done on a
64-bit i7-7700HQ CPU system running at 2.8 GHz with 32GB
RAM.

A. Simulation parameters

The presented experiments are based on the following
assumptions. Firstly, we assume that every node has multiple
network interfaces, one for each domain, which is in line with

1https://github.com/dtu-ese/ptp multidomain
2https://github.com/dtu-ese/libPTP

Standard PTP Slave 1

Multi-domain PTP Slave 2
(AVG aggregation)

Multi-domain PTP Slave 3
(FTA aggregation)

Transparent Clock
Domain 1

Transparent Clock
Domain 2

Transparent Clock
Domain 3

Transparent Clock
Domain 4

Multi-domain PTP
Master 1

Fig. 3: First test-case network topology of single multi-domain
PTP master on four isolated redundant domain paths. The
domains are isolated using four different switches.

the standard’s recommendations, where it is advised that each
domain operates over a separate network interface. Secondly, to
optimize the simulation time and isolate the PTP evaluation, we
assume that the network is used exclusively by PTP, so no other
network traffic is simulated in the experiments. Empirically, we
assume that every link has a bit-rate of 1 Gbps and is 1 meter
long. Finally, every PTP stack uses the recommended gPTP
profile for TSN [30] as shown in Table I and a peer-to-peer
(P2P) delay mechanism.

TABLE I: PTP port profile options. Values correspond to
the interval of the respective messages in seconds and are
represented as powers of two.

Parameter Value
logAnnounceInterval 1
announceReceiptTimeout 3
logSyncInterval -3
logMinDelayReqInterval -3
logMinDelayReqInterval -3

B. Test-case 1: Single PTP master on four redundant domains

This experiment aims to evaluate the stability of the proposed
multi-domain aggregation scheme using the custom design
of Figure 1 for both master and slave nodes. We generate a
synthetic topology with three nodes and four switches as shown
in Figure 3. A single multi-domain PTP master is connected
to four redundant transparent clock nodes over four different
domains. We integrate three different types of PTP slaves in
the network: (A) a standard PTP slave connected only to the
first transparent clock switch (domain), (B) a multi-domain
PTP slave that uses the AVG algorithm and is connected to
all domains and (C) a multi-domain PTP slave that uses the
proposed FTA algorithm and connects to all domains.

We evaluate the synchronization quality in terms of average
mean clock offset and standard deviation using a synthetic

https://github.com/dtu-ese/ptp_multidomain
https://github.com/dtu-ese/libPTP

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)
No3link3failures3t=[30:60]

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

First3link3failure3t=[60:90]

AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
3o

ffs
et

35
ns

)

Second3link3failure3t=[90:120]

AVG FTA

Algorithm

-2000

0

2000
C

lo
ck

3o
ffs

et
35

ns
)

Third3link3failure3t=[120:150]

Fig. 4: Comparison of the mean clock offset and std. deviation
measurements through the link failures of the experimental
test-case 1 (see Section V-B) with topology from Figure 3.

scenario. We simulate a simple scenario of consecutive link
failures where at 60 seconds the first link between Master 1
and Transparent Clock 1 is disconnected. The rest of the links
between Master 1 and the transparent clocks are disconnect-
ed/fail similarly in intervals of 30 seconds. We simulate the
scenario for a total run-time of 180 seconds.

Figure 4 compares the measured mean clock offset and jitter
of the two clock servo aggregation methods (AVG and FTA).
Although the mean of the AVG and FTA aggregation methods
are similar when no failures occur, we measure significantly
less jitter using FTA throughout the experiment’s run-time,
resulting in more predictable clock synchronization. This is
likely due to the nature of the FTA: outliers are discarded ,
ensuring that the system will take the average of the most
consistent master clocks. If there are some master clocks that
drift at different rates, or if these clock oscillators are very
noisy, then it is likely that they are often discarded for the
aggregated timestamp.

