
Worst-Case Execution Time Based Optimization of
Real-Time Java Programs

Stefan Hepp
Institute of Computer Languages
Technical University of Vienna

Email: hepp@complang.tuwien.ac.at

Martin Schoeberl
Department of Informatics and Mathematical Modeling

Technical University of Denmark
Email: masca@imm.dtu.dk

Abstract—Standard compilers optimize execution time for the
average case. However, in hard real-time systems the worst-case
execution time (WCET) is of primary importance. Therefore, a
compiler for real-time systems shall include optimizations that
aim to minimize the WCET.

One effective compiler optimization is method inlining. It is
especially important for languages, like Java, where small setter
and getter methods are considered good programming style. In
this paper we present and explore WCET driven inlining of Java
methods. We use the WCET analysis tool for the Java processor
JOP to guide to optimization along the worst-case path. The tool
JCopter is integrated with the WCET analysis tool and is used
to explore different inlining strategies. On real-time benchmarks
the optimization results in a reduction of the WCET by a few
percent up to a factor of about 2.

I. INTRODUCTION

Common computer architectures and compilers are designed
to optimize the average case performance. However, for real-
time systems we are interested in the worst-case execution
time (WCET). Some average case optimizations (e.g., higher
clock frequency or register allocation in a compiler) will also
reduce the WCET. However, some average-case optimizations
can actually increase the WCET.

For real-time systems we are interested in building new
computer architectures [16] and supporting software (com-
pilers [23], Java virtual machines [15], libraries [7]) that
are optimized for the WCET. In this paper we describe the
optimization of Java applications for the WCET. The main
optimization method employed is method inlining.

Java applications are compiled to class files, which contain
Java bytecode for execution by a Java virtual machine (JVM).
This bytecode can be interpreted, compiled during run time
(just-in-time (JIT) compilation), compiled ahead of time, or
executed by a hardware implementation of the JVM (a Java
processor). While JIT compilation is a problematic option
for real-time systems, the other three execution forms are a
valuable option for time-predictable real-time systems.

In this paper we show a tool flow that targets execution
of bytecodes on the Java processor JOP [15]. We have chosen
JOP as the first target as JOP is optimized for time-predictable
execution of Java programs and an open-source WCET anal-
ysis tool, WCA [18], is available.

The optimization and transformation of Java applications
is performed at the Java bytecode level. The tool JCopter is

integrated with the WCET analysis tool for JOP. Although
JCopter uses the timing model of JOP to guide the WCET
oriented optimization, the output of JCopter are still standard
class files. Therefore, this optimization can also be used on
other real-time Java platforms.

The paper is organized as follows. The following section
presents background on real-time Java and WCET analysis for
Java. Section III discusses worst-case driven method inlining.
The concrete implementation is presented in Section IV. The
results are presented in Section V. Section VI presents related
work. The paper is concluded by Section VII.

All tools (JCopter, WCA, JOP) are available in open-source
under the GNU GPL. Download instructions can be found at:
http://www.jopwiki.com/Download.

II. BACKGROUND

We base our design and implementation of the WCET
driven optimization on real-time Java applications. The de-
scribed method is general, but for the evaluation we target
the execution platform JOP [15]. JOP is a Java processor that
is optimized for time-predictable execution of Java bytecode
and to simplify WCET analysis. The distribution of JOP also
includes a WCET analysis tool [18] that is used to guide the
optimizer JCopter.

A. Real-Time Java

Java for real-time systems comes in two flavors: the Real-
Time Specification for Java (RTSJ) [2] and Safety-Critical Java
(SCJ) [9], [11]. The RTSJ targets soft real-time applications,
whereas SCJ is intended to be used in high integrity systems
and shall enable certification according to the highest critical-
ity levels. Therefore, SCJ applications need to undergo, besides
other certification actions, schedulability and WCET analyses.

With our system we target the SCJ application domain.
SCJ is a subset of the RTSJ with a few additional classes
to simplify real-time application programming and also the
development of a SCJ compliant Java virtual machine (JVM)
and runtime libraries. The individual tasks are organized as
handlers, where the SCJ infrastructure releases these handlers
either periodically or as a result of an (hardware or software)
event. Each handler has to implement a single method. In
contrast to the RTSJ, this method does not contain the periodic
loop with waitForNextRelease(). The single method is executed



every release and is therefore the entry point for WCET
analysis and also the target method for our WCET driven
optimization.

