

Using a Java Optimized Processor
in a Real World Application

Martin Schoeberl

JOP.design,

Strausseng. 2-10/2/55, A-1050 Vienna, Austria
martin@jopdesign.com

Abstract — Java, a popular programming language on desktop systems, is rarely
used in embedded systems. Some features of Java, like thread support in the lan-
guage, could greatly simplify development of embedded systems, but the common im-
plementations of the JVM (Java Virtual Machine), as interpreter or just-in-time
compiler, are not practical. This paper describes an alternative approach: JOP (a
Java Optimized Processor) is a hardware implementation of the JVM with short and
predictable execution time of most bytecodes. JOP is implemented as a configurable
soft core in an FPGA. The experiences of the first application of JOP and the bene-
fits from using an FPGA in an embedded distributed control system are described in
the second part of this paper.

1 Introduction
JOP, a Java Optimized Processor, is an implementation of the JVM targeted for small
embedded systems. It shall help to increase the acceptance of Java for these systems.

During the research for my thesis on JOP I got the chance to use JOP in a real world
application. The first use of a new architecture in a commercial project is risky, but it is
the best test case to prove the feasibility of the processor.

Balfour Beatty Austria has developed a Kippfahrleitung to speed up loading and
unloading of goods wagons. JOP is used to control up to 15 asynchronous motors.

The system consists of one processor board per motor and one master station. The sub
systems communicate over a RS485 bus. The main challenge was to react to the sensors
in real time and control the bus access of this distributed system.

2 Motivation for a Java Processor
Current software design practice for embedded systems is still archaic compared to soft-
ware development for desktop systems. C and even Assembler is used on top of a small
RTOS. The variety of embedded operating systems is large and this fragmentation of the
market leads to high cost. Java [1] can be a way out of this dilemma.

SCHOEBERL

2.1 Java for embedded systems
Java possesses language features not found in C: object-oriented, memory management
with a garbage collector, implicit memory protection and threads. Memory management
and threads are (besides device drivers) the main components of embedded operating sys-
tems. Finding these features in the language embedded systems can be programmed in
Java without the need of an operating system.

Java on desktop systems comes with a large library. However, if Java is stripped down
to the core components it has a very small memory footprint. And with careful program-
ming (which is also necessary in C coded embedded systems) the garbage collector can
be avoided. Java can be used even in hard real-time systems.

2.2 Implementation of Java
The definition of the language includes also the definition of the binary and the virtual
machine [2] to execute these programs. The Java Virtual Machine (JVM) is a stack ma-
chine. The drawback of stack machines is that every operand must be explicitly loaded.
Java can be implemented in several ways:
Interpreter: A simple solution with low memory requirements, but lacks in performance.
Just-in-time compilation: Very popular on desktop systems, but has two main disadvan-

tages in embedded systems: A compiler is necessary on the target and due to compila-
tion during runtime execution times are not predictable.

Batch compilation: Java can be compiled in advance to the native instruction set of the
target. However, dynamic loading of classes is no longer possible (not a main concern
in embedded systems).

Hardware implementation: A Java Processor with JVM bytecodes as native instruction
set.

Implementing the JVM in hardware is challenging but the most attractive way for em-
bedded systems.

3 JOP – a Java Optimized Processor
The goal of JOP is a simple and small processor optimized to execute Java bytecode. The
processor core has to be small enough to fit in a mainstream FPGA such that it is possible
to use Java for embedded applications. Knowing the processor core it should be easy to
implement a real-time enabled JVM.

It's not the goal to execute every bytecode directly in hardware. This would lead to a
very complex design. JOP is a mixed hardware/software implementation of the JVM:

− Simple instructions are executed directly (in one cycle)

− Medium complex instructions are executed in micro code

− Particular JVM instructions can also be coded in Java (e.g. floating point instructions)

The micro code instructions must be general enough to implement the sometimes very
complex JVM instructions.

Since threads are an integrated part of the Java programming language we will see more
applications using them. When the processor core is small it will make sense to integrate
multiple JOPs in a single chip to enhance performance of multithreaded programs.

