
Real-Time Java on JOP

Martin Schöberl



Real-Time Java on JOP 2

Overview

RTSJ – why not
Simple RT profile
Scheduler implementation
User defined scheduling



Real-Time Java on JOP 3

Real-Time Specification for Java

Real-time extension definition
Sun JSR - standard
Still not completely finished
Implementations

Timesys RI
Purdue OVM



Real-Time Java on JOP 4

RTSJ Issues

Large and complex specification
Implementation
Verification

Scoped memory cumbersome
Expensive longs (64 bit) for time values
J2SE library

Heap usage not documented
OS functions can cause blocking



Real-Time Java on JOP 5

RTSJ Subset

Ravenscar Java
Name from Ravenscar Ada
Based in Puschner & Wellings paper

Profile for high integrity applications
RTSJ compatible
No dynamic thread creation
Only NHRTT
Simplified scoped memory
Implementation?



Real-Time Java on JOP 6

Real-Time Profile

Hard real-time profile
See Puschner paper

Easy to implement
Low runtime overhead
No RTSJ compatibility



Real-Time Java on JOP 7

Real-Time Profile

Schedulable objects
Periodic activities
Asynchronous sporadic activities

Hardware interrupt or software event
Bound to a thread

Application
Initialization
Mission



Real-Time Java on JOP 8

Application Structure

Initialization phase
Fixed number of threads
Thread creation
Shared objects in immortal memory

Mission
Runs forever
Communication via shared objects
Scoped memory for temporary data



Real-Time Java on JOP 9

Schedulable Objects
Three types:

RtThread, HwEvent and 
SwEvent

Fixed priority
Period or minimum 
interarrival time
Scoped memory per 
thread
Dispatched after 
mission start

public class RtThread {

public RtThread(int priority, int period)

...

public RtThread(int priority, int period,

int offset, Memory mem)

public void enterMemory()

public void exitMemory()

public void run()

public boolean waitForNextPeriod()

public static void startMission()

}

public class HwEvent extends RtThread {

public HwEvent(int priority, int minTime,

Memory mem, int number)

public void handle()

}

public class SwEvent extends RtThread {

public SwEvent(int priority, int minTime,

Memory mem)

public final void fire()

public void handle()

}



Real-Time Java on JOP 10

Scheduling

Fixed priority with strict monotonic 
order
Priority ceiling emulation protocol

Top priority for unassigned objects

Interrupts under scheduler control
Priority for device drivers
No additional blocking time
Integration in schedulability analysis



Real-Time Java on JOP 11

Memory

No GC: Heap becomes immortal 
memory
Scoped memory

Bound to one thread at creation
Constant allocation time

Cleared on creation and on exit

Simple enter/exit syntax



Real-Time Java on JOP 12

Restrictions of Java

Only WCET analyzable language constructs
No static class initializer

Use a static init() function

No finalization
Objects in immortal memory live forever
Finalization complicates WCET analysis of exit 
from scoped memory

No dynamic class loading



Real-Time Java on JOP 13

Implementation

Scheduler for a Java real-time profile
Periodic and sporadic threads
Preemptive
Fixed priority

Microcode
Java



Real-Time Java on JOP 14

Low-level Functions

Access to JVM internals
Exposed as special bytecodes
In Java declared as native methods
Translation
Avoids non-standard class files



Real-Time Java on JOP 15

Interrupts in JOP

Translation of JVM bytecodes to 
microcode
Interrupts are special bytecodes
Inserted in the translation stage
Call of JVM internal Java method



Real-Time Java on JOP 16

Dispatching

Scheduler is a Java 
method
Context of task is on 
the stack
Exchange stack
Set stack pointer
Simple return

private static int newSp;

public static void schedule() {

Native.wr(0, IO_INT_ENA);

RtThread th = tasks[active];

th.sp = Native.getSP();

Native.int2extMem(...);

// find ready thread and

// new timer value

newSp = tasks[ready].sp;

Native.int2extMem(...);

Native.wr(tim, IO_TIMER);

Native.setSP(newSp);

Native.wr(1, IO_INT_ENA);

}



Real-Time Java on JOP 17

Implementation Results

Scheduler and Dispatch in Java
Only one function in microcode
Test JVM in C

JOP compatible JVM
Implements timer with timestamp counter
Scheduling in Java
No OS needed, just a 32-bit C compiler



