
The Java Virtual Machine

Martin Schöberl

The Java virtual machine 2

Overview

Review Java/JVM
JVM Bytecodes
Short bytecode examples
Class information
Parameter passing

The Java virtual machine 3

Java system overview

The Java virtual machine 4

Java Technology

The Java programming language
The library (JDK)
The Java virtual machine (JVM)

An instruction set and the meaning of
those instructions – the bytecodes
A binary format – the class file format
An algorithm to verify the class file

The Java virtual machine 5

JVM Data Types
reference Pointer to an object or array
int 32-bit integer (signed)
long 64-bit integer (signed)
float 32-bit floating-point (IEEE 754-1985)
double 64-bit floating-point (IEEE 754-1985)

No boolean, char, byte, and short types
Stack contains only 32-bit and 64-bit data
Conversion instructions

The Java virtual machine 6

JVM Instruction Set

The Bytecodes
Operations on the operand stack
Variable length
Simple, e.g. iadd
Complex, e.g. new
Symbolic references
201 different instructions

The Java virtual machine 7

Instruction Types

Arithmetic
Load and store
Type conversion
Object creation and manipulation
Operand stack manipulation
Control transfer
Method invocation and return

The Java virtual machine 8

Arithmetic Instructions

Operate on the values from the stack
Push the result back onto the stack
Instructions for int, long, float and
double

No direct support for byte, short or
char types

Handled by int operations and type
conversion

The Java virtual machine 9

iadd
Operation Add int

Format iadd

Forms iadd = 96 (0x60)

Operand Stack ..., value1, value2 => ..., result

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is value1 + value2. The result is pushed onto the
operand stack.

The result is the 32 low-order bits of the true mathematical result in a sufficiently
wide two's-complement format, represented as a value of type int. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

Despite the fact that overflow may occur, execution of an iadd instruction never
throws a runtime exception.

The Java virtual machine 10

fadd
Operation Add float

Format fadd

Forms fadd = 98 (0x62)

Operand Stack ..., value1, value2 => ..., result

Both value1 and value2 must be of type float. The values are popped from the
operand stack and undergo value set conversion, resulting in value1' and
value2'. The float result is value1' + value2'. The result is pushed onto the
operand stack.

The result of an fadd instruction is governed by the rules of IEEE arithmetic.
The Java virtual machine requires support of gradual underflow as defined by IEEE

754. Despite the fact that overflow, underflow, or loss of precision may occur,
execution of an fadd instruction never throws a runtime exception.

The Java virtual machine 11

ladd
Operation Add long

Format ladd

Forms ladd = 97 (0x61)

Operand Stack ..., value1, value2 ..., result

Both value1 and value2 must be of type long. The values are popped from the
operand stack. The long result is value1 + value2. The result is pushed onto the
operand stack.

The result is the 64 low-order bits of the true mathematical result in a sufficiently
wide two's-complement format, represented as a value of type long. If overflow
occurs, the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

Despite the fact that overflow may occur, execution of an ladd instruction never
throws a runtime exception.

The Java virtual machine 12

Arithmetic Instructions
Add: iadd, ladd, fadd, dadd
Subtract: isub, lsub, fsub, dsub
Multiply: imul, lmul, fmul, dmul
Divide: idiv, ldiv, fdiv, ddiv
Remainder: irem, lrem, frem, drem
Negate: ineg, lneg, fneg, dneg
Shift: ishl, ishr, iushr, lshl, lshr, lushr
Bitwise OR: ior, lor
Bitwise AND: iand, land
Bitwise exclusive OR: ixor, lxor
Local variable increment: iinc
Comparison: dcmpg, dcmpl, fcmpg, fcmpl, lcmp

The Java virtual machine 13

Load and Store Instructions

Load
Push value from local variable onto stack
Push a constant onto the stack

Store
Transfer value from the stack to a local
variable

Typed instructions
Short versions

The Java virtual machine 14

iload
Operation Load int from local variable

Format iload
index

Forms iload = 21 (0x15)

Operand Stack ... => ..., value

The index is an unsigned byte that must be an index into the local variable array of
the current frame. The local variable at index must contain an int. The value of
the local variable at index is pushed onto the operand stack.