B. WCET Analysis

Hard real-time systems need a formal proof that all tasks
meet their deadline. Schedulability or response time analysis
gives this mathematical proof. For those analyses the WCET of
tasks and synchronized code sections needs to be known. The
WCET can usually not be measured. Instead, a static WCET
analysis has to be used to derive an upper bound of the WCET.
An overview of current state-of-the-art WCET tools can be
found in [21].

WCET analysis reconstructs the control flow graph from
the application binary, needs loop and recursion bounds, and
calculates execution times of basic blocks. With this informa-
tion, the problem of finding the worst case path is formulated
as a network flow problem and usually solved as an integer
linear programming problem. This is also called implicit path
enumeration technology (IPET).

The binary format of Java programs are class files. These
class files contain more information than e.g., a binary of a
C/C++ compiled program. It is possible to reconstruct the
whole class structure from this class file. Therefore, the recon-
struction of all needed information for the program analysis
is easier than for normal binaries.

The harder problem is the analysis of the low-level timing
– the execution time of basic blocks. This timing depends
on the target execution platform. Therefore, WCET analysis
tools contain processor specific versions of the low-level
analysis. Modern processors with a lot of hidden state (caches,
branch predictors, write buffers, reservation stations, reorder
buffers,...) are very hard to model for the WCET analysis.
Furthermore, the large state results in long execution times of
the pipeline simulation to derive the basic block timings.

We attack this low-level WCET analysis problem by build-
ing a processor that is WCET analysis friendly. The Java
processor JOP [15] is designed to simplify WCET analysis of
Java programs. JOP executes Java bytecodes (the instruction
set of the JVM) directly. Therefore, no further translation,
which would increases the complexity of the WCET analysis,
to machine code is needed. The execution time of most
bytecodes is constant. JOP also contains a so called method
cache [14], which caches whole methods and is intended to
simplify the cache analysis.

The simple timing model of JOP has led to several WCET
analysis projects that support JOP as their target [1], [6], [8],
[10]. The WCET analysis tool WCA is part of the JOP source
distribution [18]. We used WCA to provide WCET bounds
and worst-case path information to the optimizer.

C. Cost of Method Invocation

Invoking a virtual method in Java has considerable over-
head. On JOP, the invocation of a method costs around 100
cycles. Although this might sound a high number, other Java
processors, such as aJile [5], jamuth [19], or SHAP [22], have

similar execution times for a method invocation. Java method
invocation is more expensive than calling a C function, as
the dynamic dispatch, where the receiver method depends on
the object type, needs several memory accesses and the stack
frame management is slightly more complex in Java than in C.

As method invocation is so costly in Java and good pro-
gramming practice suggests to hide object fields with short
getter and setter methods, method inlining is a good target
for program optimization.

JOP uses a novel instruction cache called method cache [14]
that caches whole methods. If the control flow is transferred
from one method to another method by a call or a return, the
processor loads the method to be executed into the instruction
cache if the cache does not already contain the method. A
FIFO replacement strategy is used to evict methods from the
cache.

The advantage of the method cache is that instruction
cache misses only appear at call and return instructions. All
other instructions are guaranteed instruction cache hits, which
simplifies the WCET analysis. The method cache content is
determined only by the sequence of method calls and returns,
as well as by the code size of the methods. However, increasing
the code size of a method not only increases the instruction
cache miss costs associated with that method, it can also
increase the number of method cache misses at call sites of
other methods. This reduces the gain of optimizations that
increase the code size.

III. WCET DRIVEN METHOD INLINING

Method inlining replaces a call site with the invoked
method. Additional code needs to be added to the call site
that mimics the behavior of the invoke instruction in the
original code, such as storing the parameters into new local
variables and performing a null-pointer check for the receiver
of the invocation. In the general case, eliminating the invoke
instruction reduces the execution time at the call site, but due
to the code size increase of the caller the instruction cache
costs can increase.

Since we are interested in reducing the WCET, there is
no advantage in inlining a call site that is not on the worst-
case path. Instead, the increased instruction cache costs may
even lead to an increase of the WCET. Therefore we use the
WCET analysis tool WCA to find the worst-case path during
optimization. Call sites that are not on the worst-case path are
not considered for inlining. On the other hand, reducing the
execution time of the worst-case path can cause another path to
be the new worst-case path. Therefore, to keep the worst-case
path information up-to-date during optimization, we perform
the WCET analysis after every optimization step again.