Real-Time Java on JOP 18

User-Defined Scheduler

Java is a safe OO Language
No pointers
Type-safety

No kernel user space distinction
Hooks for scheduling
Scheduler in Java extended to a framework

Class Scheduler
Class Task



Real-Time Java on JOP 19

Schedule Events

Timer interrupt
HW interrupt
Monitor
Thread blocking
SW Event



Real-Time Java on JOP 20

Interrupts

Hook for HW interrupts
Timer interrupt results in scheduler call
Access to timer interrupt
Generate interrupt for blocking
SW Event is not part of the framework



Real-Time Java on JOP 21

Synchronization

Part of the language
Each object can be a 
monitor
JVM instruction or 
method declaration

synchronized void foo() {

...

}

synchronized(o) {

...

} 



Real-Time Java on JOP 22

Synchronization cont.

Called by framework:
monitorEnter(Object o)
monitorExit(Object o)

Attach user data to an object:
attachData(Object obj, Object data)
getAttachedData(Object obj)



Real-Time Java on JOP 23

Services for the Scheduler

Dispatch
Time
Timer
Interrupts



Real-Time Java on JOP 24

Class Scheduler

Extended for a user-defined scheduler
User provides:

schedule()
Monitor handling

Framework supplies:
Software interrupt for blocking
Dispatch function
Current time
Timer interrupt



Real-Time Java on JOP 25

Class Task

Minimal (not j.l.Thread)
Provides list of tasks
Scoped memory
Usually extended



Real-Time Java on JOP 26

A Simple Example
class Work extends Task {

private int c;

Work(int ch) {

c = ch;

}

public void run() {

for (;;) {

Dbg.wr(c); // debug output

int ts = Scheduler.getNow() + 3000;

while (ts-Scheduler.getNow()>0)

;

}

}

}



Real-Time Java on JOP 27

A Simple Example cont.
public class RoundRobin extends Scheduler {

public void schedule() {

Task t = getRunningTask().getNext();

if (t==null) t = Task.getFirstTask();

dispatch(t, getNow()+10000);

}

public static void main(String[] args) {

new Work(‚a');

new Work(‚b');

RoundRobin rr = new RoundRobin();

rr.start();

}

}



Task 1 SchedulerTask 2 JVM Hardware

block genInt

set interrupt

interrupt

schedule

dispatch

switch

resume task

Scheduling
decision

Context
switch

wFNP

interrupt

schedule

dispatch

Scheduling
decision

Context
switch

timer

User-defined FrameworkApplication

resume task

set timer

set timer

switch



Real-Time Java on JOP 29

Summary

RTSJ is too complex
System code in Java is possible
No extra memory protection needed
Dispatch is 20% slower in framework
Missing C++ friend in Java
JopVm in C



Real-Time Java on JOP 30

Garbage Collection?

An essential part of Java
Without GC it is a different computing 
model
RTSJ does not believe in real-time GC
Real-time collectors evolve
Active research area

For You?



Real-Time Java on JOP 31

Further Reading
P. Puschner and A. J. Wellings. A Profile for High Integrity Real-
Time Java Programs. In 4th IEEE International Symposium on 
Object-oriented Real-time distributed Computing (ISORC), 2001.
M. Schoeberl, Design Rationale of a Processor Architecture for 
Predictable Real-Time Execution of Java Programs, In 
Proceedings of the 10th International Conference on Real-Time 
and Embedded Computing Systems and Applications (RTCSA), 
2004.
M. Schoeberl, Real-Time Scheduling on a Java Processor, In 
Proceedings of the 10th International Conference on Real-Time 
and Embedded Computing Systems and Applications (RTCSA), 
2004.


	Real-Time Java on JOP
	Overview
	Real-Time Specification for Java
	RTSJ Issues
	RTSJ Subset
	Real-Time Profile
	Real-Time Profile
	Application Structure
	Schedulable Objects
	Scheduling
	Memory
	Restrictions of Java
	Implementation
	Low-level Functions
	Interrupts in JOP
	Dispatching
	Implementation Results
	User-Defined Scheduler
	Schedule Events
	Interrupts
	Synchronization
	Synchronization cont.
	Services for the Scheduler
	Class Scheduler
	Class Task
	A Simple Example
	A Simple Example cont.
	Summary
	Garbage Collection?
	Further Reading