JOP IN A REAL WORLD APPLICATION

3.1 FPGA Implementation
An FPGA has two basic building blocks: logic elements and memory. A logic element
(LE) consists of a 4-bit LUT (Look Up Table) and a flip-flop. Memory blocks (ESB) are
usually small (e.g. 0.5 KB) with independent read and write ports of configurable size.
With these constraints a stack machine is an attractive architecture in an FPGA:
− The stack can be implemented in internal memory, making it an implicit data cache.

− A register file in a RISC CPU needs two read ports and one write port for single cycle
instructions. A stack needs only one read and one write port (common in current
FPGAs).

− Instruction set is simpler and can be reduced to 8 bits.

− No data forwarding is necessary.

JOP is implemented in the low cost ACEX FPGA [3] from Altera. Memory blocks are
used to implement the stack, store micro code and for caching of Java bytecode.

3.2 Micro Code
Java bytecodes, the instructions of the JVM, have a great variation in complexity. There
are simple instructions like arithmetic and logic operations on the stack. But the seman-
tics of instructions like new or invokestatic can result in class loading and verification. As
a consequence not every JVM instruction can be implemented in hardware. One solution,
used in Suns picoJava-II [4], is to execute a subset of the bytecode native and trap on the
more complex ones. This solution has a constant overhead for the software trap.

The approach to this problem in JOP is different. JOP has its own instruction set (the so
called micro code). Some bytecodes have a 1 to 1 mapping to JOP instructions, for the
more complex a sequence of JOP instructions is necessary.

Every bytecode is translated to an address in the micro code that implements the JVM.
If the bytecode has an equivalent JOP instruction it is executed in one cycle and the next
bytecode is translated. For complex bytecodes JOP just continues to execute micro code
in the following cycles. The end of this sequence is coded in the instruction. This transla-
tion needs an extra pipeline stage but has zero overheads for complex JVM instructions.

3.3 Pipeline Overview
The stack architecture allows a short pipeline resulting in short branch delays. Figure 1
shows an overview of the pipeline. Three stages form the core of JOP, executing JOP
instructions. An additional stage in the front of the core pipeline translates bytecodes to
addresses in micro code.

Every JOP instruction (except wait) takes one cycle. Conditional branches have an im-
plicit delay of two cycles. This branch delay can be filled with instructions or nop.

3.4 Java Bytecode Fetch
The first pipeline stage can be seen in Figure 2. All bytecodes are fetched from internal
memory (jbc ram). This memory (instruction cache) is filled on function call and return.
Every byte is translated through a table (jtbl) to an address for the micro code ROM. It is
also stored in a register for later use as operand. jinstr is used to decode the type of a
branch and jpcbr to calculate the target address.

SCHOEBERL

jpc pc sel_
ex

Ajbc
ram
+

jtbl

irjvm
rom

decode logic
add/sub

ld

Bstack
ram

rd/wr
addr

sp,
spp,
vp

addr
select

bytecode fetch JOP instrcution fetch decode, address execute

Figure 1: Pipeline of JOP

jinstr

jtbl

jopd
low

jpc

jpcbr

wr
dly

wr
addr

rd
addr

wr
data

rd data

jbc
ram

1

A

A

A

jopd
high

jpaddr

jfetch,
jopdfetch,
jmp

Figure 2: Java bytecode fetch

JOP IN A REAL WORLD APPLICATION

3.5 JOP Instruction Fetch
Figure 3 shows the second pipeline stage. JOP micro code that implements the JVM is
stored in the memory labeled jvm rom. The program counter pc is incremented during
normal execution. If the instruction is labeled to be the last one for the bytecode pc is
loaded with jpaddr the starting address of the implementation of the next bytecode to be
executed.

pc ir

jvm rom

brdly

offtbl

jfetch,
br,
pcwait

jpaddr

bcfetbl
jfetch, jopdfetch

1

ir
rd

addr

Figure 3: JOP instruction fetch

brdly holds the target for a conditional branch. A lot of branch destinations share the
same offset. A table (offtbl) is used to store these offsets. This indirection makes it possi-
ble to use only 5 bits in the instruction coding for branch targets and still allow larger
offsets. The three tables bcfetbl, offtbl and jtbl (from the bytecode fetch stage) are gener-
ated during assembly of the JVM code. The outputs are VHDL files. For an implementa-
tion in an FPGA it is no problem to recompile the design after changing the JVM imple-
mentation. For an ASIC with loadable JVM a different solution is necessary.