C. Test-case 2: Four PTP masters on four redundant domains

For the second test-case, we generate and simulate two
network topologies comparing the standard BMCA against
the proposed multi-domain scheme. The first topology (see
Figure 5a) has four PTP master capable standard nodes and
a standard node that is configured as a PTP slave. All nodes
operate over the same domain and are connected through a
transparent clock switch in a star topology. The second topology
(see Figure 5b) has four standard PTP masters connected and
two redundant PTP slave nodes. The PTP masters operate over
four different domains and are respectively connected to four
different transparent clock switches. For simplicity, we assume
that individual PTP master node clocks are synchronized to each
other in order for the observation window to use all available
domains. This requirement is further discussed in Section VI.

Standard PTP Slave

Transparent Clock
Domain 1

Standard PTP Master 1

Standard PTP
Master 2

Standard PTP
Master 3

Standard PTP Master 4

(a) Connect one standard PTP slave to four PTP masters operating
on the same domain. Clock selection based on BMCA.

Multi-domain PTP Slave 1
(averaging aggregation)

Multi-domain PTP Slave 2
(FTA aggregation)

Transparent Clock
Domain 1

Transparent Clock
Domain 2

Transparent Clock
Domain 3

Transparent Clock
Domain 4

Standard PTP
Master 1

Standard PTP
Master 2

Standard PTP
Master 3

Standard PTP
Master 4

(b) Two multi-domain PTP slaves connected to four PTP masters
operating on separate domains. Clock offset calculation uses multi-
domain aggregation.

Fig. 5: Second test-case parallel network topologies evaluation.

PTP slave nodes 1 and 2 use respectively, the multi-domain
aggregation methods described in Section IV. We evaluate the
performance of the synchronization by simulating two synthetic
scenarios.

1) Link/node failure scenario: In the first scenario, each of
the PTP masters fails in sequence every 30 seconds after the
first minute of stable operation. This scenario covers a variety
of real-life failures such as device failures, cable failures or
denial-of-service attacks. We simulate the experiment for a
total run-time of 180 seconds.

Figure 6 presents the mean time difference of the three
PTP slave nodes and compares the upper/lower bounds of the
three PTP slave nodes. We observe that in contrast to Test-
case 1, the standard PTP slave node can stay synchronized
to the master through the consecutive link failures as it can
now select a new master, from each operating domain, after
each link failure. However, BMCA suffers from significant
synchronization drift of more than 2 µs. The FTA and the AVG
aggregation manage to achieve better clock synchronization
accuracy with tighter bounds than the standard BCMA during

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1
No=link=failures=t=[30:60]

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

First=link=failure=t=[60:90]

BMCA AVG FTA

Algorithm

-2000

0

2000

C
lo

ck
=o

ffs
et

=d
ns

1

Second=link=failure=t=[90:120]

BMCA AVG FTA

Algorithm

-2000

0

2000
C

lo
ck

=o
ffs

et
=d

ns
1

Third=link=failure=t=[120:150]

Fig. 6: Comparison of the mean clock offset and std. deviation
measurements through the link failures of the experimental
test-case 2 (Section V-C1) with topology from Figure 5.

the first two link failures. As more links fail this difference
between the methodologies is normalized because fewer nodes
are available to aggregate.

2) Malicious PTP master scenario: In this scenario, we
investigate the effects of a malicious PTP master clock that
tries to offset the synchronized network time. The malicious
end-system is connected to the network at a specific point in
time and advertises that it has a higher clock quality that the
existing master clocks. We emulate this scenario by simulating
the instantaneous connection of a new PTP master with higher
quality clock attributes after one minute of run-time at the
first switch. The malicious master has its local clock offset
by 100 µs than the existing masters. Due the implemented
observation window’s properties, a malicious master must be
carefully implemented so that its local clock offset is within
the observation window’s bounds.

We measure this attack’s effects on the clock synchronization
precision of the topology’s three PTP slaves relative to node
Master 1. Figure 7 presents the measured results of the time-
difference for the three PTP slaves. The top plot corresponds
to the measurements taken from the Standard BMCA slave
shown in Figure 5a. In comparison, the bottom plot presents the
measurements from the multi-domain slaves shown in Figure 5b.
We run the experiment for 120 seconds of simulation time.