In order to decide whether to inline a call site or not, we
first estimate the gain g of inlining the call site as

g = gl ∗ f −∆cache-miss-costs

where gl is the gain for a single execution of the inlined
call site (ignoring cache costs) and f is the estimated exe-
cution frequency of that call site per single execution of the



target method of the optimization. ∆cache-miss-costs is the
estimated difference of the instruction cache costs caused by
inlining the call site per single execution of the target method.
Inlining is only performed if the gain is positive.

To estimate the cache costs, a method cache analysis has
been implemented. The analysis first classifies all method
cache accesses (invoke instructions and return instructions) as
always hit (each execution of the instruction is a cache hit),
always miss (each execution is a cache miss), or at most one
miss (the accessed method is persistent during the execution
of some scope). Based on those classifications and on the
estimated execution frequencies of the cache accesses, the
analysis then calculates cache miss cost changes for given code
size changes.

The cache miss costs of a cache access are calculated as
the cache miss cost for a single cache miss, multiplied by
the number of cache misses. The number of cache misses is
derived from the cache access classification and the estimated
execution frequency of that call. The cache miss cost of a
single cache miss is proportional to the size of the method to
load. In case of a virtual invoke with multiple receiver types,
the largest method is used to estimate the cache miss costs.

The cache analysis provides the following three cache
approximation modes:

• always miss: All cache accesses are classified as always
miss. This is a very conservative, but comparatively
simple over-approximation. The number of cache misses
is equal to the execution frequency of that instruction. If
the code size of a method m is increased, then the cache
miss costs of all call sites of m as well as of all return
instructions returning to m are increased. No other cache
accesses are affected.

• always hit: All cache accesses are classified as always
hit. If this mode is used, the effects of the method cache
are ignored by the optimizer, since all cache costs are
assumed to be zero.

• at most one miss: This mode uses the fact that if all
methods that can be invoked during the execution of a
method m fit into the method cache (including m), then
every cache access during the execution of m is at most
one miss [18]. All cache accesses in m are therefore
classified as at most one miss. If m and the invoked
methods do not fit into the method cache, the cache
accesses are classified as always miss.

Let reachable(m) denote the set of methods that can be
reached in the call graph from method m, including m. We
call the subgraph of the call graph that contains all methods
m where reachable(m) fits into the method cache the all-fit
region. For every scope in the all-fit region, we can classify all
cache accesses in those scopes as at most one miss. Figure 1
shows the all-fit region of a simple call graph for a method
cache that can hold up to four methods (we assume that
initially all methods are of the same size in this example). If
we would inline for example node 8 into node 6, thus doubling
the size of node 6, then node 4 would no longer be in the all-fit
region and be reclassified as always miss.

Fig. 1. Call graph with all-fit region for a method cache that can hold up
to four methods

If the at most one miss analysis mode is used, the number of
cache misses of a cache access in the all-fit region depends on
the number of times the application can enter the all-fit region.
Modifying the call graph or changing the size of methods in
the all-fit region can increase or shrink the all-fit region. This
can affect the number of cache misses and thus the cache miss
costs of all nodes that are reachable by the reclassified nodes.
If inlining causes other methods to fall out of the all-fit region
and be classified as always miss, this can lead to large cache
cost increases caused by the optimization. It also means that
in contrast to the other analysis modes, changing the code
size of a method may not only affect the worst-case path in
methods that can reach the changed method, but potentially in
all methods in the call graph.

Even if we use a very conservative cache cost estimation,
the actual gain of inlining a call site can be lower than
the estimated gain g if there exists a different path with an
execution time greater than WCETold − g, where WCETold is
the WCET prior to optimization. If the WCET of the other
path is very close to WCETold, then cache cost increases at
call sites on that path can even lead to an increase of the
overall WCET. It would be possible to use deoptimization
to undo the code transformation when the WCET analysis
returns a higher WCET bound after an optimization to avoid
a WCET increase. However, deoptimization has not yet been
implemented in JCopter.