3.6 Decode and Address Generation
The third pipeline stage shown in Figure 4 is more complex than the first two. JOP in-
structions are decoded for the execution stage and addresses for read and write accesses
of the stack RAM are generated.

SCHOEBERL

spp

spm

sp

A

1

-1

vp1

1

vp2

2

vp3

3

A

ir

vpadd

vp0

A

jopd

rd
addr

wr
addr

wr
dly

sel_rda

sel_wra

spp

stack
ram

sel_smux

decode ex
reg

ir
sel_ex

sel_smux, sel_rda, sel_wra

vp1
vp2
vp3
ir
vp0
vpadd

Figure 4: Decode and address generation

Instructions of a stack machine can be categorized with respect to stack manipulation in
pop or push:
Pop instructions reduce the stack. Register B (TOS-1) from the execution stage is filled

with a new word from stack RAM. The stack pointer is decremented. In short:
A op B → A, stack[sp] → B, sp-1 → sp

JOP IN A REAL WORLD APPLICATION

Push instructions generate a new element on the stack. Register B is spilled to stack
RAM and the stack pointer is incremented:

 data → A, A → B, B → stack[sp+1], sp+1 → sp

An instruction needs either read or write access to the stack RAM. Access to local vari-
ables, also residing in the stack, need simultaneous read and write access. As an example
ld0 loads the memory word pointed by vp on TOS:
 stack[vp+0] → A, A → B, B → stack[sp+1], sp+1 → sp

There are two types of local variables. The locals of the JVM addressed with vp and in-
ternal scratch variables for the implementation of the JVM addressed with ir.

3.7 Execute
As can be seen in Figure 5 TOS and TOS-1 are implemented as register A and B. Every
arithmetic/logical operation is performed with A and B as source and A as destination.

imm
val

type
conversion

din

wr
addr

rd
addr

dout

stack
ram

B ld
and
or

xor

A

shift

opd
dlyjopd

din (ior)

sp
vp0
jpc

Figure 5: Execute

SCHOEBERL

All load operations (local variables, internal register, external memory and periphery)

result in the value loaded in A. As a consequence no write back pipeline stage is neces-
sary. A is also the source for store operations.

Register B is never accessed directly. It is both read as implicit operand or for stack
spill on push instructions and written during stack spill and fill.

3.8 Different Soft Core CPUs in FPGA
Table 1 compares the resource usage of different soft-core processors. Estimating equiva-
lent gate counts for designs in an FPGA is problematic. It is better to compare the two
basic structures LE (logic element) and ESB (embedded system block).
Nios: [5] Altera’s configurable load/store RISC processor.

• Data path of 16 or 32 bits

• 16-bit instructions set

• 5-stage pipeline architecture

• Single clock shifts configurable

SPEAR: [6] Scalable Processor for Embedded Applications in Real-time Environments.
• 16-bit instructions set with deterministic execution times

• 3-stage pipeline architecture

• Predicated instructions to support single-path programming

Lightfoot: [7] Java Processor core from Xilinx.
• 3-stage pipeline architecture

• Stack-based design

JOP: Configuration for JOP:
• Hardware multiplier

• Single cycle barrel shifter

• External memory interface (8 Bit)

Processor LEs ESB Data Path Configuration
Nios
SPEAR
Lightfoot
JOP

1700
1700
3400
2100

2.5 KB
8 KB
1 KB
3 KB

32-bit
16-bit
32-bit
32-bit

UART, timer
basic processor
basic processor
UART, timer

Table 1: FPGA Soft Core Processors

4 The Project
In rail cargo a large amount of time is spent on loading and unloading of goods wagons.
The contact wire above the wagons is the main obstacle. Balfour Beatty Austria devel-

JOP IN A REAL WORLD APPLICATION

oped and patented a technical solution to tilt the contact wire up. This is done on a line up
to one kilometer. An asynchrony motor on each mast is used for this tilting. But it has to
be done synchronously on the whole line.