The iload opcode can be used in conjunction with the wide instruction to access a
local variable using a two-byte unsigned index.

The Java virtual machine 15

iload_<n>
Operation Load int from local variable

Format iload_<n>

Forms iload_0 = 26 (0x1a)
iload_1 = 27 (0x1b)
iload_2 = 28 (0x1c)
iload_3 = 29 (0x1d)

Operand Stack ... => ..., value

The <n> must be an index into the local variable array of the current frame. The
local variable at <n> must contain an int. The value of the local variable at <n>
is pushed onto the operand stack.

Each of the iload_<n> instructions is the same as iload with an index of <n>,
except that the operand <n> is implicit.

The Java virtual machine 16

istore
Operation Store int into local variable

Format istore
index

Forms istore = 54 (0x36)

Operand Stack ..., value => ...

The index is an unsigned byte that must be an index into the local variable array of
the current frame. The value on the top of the operand stack must be of type
int. It is popped from the operand stack, and the value of the local variable at
index is set to value.

The istore opcode can be used in conjunction with the wide instruction to access a
local variable using a two-byte unsigned index.

The Java virtual machine 17

bipush
Operation Push byte

Format bipush
byte

Forms bipush = 16 (0x10)

Operand Stack ... => ..., value

The immediate byte is sign-extended to an int value. That value is pushed onto the
operand stack.

The Java virtual machine 18

sipush
Operation Push short

Format sipush
byte1
byte2

Forms sipush = 17 (0x11)

Operand Stack ... => ..., value

The immediate unsigned byte1 and byte2 values are assembled into an intermediate
short where the value of the short is (byte1 << 8) | byte2. The intermediate
value is then sign-extended to an int value. That value is pushed onto the
operand stack.

The Java virtual machine 19

iconst_<i>
Operation Push int constant

Format iconst_<i>

Forms iconst_m1 = 2 (0x2)
iconst_0 = 3 (0x3)
iconst_1 = 4 (0x4)
…
iconst_5 = 8 (0x8)

Operand Stack ... => ..., <i>

Push the int constant <i> (-1, 0, 1, 2, 3, 4 or 5) onto the operand stack.

Each of this family of instructions is equivalent to bipush <i> for the respective
value of <i>, except that the operand <i> is implicit.

The Java virtual machine 20

ldc
Operation Push item from runtime constant pool

Format ldc
index

Forms ldc = 18 (0x12)

Operand Stack ... => ..., value

The index is an unsigned byte that must be a valid index into the runtime constant
pool of the current class. The runtime constant pool entry at index either must
be a runtime constant of type int or float, or must be a symbolic reference to a
string literal.

If the runtime constant pool entry is a runtime constant of type int or float, the
numeric value of that runtime constant is pushed onto the operand stack as an
int or float, respectively.

Otherwise, the runtime constant pool entry must be a reference to an instance of
class String representing a string literal. A reference to that instance, value, is
pushed onto the operand stack.

The Java virtual machine 21

Load and Store Instructions
Load a local variable

iload, iload_<n>, lload, lload_<n>, fload, fload_<n>, dload,
dload_<n>, aload, aload_<n>

Store a local variable
istore, istore_<n>, lstore, lstore_<n>, fstore, fstore_<n>,
dstore, dstore_<n>, astore, astore_<n>

Load a constant
bipush, sipush, ldc, ldc_w, ldc2_w, aconst_null, iconst_m1,
iconst_<i>, lconst_<l>, fconst_<f>, dconst_<d>

Wider index, or larger immediate operand
wide

The Java virtual machine 22

Load/Add/Store Example
int a, b, c;

a = 1;

b = 123;

c = a+b;

0: iconst_1
1: istore_0 // a
2: bipush 123
4: istore_1 // b
5: iload_0 // a
6: iload_1 // b
7: iadd
8: istore_2 // c