Algorithm 1 shows the algorithm used to implement the
WCET-driven method inliner. The algorithm works by itera-
tively optimizing the best optimization candidate on the worst-
case path and then updating the analyses and the evaluation
of the candidates, until no more candidates with a positive
gain are found, or until the application code size reaches a
predefined limit.

First, the optimizer initializes the method cache analysis
and performs a first WCET analysis to find the initial worst-
case path. Optimization candidates (i.e., call sites that can be
inlined) are searched in all methods that are reachable from
the target method.

To achieve a good speedup without increasing the code
size too much, the optimizer then sorts all candidates by their
estimated gain to application code size increase ratio (line 3).
The algorithm then selects the candidate with the highest ratio
that is on the current worst-case path for optimization and
removes it from the set (line 5). If there is no candidate left



Algorithm 1: WCET-driven method inliner

initialize WCA, cache analysis;1

C := FindInitialCandidates();2

CalculateRatios(C);3

while C 6= ∅ ∧ application-size ≤ max-size do4

curr := RemoveBestCandidate(C) or return;5

Optimize(curr);6

C := C ∪ FindNewCandidates();7

change := UpdateCacheAnalysis();8

UpdateWCA(change);9

UpdateRatios(C, change);10

end11

that is on the current worst-case path and that has a gain g > 0,
the algorithm terminates.

The selected candidate is then optimized. This can create
new optimization candidates, i.e., call sites in the inlined code
are added to the candidate set (line 7). The cache analysis
must then be updated using the new code size of the optimized
method. It returns a set of methods that contain cache accesses
for which the cache costs may have changed. For the always
hit cache analysis mode, this set is always empty, for the
always miss mode the set contains the optimized method and
all direct callers of that method. If the at most one miss
analysis mode is used, this set can potentially contain the
whole all-fit region.

Afterwards, the WCET analysis is rerun to update the
current worst-case path. The analysis is performed for all
methods that can reach the optimized method or any method in
change in the call graph, since a change of the WCET of any
of those methods can change the worst-case path in any caller
of that method. WCET results of other methods are reused.

Finally, the gain estimations and thus the gain per code-
size increase ratios must be recalculated (line 10). Since the
gain estimation depends on the cache analysis, all ratios of all
candidates in methods in change must be updated. Inlining also
decreases the ratios of the callers since the code size increases.
Furthermore, candidates that can no longer be optimized are
removed from the set. Since the maximum code size and the
maximum number of local variables of a method are limited
on JOP, inlining a call site can prevent other call sites from
being optimized at a later time.

Note that the algorithm is not specific to inlining. It would
be possible to use it also for other optimizations that reduce
the execution time while increasing the code size, or even
to choose between candidates provided by different optimiza-
tions, such as inlining and loop transformations. However, this
has not yet been explored.

IV. IMPLEMENTATION

We created a tool called JCopter that implements WCET-
driven method inlining for Java. It uses the WCET analysis
tool WCA to determine the worst-case path as well as worst-
case execution frequencies for the optimization target methods.

Fig. 2. The JOP tool chain

Before a call site can be inlined, the set of possibly invoked
method implementations must be determined. Inlining is only
possible if this set contains exactly one non-native method,
i.e., when the invoked method is statically known. To find the
implementations of a call site, JCopter can use either a class
hierarchy analysis, or a receiver type data-flow analysis (DFA)
that is also part of the JOP source distribution and that is also
used by WCA [18].

The optimizer JCopter, the WCET analysis WCA, and the
data-flow analysis are implemented on top of a common
framework. This allows for a simple and efficient interaction
between the tools. After an optimization, the WCET analysis
is restarted only for methods where the worst-case path or the
WCET may have changed, i.e., for methods where the cache
analysis results change and for methods that can reach the
optimized method in the call graph. Analysis results for other
methods are reused.

The tool chain for compiling applications for JOP is shown
in Figure 2. JCopter takes Java class files as input and performs
method inlining. The optimized program is then stored as Java
class files again. The JOPizer tool creates the binary that can
be downloaded to the processor. To support executing WCA
on the optimized application to calculate the WCET bound
of the optimized application, we also store references to the
source code annotations for the inlined code in a database. This
is required to supply user-supplied loop bound annotations to
the WCET analysis. Optionally, WCA can also be used to
analyze the unoptimized application in case the optimizer is
not used, or to compare the WCET bounds of the optimized
and the unoptimized application.