Every motor is controlled by an embedded system. This system also measures the posi-
tion and communicates with a base station. The base station has to control the deviation
of individual positions during the tilt. It also includes the user interface for the operator.

Technically this is a distributed embedded real time control system communicating
over a RS485 network.

4.1 Real Hardware
Although this system is not a mass product there were cost constraints. Even a small
FPGA is more expensive than a general purpose CPU. To compensate for this, additional
chips for memory and FPGA configuration were optimized for cost. One standard 128
KB Flash was used to hold FPGA configuration data, the Java program and a logbook.
External main memory was reduced to 128 KB with 8-bit data bus.

To reduce external components the boot process is a little bit tricky: A watchdog circuit
delivers a reset signal to a 32 macro-cell PLD. This PLD loads configuration data into the
FPGA. When the FPGA starts it disables the PLD and loads the Java program from the
Flash in the external RAM. After initialisation of the JVM the program starts at main().

The motor is controlled with five silicon switches connected to the FPGA with opto
couplers. Position is measured with two end sensors and a revolving sensor. The proces-
sor supervises voltage and current. A display and a keyboard are attached on the base
station for the user interface. The communication bus (up to one kilometer) is attached
with an isolated RS485 data interface.

4.2 Synthesized Hardware
The following I/O modules were added to the JOP core in the FPGA:
− Timer
− UART for debugging
− UART with FIFO for the RS485 line
− Four sigma delta ADCs
− I/O ports

Five switches in the power line had to be controlled from the program. A wrong setting
of the switches due to a software error could result in a short circuit. Ensuring that this
could not happen was an easy task at the VHDL level.

4.3 Software Architecture
The main task of the program was to measure the position with the revolving sensor and
communicate with the base station. This has to be done under real time constraints.

This is not a very complicated task. But at the time of development a lot of features
from a full-blown JVM implementation, like threads or objects, were missing in JOP.The
resulting Java was more like a ‘tiny Java’. It had to be kept in mind which Java constructs
were supported by JOP. Due to the missing multi threading capability and for simplicity a

SCHOEBERL

simple infinite loop with constant time intervals was used. After initialization and memo-
ry allocation this loop was entered and never exited.

 public static void main(String[] args) {

 init();
 Timer.start();
 forever();
 // NEVER getting to this point
 }

 private static void forever() {

 for (;;) {
 Msg.loop();
 Triac.loop();
 if (Msg.available) {
 handleMsg();
 } else {
 chkMsgTimeout();
 }
 handleWatchDog();
 Timer.waitForNextInterval();
 }
 }

Figure 6: Simplified Program Structure

4.4 Communication
The communication is based on a client server structure. Only the base station is al-

lowed to send a request to one mast station. This station has to reply. The maximum reply
time is bound by two time intervals. The base station handles timeout and retry. If an un-
recoverable error happens, the base station switches off power for the mast stations in-
cluding power supply for the motor. This is the fail safe state of the whole system.

On the other side every mast station supervises the base station. The base station has to
send requests on a regular basis. If this is violated the mast station switches off the motor.

The data is exchanged in small packets of 4 bytes including one byte CRC. For devel-
opment commands to program the Flash in the mast stations and to force a reset were
included. So it is possible to update the program or even change the FPGA configuration
over the network.

5 Benefits from using an FPGA
The flexibility of FPGAs made it possible to postbone some design decisions after pro-
duction of the PCB. Since the production of the PBC was on the critical time line this
helped to finish the complete project in time.
 During development there have been situations where problems showed up that have not
been foreseen. Two examples are given where it was possible to find simple solutions:

The routing of the PCB was almost finished. A question about cooling the switches
(TRIAC) has arisen. The electronic development insisted on a temperature sensor. The
requirements in resolution and conversion time were low. A sigma delta ADC with only

JOP IN A REAL WORLD APPLICATION

two external passive components (a NTC thermistor and a capacitor) was implemented in
the FPGA.