In the standard PTP topology 5a, the newly connected
malicious master is quickly elected as the best clock by the
BMCA. We note a significant initial drift of the PTP slave
relative to Master 1 after which the network is synchronized to
the time of the malicious master clock. In the redundant PTP
topology 5b, the connection of the malicious master cannot
influence the independent masters as they operate in different
domains. The simple approach of averaging the aggregated
multi-domain master clocks is not sufficient as it is easily
disturbed by the malicious clock’s offset. In this scenario, the

30 60 90 120
Time (s)

-10

-5

0

O
ff

se
t

(s
)

#10-5

Standard BCMA

30 60 90 120
Time (s)

-2

-1

0

O
ff

se
t

(s
)

#10-5

Averaging aggregation
FTA aggregation

Fig. 7: Measured PTP-Slave clock offset relative to Master 1
in the test-case scenario of a new malicious PTP master node
connection at t=60s (Section V-C2).

FTA proves to be the most resilient as the malicious master’s
relative clock offset is discarded according to Algorithm 2.

VI. DISCUSSION

In the evaluated test-cases, we experimentally showed that a
multi-domain approach could guarantee synchronized network
time availability despite network failures and malicious actions.

The platform designer has to guarantee that the PTP stack
processes are isolated and cannot affect each other if the
security of one PTP stack is compromised. This can be achieved
using specialized hardware or sandboxing techniques such as
virtualization. Considering the capabilities of modern industrial
computing systems [31], the software cost for running the
redundant PTP stacks in-parallel is minimal, especially if
the proposed design is implemented completely in software.
Preliminary results show that the CPU overhead generated
by the PTP stack is less than 1% of the available computing
resources. Nevertheless, the system designer should consider
the additional cost for the redundant network topology based
on the safety requirements of the application, as there is a
significant cost increase in the number of links and switches.

The results showed that the FTA convergence algorithm
could mitigate against link or node failures, as well as a
compromised master node broadcasting incorrect timestamps.
This work illustrates the importance of a fault-tolerant method
of converging the calculated offset from the multiple PTP
domains. It is worth noting that although the averaging
aggregation performed as well as the FTA method, it was
easily influenced by a malicious node and failed to provide
secure synchronization. While our design does not enforce
authentication and integrity of PTP messages by itself, the FTA
algorithm leaves very little room for tampered messages, as
it discards everything outside of a margin known to have a
majority of correct offsets. What this approach does inherently
provide is protection against various forms of DoS, timing,

and delay attacks where the number of affected links/nodes
is less than k. As already noted in Section IV, this can be
combined with the security measures proposed in IEEE-1588
(2019) to further harden the security by providing authenticity,
confidentiality and integrity of messages. Thus, the combined
application of the measures proposed in this work and the
standardized security measures results in a secure PTP system
that in addition to the standardized measures is difficult to
disrupt with DoS and timing attacks.

Finally, although the proposed multi-domain PTP end-system
scheme was tested with both master and slave roles, its
functionality is based on the assumption that the redundant
master clocks of each separate domains are synchronized to
each other. This assumption is easily achievable using the
proposed multi-domain PTP end-system design (see Figure 1),
however standard PTP master clocks on separate devices require
an external fault-tolerant mechanism of clock synchronization.
One possible solution to this would be to use dual roles for
master nodes, were on specific domains they would act as slaves
to each other and other domains as masters in an interleaved
scheme. It is hypothesized that the standard PTP boundary
clock component can support this dual role functionality, but its
implementation in a multi-domain network topology requires
further investigation.

VII. FUTURE WORK

As future work, we plan to explore the implementation
and characterization of boundary clocks as a mechanism to
enable standard PTP master clock synchronization in redundant
domains. Additionally, we plan to extend the evaluated sce-
narios and investigate different types of attacks on PTP, such
as frame spoofing. This will allow us to characterize further
the proposed multi-domain design performance and identify
its tuning parameters.