A second inliner, called SimpleInliner, has been imple-
mented in JCopter, which exploits the fact that on JOP inlining
has no adverse side effects on the WCET as long as the
code size of a method is not increased. This optimizer is
used to inline getter, setter, stubs, and some wrapper methods,
as well as methods containing small arithmetic expressions.
In contrast to the generic method inliner presented above,
SimpleInliner uses a different method to modify the prologue
at the call site that does not copy the parameters into new
local variables. Instead, the inlined code only uses the stack.



0%

20%

40%

60%

80%

100%

120%

LineFollow
er

K
fl

Lift

U
dpIp

D
ebie 1

D
ebie 2

D
ebie 3

D
ebie 4

D
ebie 5

R
e
la

ti
v
e
 W

C
E
T

SimpleInliner Final WCET

Fig. 3. WCET bound reduction due to SimpleInliner and final WCET bound
reduction, compared to unoptimized code

While this restricts the set of methods that can be inlined, it
generates a more efficient code, both in terms of code size and
speed. Interaction with the WCET analysis is not required.
SimpleInliner is executed prior to the WCET-driven inliner,
so that small methods are inlined using the fast optimizer,
while the slower WCET-driven inliner is only used for larger
methods.

JCopter also implements optimization passes that remove
unused methods, fields and classes, as well as unused constants
to reduce the size of the application binary and to remove
methods that are no longer called after inlining. They have no
negative impact on the execution time.

V. EVALUATION

We evaluate JCopter with several real-time Java bench-
marks: the embedded Java benchmark suit JemBench [17],
a small line following robot application, and the WCET
benchmark DEBIE.1

We use the application benchmarks Kfl, Lift, and UdpIp
from the JemBench suite. The benchmarks have been created
from real-world controller applications. The UdpIp and Lift
benchmarks use virtual invocations, while the Kfl application
is implemented only with static methods. New objects are
only created during initialization. The JemBench applications
have been written with the high invocation costs in mind,
therefore getter and setter and similar small methods are
not used in those benchmarks. Benchmark WCET results for
the unoptimized JemBench benchmarks and the line-follower
benchmark have been published in [18].

The Java port of the DEBIE benchmark has been used to
test the optimizer with a larger application. The benchmark
is based on the on-board software of the DEBIE space debris
impact monitoring instrument that is written in C. However,
the Java port of the benchmark has been written using a
more object oriented approach, giving the inliner far more
optimization opportunities than the JemBench benchmarks.
Three interrupt handlers and two periodic tasks of the DEBIE
benchmark have been used for evaluation. WCET results of the

1https://gate.etamax.de/edid/publicaccess/debie1.php

0%

20%

40%

60%

80%

100%

120%

140%

160%

LineFollow
er

K
fl

Lift

U
dpIp

D
ebie 1

D
ebie 2

D
ebie 3

D
ebie 4

D
ebie 5

R
e
la

ti
v
e
 W

C
E
T

WCET, always miss
WCET, at most one miss
ACET, at most one miss

WCET, always hit
ACET, always hit

Fig. 4. WCET bound reduction for various inliner configurations

unoptimized Java port of the benchmark have been published
in [20].

The context-sensitive data-flow analysis was used for all
benchmarks to analyze receiver types and to find loop bounds
that are used by the WCET analysis for the execution fre-
quency estimation.

The benchmarks were first optimized using SimpleInliner
only, i.e., only very small methods were inlined, without
feedback from the WCET analysis or the cache analysis.
Figure 3 shows the reduction of the WCET bound that has
been achieved with this simple optimization, relative to WCET
bounds of the unoptimized applications. While the speedup
of the JemBench applications is negligible, SimpleInliner
managed to reduce the WCET bounds of the Debie 1 to Debie
4 benchmarks by about 9% on average, while the WCET
bound of Debie 5 was even reduced by 45%.

The benchmarks were then further optimized using the
WCET-driven inliner. Figure 4 shows the WCET bound re-
duction that has been achieved using the WCET-driven inliner
after small methods have been inlined (i.e., not including the
reduction achieved by SimpleInliner). The following optimizer
configurations are shown in this figure:

• WCET-driven, always miss: Only call sites on the
worst-case path are optimized. All cache accesses are
classified as always miss, leading to high cache costs
and low gain estimations. This is the most conservative
optimizer configuration, using a comparatively simple
method cache costs analysis.