The AC current of the motor had to be monitored. The solution for this was a shunt re-
sistor in every power line and an opto coupler for isolation. But it turned out that the
shunt resistors got too hot and delivered to little voltage for the opto couplers to work
reliable. Having seen that it is possible to build an ADC in the FPGA a new idea was
born. For EMC reasons there is an inductor in every AC line. With a few windings of
wire a simple transformer can be built. The resulting voltage was amplified, rectified and
used for current measurement. An additional comparator was used for an exacter thre-
shold than the input buffer of the FPGA. This solution kept the board cool and added ex-
tra functionality. It is now possible to define two thresholds for too little and too much
current.

5.1 A Sigma-Delta ADC
When the sample rate for an ADC is low compared to the clock frequency of the digital
system it is possible to transfer the AD conversion problem from the analogue to the time
domain. In Figure 7 the principle of a Sigma-Delta ADC is shown.

Reg.1-Bit
DAC

1-Bit
ADC

Digital
Filter

+

-

Integrator
Analog
Input

n Bit Digital
Output

Oversampling Clock

Figure 7: Sigma-Delta ADC

Only the adder and the integrator have to be analogue components. A single bit DAC is
just the FPGA digital output driving the signal between GND and VCCIO. The single bit
ADC can be built with a comparator. For low resolution the threshold of the FPGA input
is practical. The simplest form of an ADC built with an FPGA is shown in Figure 8. The
filter averages 2n samples and can be implemented as a counter.

FPGA

to Filter

Clock
Input

Figure 8: Minimal ADC

SCHOEBERL

6 Tools
Tools have a major impact on productivity and on development cost. It was possible to
use only free tools for software and FPGA development.

The Java programs were compiled with Sun’s free Java compiler. The resulting class
files had to be ‘romized’ with Suns JavaCodeCompact. JCC original produced C struc-
tures from the class files to be compiled and linked with a JVM written in C. JCC was
adapted to generate binary class structures suitable for the JVM in JOP.

JOP is written entirely in VHDL. These VHDL sources were synthesized with an Altera
OEM version of Leonardo Spectrum. The generated EDIF file was placed and routed in
Alteras free version of MAX+Plus II. MAX+Plus II was also used for post routing timing
simulation. No simulation on the VHDL level was necessary.

Additional tools were written in Java: Jopa an assembler for JOP micro instructions and
JopSim a simulator of JOP at the JVM level (a JVM written in Java).

7 Conclusion
This paper showed one way to use Java in embedded applications. JOP, as hardware im-
plementation of the JVM, makes it possible to use Java even in a hard real-time system.
Due to the small size of the processor it can be implemented in a low cost FPGA. For low
volume systems the flexibility of an FPGA can be of more importance than the slightly
higher cost compared to conventional processors.

Using an FPGA as basis for the processor in the project added flexibility, which is not
possible with conventional processors. A real running system proved the feasibility of
JOP. But the constrains from the project directed some design decisions. Further research
will focus on real-time threads in JOP.

More Information and all VHDL and Java sources for JOP can be found at
http://www.jopdesign.com.

Acknowledgments
I would like to thank Walter Wilhelm from EEG for making it possible to use JOP in this project.

References
[1] K. Arnold and J. Gosling. The Java Programming Language, Addison Wesley, 2nd edition,

1997.

[2] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Addison Wesley, 2nd
edition, 1999.

[3] Altera Corporation. ACEX Programmable Logic Family, Data Sheet, ver. 1.01, April 2000.

[4] Sun microsystems. picoJava-II Processor Core, Data Sheet, April 1999.

[5] Altera Corporation. Nios Soft Core Embedded Processor, Data Sheet, ver. 1, June 2000.

[6] M. Delvai, W. Huber, P. Puschner and A. Steininger. Processor Support for Temporal Predict-
ability - The SPEAR Design Example. To appear at Euromicro Conference on Real-Time Sys-
tems (ECRTS03), Porto, Portugal, July 2003.

[7] Xilinx Corporation. Lightfoot 32-bit Java Processor Core, Data Sheet, September 2001.

