JOP: A Java Optimized Processor

!'_ for Embedded Real-Time Systems

Martin Schoberl

i JOP Research Targets

= Java processor

= Time-predictable architecture
= Small design

= Working solution (FPGA)

VSIS JOP Overview

i Overview

= Motivation

= Research objectives

= Java and the JVM

= Related work

= JOP architecture

s Results

= Conclusions, future work

VSIS JOP Overview

i Current Praxis

= C and assembler

= Embedded systems are RT systems
= Different RTOS

= JIT IS not possible

= JVM interpreter are slow

= => Java processor

VSIS JOP Overview

i Why Java?

= Safe OO language
= NO pointers
= Type-safety
= Garbage collection

= Built in model for concurrency
= Platform /ndependent
= Very rich stanadard library

VSIS JOP Overview

i Research Objectives

= Primary objectives:
= TiIme-predictable Java platform
= Small design
= A working processor

= Secondary objectives:
= Acceptable performance
= A flexible architecture
= Real-time profile for Java

VSIS JOP Overview

i Java and the JVM

= Java language definition
= Class library

= The Java virtual machine (JVM)
= An Instruction set — the byfecodes
= A binary format — the c/ass file
= An algorithm to veri/fy the class file

VSIS JOP Overview

i The JVM instruction set

= 32 (64) bit stack machine

= Variable length instruction set

= Simple to very complex instructions
= Symbolic references

= Only relative branches

VSIS JOP Overview

i Memory Areas for the JVM

s Stack
= Most often accessed
= On-chip memory as cache

s Code
= Novel instruction cache

= Class description and constant pool
O Heap

VSIS JOP Overview

i Implementations of the JVM

s Interpreter

= Just-in-time compilation

= Batch compilation

= Hardware implementation

VSIS JOP Overview

10

i Related Work

= picoJava
= SUN, never released

= aJile JEMCore

= Avallable, RTSJ, two versions
= Komodo

= Multithreaded Java processor

= FemtoJava
= Application specific processor

VSIS JOP Overview

11

i Research Objectives

picoJava alile Komodo FemtoJava JOP
Predictability - - - + +
Size - - + - + +
Performance + + . - +
JVM conf. + + - - -
Flexibility - - + + + + +
VSIS JOP Overview

12

i JOP Architecture

= Overview

= Microcode

= Processor pipeline

= An efficient stack machine
= Instruction cache

VSIS JOP Overview

i JOP Block Diagram

VSIS

JOP Core <-B|ZIS¥ ------------- Memory Interface
BC Address
Bytecode ¢ BC Data Bytecode
Fetch p— Cache
A
Data i Control
Fetch
______ ontrol | | .»| Extension
Data
G
B
Decode . Multiplier
ﬁData Control
v
Stack
L —> /O Interface
.. nerrupt

JOP Overview

14

i JVM Bytecode Issue

= Simple and complex instruction mix
= NO bytecodes for native functions

= Common solution (e.g. In picoJava):
= Implement a subset of the bytecodes
= SW trap on complex instructions
= Overhead for the trap — 16 to 926 cycles
= Additional instructions (115!)

VSIS JOP Overview

15

i JOP Solution

s Translation to microcode in hardware
= Additional pipeline stage

= NO overhead for complex bytecodes

= 1 to 1 mapping results in single cycle
execution

= Microcode sequence for more complex
bytecodes

= Bytecodes can be implemented in Java

VSIS JOP Overview 16

Microcode

VSIS

Stack-oriented
Compact
Constant length
Single cycle

Low-level HW
access

= An example

dup: dup nxt // 1 to 1 mapping

// a and b are scratch variables
// for the JVM code.

dup_x1: stm a // save TOS
stm b // and TOS-1
Tdm a // duplicate TOS
Tdm b // restore TOS-1

1dm a nxt // restore TOS
// and fetch next bytecode

JOP Overview 17

‘L Processor Pipeline

bytecode branch condition

microcode branch condition

J next bytecode

l

Bytecode Microcode Microcode Microcode
Fetch, translate - Fetch and Decode - Execute
and branch branch
T branch
spill,

bytecode branch fill

Stack Stack

Address - RAM

generation

VSIS

JOP Overview

18

i Interrupts

= Interrupt logic at bytecode translation
= Special bytecode
= Transparent to the core pipeline

= Interrupts under scheduler control
= Priority for device drivers
= No additional blocking time
= Integration in schedulability analysis
= Jitter free timer events
= Bound to a thread

VSIS JOP Overview

i An Efficient Stack Machine

= JVM stack Is a logical stack
= Frame for return information
= Local variable area
= Operand stack