Moreover, one can think of a scenario where only a limited
subset of all nodes are connected to multiple domains. This
raises questions such as how many multi-domain nodes are
necessary to meet a certain required timing accuracy? For
this, we plan to explore the integration of the proposed design
in boundary clocks that are connected to multiple domains,
each maintaining slave clocks connected to only one of these
domains.

VIII. CONCLUSION

The presented work investigated the requirements for fault-
tolerance in TSN clock synchronization and proposed a PTP
end-system design that supports multi-domain aggregation. The
proposed design implements isolated PTP stacks that use an
FTA-based aggregation mechanism to correct the clock servo.
This is combined with a time-based observation window for
additional security. The multi-domain PTP end-system was
evaluated and compared against standard PTP nodes in two
scenarios with emulated link failures and possible malicious
PTP masters. Overall, this work illustrated empirically the ne-
cessity for fault-tolerance in PTP and multi-domain aggregation
design that manages to overcome network faults.

ACKNOWLEDGMENT

This is work was part of the Fog Computing for Robotics
and Industrial Automation (FORA) European Training Network
(ETN) funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie
grant agreement No 764785.

REFERENCES

[1] T. Pereira, L. Barreto, and A. Amaral, “Network and information security
challenges within Industry 4.0 paradigm,” Procedia Manufacturing,
vol. 13, 2017.

[2] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaaniche, and
Y. Laarouchi, “Survey on security threats and protection mechanisms in
embedded automotive networks,” Proc. DSN, 2013.

[3] S. S. Craciunas and R. S. Oliver, “An overview of scheduling mechanisms
for time-sensitive networks,” Proceedings of the Real-time summer school
LÉcole dÉté Temps Réel (ETR), pp. 1551–3203, 2017.

[4] E. Kyriakakis, J. Sparsø, P. Puschner, and M. Schoeberl, “Synchronizing
real-time tasks in time-aware networks: Work-in-progress,” in 2020
International Conference on Embedded Software (EMSOFT). IEEE,
2020, pp. 15–17.

[5] Official Website of the 802.1 Time-Sensitive Networking Task Group,
http://www.ieee802.org/1/pages/tsn.html, IEEE Std., 2016, ac-
cessed: 17.12.2020.

[6] 802.1AS-Rev - Timing and Synchronization for Time-Sensitive Ap-
plications, http://www.ieee802.org/1/pages/802.1AS-rev.html,
IEEE Std., 2016, accessed: 17.12.2020.

[7] IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, IEEE Std., 2008.

[8] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. Wojciak, and
S. Guendert, “Impact of cyberattacks on precision time protocol,” IEEE
Transactions on Instrumentation and Measurement, 2019.

[9] IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, IEEE Std., 2020.

[10] S. Bogomolov, C. Herrera, and W. Steiner, “Verification of fault-tolerant
clock synchronization algorithms.” in ARCH@ CPSWeek, 2016, pp. 36–
41.

[11] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops, ser. Simutools ’08. Brussels, BEL: ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2008.

[12] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
and R. Zainlinger, “Distributed fault-tolerant real-time systems: The mars
approach,” IEEE Micro, vol. 9, no. 1, pp. 25–40, 1989.

[13] P. Ramanathan, K. G. Shin, and R. W. Butler, “Fault-tolerant clock
synchronization in distributed systems,” Computer, vol. 23, no. 10, pp.
33–42, 1990.

[14] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” Journal of
the ACM (JACM), vol. 33, no. 3, pp. 499–516, 1986.

[15] W. Steiner and B. Dutertre, “The TTEthernet synchronisation protocols
and their formal verification,” International Journal of Critical Computer-
Based Systems 17, vol. 4, no. 3, pp. 280–300, 2013.

[16] TTTech, AS6802: Time-Triggered Ethernet, SAE International Std., 2011.
[17] J. C. Eidson, Measurement, control, and communication using IEEE

1588. Springer Science & Business Media, 2006.
[18] G. Giorgi and C. Narduzzi, “Modeling and simulation analysis of PTP

clock servo,” in 2007 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication, 2007.