• WCET-driven, at most one miss: Again, the optimizer
only inlines call sites on the current worst-case path.
Cache accesses are classified as at most one miss if
they are in the all-fit region, else they are classified as
always miss. This configuration provides a more precise
cache analysis, but the complexity of the cache analysis
increases. The cache analysis uses execution frequencies
provided by WCA for the worst-case path. Cache costs
outside the worst-case path are therefore ignored. This
results in an overestimation of the gain of inlining a
call site in case the worst-case path changes. However,
accounting for cache costs on paths other than the worst-
case path lead to an overly pessimistic optimization



behavior in our benchmarks.
• ACET-driven, at most one miss: This configuration is

similar to the above configuration, except that the WCET
analysis is not used to find the worst-case path. Instead,
all call sites are potential optimization candidates. The
optimizer uses over-estimations for the execution frequen-
cies of all call sites.

• WCET-driven, always hit: Only call sites on the worst-
case path are optimized. However, the cache analysis is
effectively disabled. All cache costs are assumed to be
zero, leading to more aggressive optimization.

• ACET-driven, always hit: Both the cache analysis and
the WCET analysis are disabled. All call sites are opti-
mization candidates, cache accesses are always classified
as always hit. This is the most aggressive optimizer
configuration.

The best total WCET bound reduction after both Sim-
pleInliner and the WCET-driven inliner have been applied,
compared to the unoptimized applications, is shown in Fig-
ure 3. The line following application completely fits in into
the method cache, and the optimizer was able to inline nearly
all call sites without large cache miss penalties. For all inliner
configurations, the WCET bound was reduced by 51%.

For the JemBench applications, the WCET-driven inliner
could only reduce the WCET bound by between 1% (UdpIp)
and 13% (Lift) in the best case. SimpleInliner did not con-
tribute to the speedup. However, some configurations of the
inliner even lead to an increase of the WCET bound of UdpIp.
In this benchmark, some call sites caused significant WCET
bound increases when they were inlined due to an incorrect
gain estimation, rendering the WCET speedup that has been
achieved by inlining other call sites void.

The DEBIE benchmarks on the other hand benefited signif-
icantly from inlining. WCET bound reductions between 18%
(Debie 1) and 58% (Debie 5) were observed, partially due to
the performance of SimpleInliner.

Inlining and removal of unused methods (as well as fields
and constants) leads also to a considerable reduction of the
code size. The code size of the JemBench has been reduced
by about 58%, while the code size of the DEBIE benchmark
has been reduced by about 32% after optimization. Inlining did
not increase the code size, since the inliner prefers to inline
small methods or methods that are only called once, due to the
instruction cache costs. The code size even decreased slightly
after inlining, since the optimizer was able to remove more
classes and constants after inlining.

The runtime of the optimizer primarily depends on the
number of call sites in the code. The WCET-driven inliner
takes about 10 seconds for Kfl and about 34 seconds for the
Debie 5 benchmark on a 2.8 GHz desktop PC, while all other
benchmarks have been optimized within a few seconds. Most
of the time is spent in WCA for updating the worst-case path.
Disabling the WCA therefore reduces the time required for
optimization to less than a second for all benchmarks, while
still achieving good WCET bound improvements.

VI. RELATED WORK

Zhou et al. present a fast inlining algorithm for embedded
systems in [24] that also selects call sites based on a heuristic
rebate ratio to achieve a maximum gain without increasing
the application code size beyond a predefined limit. The call
sites with the highest calling frequency per estimated code size
increase are selected first for inlining. However, the algorithm
is designed to target the average case execution time and does
not take cache costs into account.

Zhao et al. present path optimizations that are applied on
the worst-case path [23], such as superblock formation (i.e.,
merging basic blocks into a region that has one entry but
multiple exits) and duplication of the worst-case path within
loops. The optimizations are used to create new optimization
opportunities on the worst-case path, but they also increase
the code size of the functions. However, the optimizations
were evaluated on a target architecture that does not have an
instruction cache.

The WCET-aware C Compiler (WCC) provides a frame-
work for several WCET analysis driven optimizations [4].
WCC uses the AbsInt aiT WCET analyzer2 to calculate WCET
bounds for basic blocks and tasks and to find the worst-case
path. Code optimizations are performed both on a high-level
intermediate representation and on a low-level intermediate
representation (LLIR). WCET analysis is performed on the
LLIR, and back-annotation is used to map WCET analysis
results back to the high-level representation.