The Java virtual machine 23

Type Conversion
Widening numeric conversions

int to long, float, or double
long to float or double
float to double
i2l, i2f, i2d, l2f, l2d, and f2d

Narrowing numeric conversions
int to byte, short, or char
long to int
float to int or long
double to int, long, or float
i2b, i2c, i2s, l2i, f2i, f2l, d2i, d2l, and d2f

The Java virtual machine 24

Conversion Example
short s;
s = 1;
++s;

0: iconst_1
1: istore_0
2: iload_0
3: iconst_1
4: iadd
5: i2s // truncate
6: istore_0

The Java virtual machine 25

Object Instructions
Create a new class instance or array

new, newarray, anewarray, multianewarray
Field access

getfield, putfield, getstatic, putstatic
Array load, store

baload, caload, saload, iaload, laload, faload, daload, aaload
bastore, castore, sastore, iastore, lastore, fastore, dastore,
aastore

Length of an array
arraylength

Check properties
instanceof, checkcast

The Java virtual machine 26

Object Creation
Object create() {

return new Object();
}

0: new #2; //class Object
3: dup
4: invokespecial #1; //Method java/lang/Object."<init>":()V
7: areturn

The Java virtual machine 27

getfield
Operation Fetch field from object

Format getfield
indexbyte1
indexbyte2

Forms getfield = 180 (0xb4)

Operand Stack ..., objectref => ..., value

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
runtime constant pool of the current class, where the value of the index is
(indexbyte1 << 8) | indexbyte2. The runtime constant pool item at that index
must be a symbolic reference to a field, which gives the name and descriptor of
the field as well as a symbolic reference to the class in which the field is to be
found. The referenced field is resolved. The value of the referenced field in
objectref is fetched and pushed onto the operand stack.

The Java virtual machine 28

putfield
Operation Set field in object

Format putfield
indexbyte1
indexbyte2

Forms putfield = 181 (0xb5)

Operand Stack ..., objectref, value => ...

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
runtime constant pool of the current class…

The value and objectref are popped from the operand stack. The objectref must be
of type reference. The referenced field in objectref is set to value.

The Java virtual machine 29

Field Access
static int statVal;
private int privVal;

void foo() {

int i = statVal + privVal;

statVal = i;

privVal = i;

}

0: getstatic #3; //Field statVal:I
3: aload_0
4: getfield #4; //Field privVal:I
7: iadd
8: istore_1

9: iload_1
10: putstatic #3; //Field statVal:I

13: aload_0
14: iload_1
15: putfield #4; //Field privVal:I

18: return

The Java virtual machine 30

Operand Stack Manipulation

Direct manipulation of the operand
stack

pop, pop2
dup, dup2, dup_x1, dup2_x1, dup_x2,
dup2_x2
swap

The Java virtual machine 31

swap
Operation Swap the top two operand stack values

Format swap

Forms swap = 95 (0x5f)

Operand Stack ..., value2, value1 => ..., value1, value2

Swap the top two values on the operand stack.

The Java virtual machine 32

Control Transfer

Conditional branch
ifeq, iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull,
if_icmpeq, if_icmpne, if_icmplt, if_icmpgt,
if_icmple, if_icmpge, if_acmpeq, if_acmpne.

Switch
tableswitch, lookupswitch.

Unconditional branch
goto, goto_w, jsr, jsr_w, ret.

The Java virtual machine 33

if<cond>
Operation Branch if int comparison with zero succeeds

Format if<cond>
branchbyte1
branchbyte2

Forms ifeq = 153 (0x99)
…
ifle = 158 (0x9e)

Operand Stack ..., value => ...

The value is popped from the operand stack and compared against zero. All comparisons are
signed:

eq succeeds if and only if value = 0
…
le succeeds if and only if value ≤ 0

If the comparison succeeds, branchbyte1 and branchbyte2 are used to construct a signed 16-bit
offset. Execution then proceeds at that offset from the address of the opcode of this
if<cond> instruction. Otherwise, execution proceeds at the address of the instruction
following this if<cond> instruction.