[19] E. Kyriakakis, J. Sparsø, and M. Schoeberl, “Hardware Assisted
Clock Synchronization with the IEEE 1588-2008 Precision Time
Protocol,” in Proceedings of the 26th International Conference
on Real-Time Networks and Systems, ser. RTNS ’18. New
York, NY, USA: ACM, 2018, pp. 51–60. [Online]. Available:
http://doi.acm.org.proxy.findit.dtu.dk/10.1145/3273905.3273920

[20] E. Lisova, “Monitoring for securing clock synchronization,” Ph.D.
dissertation, Mälardalen University, 2018.

http://doi.acm.org.proxy.findit.dtu.dk/10.1145/3273905.3273920

[21] T. Mizrahi, “Time synchronization security using IPsec and MACsec,” in
2011 IEEE International Symposium on Precision Clock Synchronization
for Measurement, Control and Communication, 2011, pp. 38–43.

[22] T. Mizrahi, Security Requirements of Time Protocols in Packet Switched
Networks, RFC 7384, Std. 7384, Oct. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7384.txt

[23] T. Mizrahi, “Slave diversity: Using multiple paths to improve the
accuracy of clock synchronization protocols,” in 2012 IEEE International
Symposium on Precision Clock Synchronization for Measurement, Control
and Communication Proceedings, 2012, pp. 1–6.

[24] A. Shpiner, Y. Revah, and T. Mizrahi, “Multi-path time protocols,” in
2013 IEEE International Symposium on Precision Clock Synchronization
for Measurement, Control and Communication (ISPCS) Proceedings,
2013, pp. 1–6.

[25] O. Gurewitz and M. Sidi, “Estimating one-way delays from cyclic-path
delay measurements,” in Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Society (Cat. No. 01CH37213),

vol. 2. IEEE, 2001, pp. 1038–1044.
[26] S. Lee, “An enhanced IEEE 1588 time synchronization algorithm for

asymmetric communication link using block burst transmission,” IEEE
communications letters, vol. 12, no. 9, pp. 687–689, 2008.

[27] W. Wallner, “Simulation of time-synchronized networks using ieee 1588-
2008,” Ph.D. dissertation, Wien, 2016.

[28] W. Wallner. (2016) LibPTP: A Library for PTP Simulation. https://github.
com/ptp-sim/libPTP.

[29] W. Wallner. (2016) LibPLN: A Library for Efficient Powerlaw Noise
Generation. https://github.com/ptp-sim/libPLN.

[30] K. Sridharan, K. Goossens, N. Concer, and H. B. Vermeulen, “In-
vestigation of time-synchronization over ethernet in-vehicle networks
for automotive applications,” Master’s thesis, Eindhoven: Eindhoven
University of Technology, 2015.

[31] Intel’s Fog Reference Design Overview, Intel, April 2018. [Online].
Available: https://www.intel.com/content/www/us/en/internet-of-things/
fog-reference-design-overview.html

https://rfc-editor.org/rfc/rfc7384.txt
https://github.com/ptp-sim/libPTP
https://github.com/ptp-sim/libPTP
https://github.com/ptp-sim/libPLN
https://www.intel.com/content/www/us/en/internet-of-things/fog-reference-design-overview.html
https://www.intel.com/content/www/us/en/internet-of-things/fog-reference-design-overview.html

	Introduction
	Background
	Fault-Tolerant Clock Synchronization
	IEEE 1588-2019 Precise Time Protocol

	Related Work
	Multi-domain Node and Algorithm Design
	Node Architecture
	Network Topology
	Convergence Algorithms
	Observation Window Filtering
	Averaging Algorithm (AVG)
	Fault Tolerant averaging Algorithm (FTA)

	Evaluation
	Simulation parameters
	Test-case 1: Single PTP master on four redundant domains
	Test-case 2: Four PTP masters on four redundant domains
	Link/node failure scenario
	Malicious PTP master scenario

	Discussion
	Future Work
	Conclusion
	References

