Embedded Systems

Martin Schoeberl mschoebe@mail.tuwien.ac.at

Very Small Information Systems, 2006

Martin Schoeberl Embedded Systems

Outline

Introduction

- Definition and Characteristics
- Interface to the World
- Resource Constraints
- Real-Time Systems

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

What Are Embedded Systems?

Definition

An embedded system is a computer systems that is part of a larger system.

Example

- Washing machine
- Car engine control
- Mobile phone

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

What Are Embedded Systems?

Definition

An embedded system is a computer systems that is part of a larger system.

Example

- Washing machine
- Car engine control
- Mobile phone

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

ES Characteristics

Often mass products

- 98% of the processors are in ES
- Sometimes very specialized systems
- No or minimal user interface
- Resource constraints
- Must usually fulfill strict timing
- Usually runs forever (no reboot)

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

ES Characteristics

Often mass products

- 98% of the processors are in ES
- Sometimes very specialized systems
- No or minimal user interface
- Resource constraints
- Must usually fulfill strict timing
- Usually runs forever (no reboot)

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

ES Characteristics

Often mass products

- 98% of the processors are in ES
- Sometimes very specialized systems
- No or minimal user interface
- Resource constraints
- Must usually fulfill strict timing
- Usually runs forever (no reboot)

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

ES Characteristics

- Often mass products
 - 98% of the processors are in ES
 - Sometimes very specialized systems
- No or minimal user interface
- Resource constraints
- Must usually fulfill strict timing
- Usually runs forever (no reboot)

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

ES Characteristics

- Often mass products
 - 98% of the processors are in ES
 - Sometimes very specialized systems
- No or minimal user interface
- Resource constraints
- Must usually fulfill strict timing
- Usually runs forever (no reboot)

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

Interface to the World

Minimal user interface

- Buttons, lamps (e.g. elevator)
- Small display
- Sensors
 - Switch (0/1)
 - Temperature
 - Camera
- Actuators
 - Relay (On/Off)
 - Servo motor
- Communication

Definition and Characteristic: Interface to the World Resource Constraints Real-Time Systems

Interface to the World

- Minimal user interface
 - Buttons, lamps (e.g. elevator)
 - Small display
- Sensors
 - Switch (0/1)
 - Temperature
 - Camera
- Actuators
 - Relay (On/Off)
 - Servo motor
- Communication

Definition and Characteristic: Interface to the World Resource Constraints Real-Time Systems

Interface to the World

- Minimal user interface
 - Buttons, lamps (e.g. elevator)
 - Small display
- Sensors
 - Switch (0/1)
 - Temperature
 - Camera
- Actuators
 - Relay (On/Off)
 - Servo motor
- Communication

Definition and Characteristic: Interface to the World Resource Constraints Real-Time Systems

Interface to the World

- Minimal user interface
 - Buttons, lamps (e.g. elevator)
 - Small display
- Sensors
 - Switch (0/1)
 - Temperature
 - Camera
- Actuators
 - Relay (On/Off)
 - Servo motor
- Communication

Definition and Characteristic Interface to the World Resource Constraints Real-Time Systems

Resource Constraints

• Systems have to be cheap

- Memory
 - few 100 Bytes to few MB RAM
 - few KB to MB ROM
- Speed
 - few MHz up to a few 100MHz
 - Energy consumption
- Communication
 - Serial line
 - Special networks (Fieldbus)
- A lot of legacy systems

Definition and Characteristic Interface to the World Resource Constraints Real-Time Systems

Resource Constraints

- Systems have to be cheap
- Memory
 - few 100 Bytes to few MB RAM
 - few KB to MB ROM
- Speed
 - few MHz up to a few 100MHz
 - Energy consumption
- Communication
 - Serial line
 - Special networks (Fieldbus)
- A lot of legacy systems

Definition and Characteristic Interface to the World Resource Constraints Real-Time Systems

Resource Constraints

- Systems have to be cheap
- Memory
 - few 100 Bytes to few MB RAM
 - few KB to MB ROM
- Speed
 - few MHz up to a few 100MHz
 - Energy consumption
- Communication
 - Serial line
 - Special networks (Fieldbus)
- A lot of legacy systems

Definition and Characteristic Interface to the World Resource Constraints Real-Time Systems

Resource Constraints

- Systems have to be cheap
- Memory
 - few 100 Bytes to few MB RAM
 - few KB to MB ROM
- Speed
 - few MHz up to a few 100MHz
 - Energy consumption
- Communication
 - Serial line
 - Special networks (Fieldbus)
- A lot of legacy systems

Definition and Characteristic Interface to the World Resource Constraints Real-Time Systems

Resource Constraints

- Systems have to be cheap
- Memory
 - few 100 Bytes to few MB RAM
 - few KB to MB ROM
- Speed
 - few MHz up to a few 100MHz
 - Energy consumption
- Communication
 - Serial line
 - Special networks (Fieldbus)
- A lot of legacy systems

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

Real-Time Systems

- Imagine a car accident
 - What happens when the airbag is fired too late?
 - Even one ms too late is too late!
- Timing is an important property
- Conservative programming styles

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

Real-Time Systems

- Imagine a car accident
 - What happens when the airbag is fired too late?
 - Even one ms too late is too late!
- Timing is an important property
- Conservative programming styles

Definition and Characteristics Interface to the World Resource Constraints Real-Time Systems

Real-Time Systems

- Imagine a car accident
 - What happens when the airbag is fired too late?
 - Even one ms too late is too late!
- Timing is an important property
- Conservative programming styles

Our Example System

A Java processor board

- FPGA based
 - Processor is software
 - Can be configured
 - HW accelerator
- Interfaces
 - Digital IO, Analog input
 - Serial line
 - Ethernet
- Resources
 - up to 100MHz CPU
 - 1MB memory
 - 512KB + 32MB Flash

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our Example System

- A Java processor board
- FPGA based
 - Processor is software
 - Can be configured
 - HW accelerator
- Interfaces
 - Digital IO, Analog input
 - Serial line
 - Ethernet
- Resources
 - up to 100MHz CPU
 - 1MB memory
 - 512KB + 32MB Flash

Our Example System

- A Java processor board
- FPGA based
 - Processor is software
 - Can be configured
 - HW accelerator
- Interfaces
 - Digital IO, Analog input
 - Serial line
 - Ethernet
- Resources
 - up to 100MHz CPU
 - 1MB memory
 - 512KB + 32MB Flash

Our Example System

- A Java processor board
- FPGA based
 - Processor is software
 - Can be configured
 - HW accelerator
- Interfaces
 - Digital IO, Analog input
 - Serial line
 - Ethernet
- Resources
 - up to 100MHz CPU
 - IMB memory
 - 512KB + 32MB Flash

- Embedded systems are part of a bigger system.
- ES systems are small.
- ES programming is programming with resource constraints.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For Further Reading

http:

//en.wikipedia.org/wiki/Embedded_system

N. Schoeberl.

JOP: A Java Optimized Processor for Embedded Real-Time Systems. PhD thesis, Vienna University of Technology, 2005. http://www.jopdesign.com/thesis/thesis.pdf