The Java virtual machine 34

Method Invocation, Return
invokevirtual

Invokes an instance method of an object, dispatching on the
(virtual) type of the object.
This is the normal method dispatch in the Java programming
language

invokeinterface
Invokes a method that is implemented by an interface

invokespecial
Invokes an instance method requiring special handling
Instance initialization method, a private method, or a
superclass method

invokestatic
Invokes a class (static) method

The Java virtual machine 35

invokevirtual
Operation Invoke instance method; dispatch based on class

Format invokevirtual
indexbyte1
indexbyte2

Forms invokevirtual = 182 (0xb6)

Operand Stack ..., objectref, [arg1, [arg2 ...]] => ...

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
runtime constant pool…

The objectref must be followed on the operand stack by nargs argument values,
where the number, type, and order of the values must be consistent with the
descriptor of the selected instance method.

If the method is synchronized, the monitor associated with objectref is acquired or
reentered.

The Java virtual machine 36

Class Information

Instance size
Static (class) variables
Virtual method table
Interface table
Constant pool
Reference to super class

The Java virtual machine 38

Method Structure

Information about a method
Address
Length (for the cache)
Pointer to the constant pool of the class
Number of arguments and local variables

The Java virtual machine 39

Object Format

Direct pointer
Handle possible
Return pointer to
the class information

The Java virtual machine 40

Array Format

Direct pointer
Handle possible
Length is needed

The Java virtual machine 41

Constant Pool

Contains:
Simple constants (e.g. 123, 0.345)
String constants
Class references
Field references
Method references

All references are symbolic in the class file
References can and should be converted to
direct pointers

The Java virtual machine 42

Runtime Data Structures

PC – program counter
Operand stack

SP – stack pointer
VP – variable pointer

MP – method pointer
Reference to the method structure

CP – constant pool
Current constant pool

The Java virtual machine 43

Parameter passing
int val = foo(1, 2);
...
public int foo(int a, int b) {

int c = 1;
return a+b+c;

}

The invocation sequence:
aload_0 // Push the object reference
iconst_1 // and the parameter onto the
iconst_2 // operand stack.
invokevirtual #2 // Invoke method foo:(II)I.
istore_1 // Store the result in val.

public int foo(int,int):
iconst_1 // The constant is stored in a method
istore_3 // local variable (at position 3).
iload_1 // Arguments are accessed as locals
iload_2 // and pushed onto the operand stack.
iadd // Operation on the operand stack.
iload_3 // Push c onto the operand stack.
iadd
ireturn // Return value is on top of stack.

The Java virtual machine 44

Stack on Method Invocation

The Java virtual machine 45

Summary

The JVM defines an instruction set –
Bytecodes
Simple, typed stack instructions
Complex, such as object creation
Implementation details are not defined
Method invocation suggests a common
stack

The Java virtual machine 46

More Information

JOP Thesis: p 7-16, p 55-64, p 78-82
Virtual Machine Design, Antero
Taivalsaari, seminar notes
Tim Lindholm and Frank Yellin. The
Java Virtual Machine Specification.
Addison-Wesley, 1999, JVMSpec.

http://www.cs.tut.fi/%7Etaivalsa/kurssit/VMDesign2003.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

	The Java Virtual Machine
	Overview
	Java system overview
	Java Technology
	JVM Data Types
	JVM Instruction Set
	Instruction Types
	Arithmetic Instructions
	iadd
	fadd
	ladd
	Arithmetic Instructions
	Load and Store Instructions
	iload
	iload_<n>
	istore
	bipush
	sipush
	iconst_<i>
	ldc
	Load and Store Instructions
	Load/Add/Store Example
	Type Conversion
	Conversion Example
	Object Instructions
	Object Creation
	getfield
	putfield
	Field Access
	Operand Stack Manipulation
	swap
	Control Transfer
	if<cond>
	Method Invocation, Return
	invokevirtual
	Class Information
	Method Structure
	Object Format
	Array Format
	Constant Pool
	Runtime Data Structures
	Parameter passing
	Stack on Method Invocation
	Summary
	More Information