= Argument-passing regulates the layout

= Operand stack and local variables need
caching

VSIS JOP Overview

20

i Stack access

= Stack operation
= Read TOS and TOS-1
= EXxecute
= Write back TOS
= Variable load
= Read from deeper stack location
= Write into TOS

= Variable store
= Read TOS
= Write into deeper stack location

VSIS JOP Overview

21

i Two-Level Stack Cache

ALU

Read L A
Add. | Stack D-»

RAM

\

>

ﬁ

= Dual read only from TOS and & Instruction fetch

TOS-1 = Instruction decode

Two register (A/B) = Execute, load or store
Dual-port memory

Simpler Pipeline
No forwarding logic

>
o
o

Yy

e
Write B
Data N g

|

VSIS JOP Overview 22

i JVM Properties

= Short methods

= Maximum method size is restricted

= No branches out of or into a method
= Only relative branches

VSIS JOP Overview

23

i Proposed Cache Solution

VSIS

Full method cached

Cache fill on call and return
= Cache misses only at these bytecodes

Relative addressing
= No address translation necessary

No fast tag memory

JOP Overview

24

i Architecture Summary

VSIS

Microcode

1+3 stage pipeline
Two-level stack cache
Method cache

The JVM Is a CISC stack architecture,
whereas JOP is a RISC stack architecture.

JOP Overview

25

= Compared to soft-core processors

= General performance
= Application benchmark (KFL & UDP/IP)
= Various Java systems

= Real-time performance
= 100MHz JOP — 266MHz Pentium MMX
« Simple RT profile — RTSJ/RT-Linux

VSIS JOP Overview

26

i Size of FPGA processors

Processor Resources Memory frax
[LC] [KB] [MHZz]
JOP min. 1077 3.25 08
JOP typ. 1831 3.25 101
Lightfoot 3400 1 40
Komodo 2600 ? 33/4
FemtoJava 2000 ? 4
NIOS 2923 5.5 119
SPEAR 1700 8 80

VSIS JOP Overview

iApplication Benchmark

1000000
% 100000
c
S
T 10000
o
© 1000
(&)
c
®
£ 100
S
it
o 10

VSIS JOP Overview

i Periodic Thread Jitter

Period JOP RTSJ/Linux
Min. Max. Min. Max.
50 us 35 us 63 Us - -
70 us 70 us 70 us - -
100 us 100 us 100 us - -
5 ms 5 ms 5ms 0.017ms 19.9ms
10 ms 10 ms 10ms 0.019ms 19.9 ms
30 ms 30 ms 30ms 29.7ms 30.3ms
35 ms 35 ms 35ms 29.8ms 40.3ms

VSIS

JOP Overview

i Context Switch

= Low priority thread records current time

= High priority periodic/event thread measures
elapsed time after unblocking

= Time In cycles

JOP RTSJ/Linux
Min. Max. Min. Max.
Thread 20676 2709 11529 21090

SW Event 2773 2935 63060 101292

VSIS JOP Overview

i Applications

= Kippfahrleitung
= Distributed motor control

= OBB
= Vereinfachtes Zugleitsystem
= GPS, GPRS, supervision

= TeleAlarm
= Remote tele-control

=« Data logging
= Automation

VSIS JOP Overview

i Contributions

= Real-time Java processor
» Exactly known execution time of the BCs
= No mutual dependency between BCs
= Time-predictable method cache

= Resource-constrained processor
= RISC stack architecture
= Efficient stack cache
= Flexible architecture

VSIS JOP Overview

32

i Future Work

= Real-time garbage collector

= Instruction cache WC analysis
= Hardware accelerator

= Multiprocessor JVM

= Java computer

VSIS JOP Overview

‘L More Information

= JOP Thesis and source
= http://www.jopdesign.com/thesis/index.|sp
= http://www.jopdesign.com/download.|sp

= \Various papers
= Nttp://www.Jopdesign.com/docu.]|sp

VSIS JOP Overview 34

http://www.jopdesign.com/thesis/index.jsp
http://www.jopdesign.com/download.jsp
http://www.jopdesign.com/docu.jsp

	JOP: A Java Optimized Processor for Embedded Real-Time Systems
	JOP Research Targets
	Overview
	Current Praxis
	Why Java?
	Research Objectives
	Java and the JVM
	The JVM instruction set
	Memory Areas for the JVM
	Implementations of the JVM
	Related Work
	Research Objectives
	JOP Architecture
	JOP Block Diagram
	JVM Bytecode Issue
	JOP Solution
	Microcode
	Processor Pipeline
	Interrupts
	An Efficient Stack Machine
	Stack access
	Two-Level Stack Cache
	JVM Properties
	Proposed Cache Solution
	Architecture Summary
	Results
	Size of FPGA processors
	Application Benchmark
	Periodic Thread Jitter
	Context Switch
	Applications
	Contributions
	Future Work
	More Information