WCC includes a WCET-driven function inliner that uses
decision trees to decide on whether to inline a call site or
not [13]. The decisions are based on call site features such
as the code size and the WCET of the involved methods, the
number of call sites in the methods, or the register pressure at
the call site. Supervised machine learning is used to create the
decision trees. The gain of inlining the call site is assessed for
several call sites in benchmark applications using the WCET
analysis. This information is used as training set for the ma-
chine learner. The inlining heuristic can be automatically tuned
to new architectures simply by using a different hardware
model for the WCET analysis and retraining the heuristics.
The architecture used for evaluation is a Infineon TriCore
TC1796 that includes both a scratchpad instruction cache and
a set associative instruction cache.

To reduce the instruction cache costs, Falk et al. perform
a static WCET-aware scratchpad allocation in WCC [3]. The
WCET of the program is modeled using integer linear pro-
gramming (ILP), which contains decision variables for each
basic block that decide if a basic block should be left in the
main memory or if it should be placed into the faster but
smaller scratchpad memory. An ILP solver can then be used
to find an optimal allocation of basic blocks to the instruction
scratchpad memory.

The WCC compiler also uses the Invariant Path
paradigm [12] to find paths that are guaranteed to be part of the
worst-case path. The authors demonstrate that this information

2http://www.absint.com/ait/



can be used to reduce the number of times the WCET analysis
needs to be restarted during compilation, which drastically
reduces the time required for WCET optimization.

To our knowledge, this is the first work that explores
compiler optimizations for architectures that employ a method
cache.

VII. CONCLUSION AND FUTURE WORK

Standard compilers optimize code to minimize average-case
execution time. Such optimization might reduce the worst-
case execution time (WCET), but it can also increase it. In
real-time systems we are mainly concerned about the WCET.
Therefore, a compiler shall minimize the WCET. In this
paper we presented the optimization tool JCopter, which is
integrated with a WCET analysis tool, and performs program
optimization along the worst-case path to reduce the WCET.
The main optimization method evaluated is method inlining.
On real-time Java applications JCopter achieves a reduction of
the WCET of up to a factor of 2.

We will extend the presented work in the FP7 T-CREST
(Time-predictable Multi-Core Architecture for Embedded Sys-
tems) project. We plan to integrate an improved WCET-driven
function inliner into a C compiler that is based on LLVM.
WCET information will be supplied by the AbsInt WCET
analysis tool aiT. We also plan to explore other optimizations
such as WCET-driven function splitting that will help to reduce
the instruction cache costs.

ACKNOWLEDGMENT

Part of this work was supported by the FP7-ICT Project
288008 Time-predictable Multi-Core Architecture for Em-
bedded Systems (T-CREST). We also would like to thank
Benedikt Huber for his help on integrating JCopter with the
WCET analysis tool WCA.

REFERENCES

[1] T. Bogholm, H. Kragh-Hansen, P. Olsen, B. Thomsen, and K. G. Larsen.
Model-based schedulability analysis of safety critical hard real-time Java
programs. In Proceedings of the 6th international workshop on Java
technologies for real-time and embedded systems (JTRES 2008), pages
106–114, New York, NY, USA, 2008. ACM.

[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull.
The Real-Time Specification for Java. Java Series. Addison-Wesley, June
2000.

[3] H. Falk and J. C. Kleinsorge. Optimal static WCET-aware scratchpad
allocation of program code. In The 46th Design Automation Conference
(DAC), pages 732–737, San Francisco / USA, jul 2009.

[4] H. Falk and P. Lokuciejewski. A compiler framework for the reduction of
worst-case execution times. Journal on Real-Time Systems, 46(2):251–
300, oct 2010. DOI 10.1007/s11241-010-9101-x.

[5] D. S. Hardin. Real-time objects on the bare metal: An efficient
hardware realization of the Java virtual machine. In Proceedings
of the Fourth International Symposium on Object-Oriented Real-Time
Distributed Computing, page 53. IEEE Computer Society, 2001.

[6] T. Harmon. Interactive Worst-case Execution Time Analysis of Hard
Real-time Systems. PhD thesis, University of California, Irvine, 2009.

[7] T. Harmon, M. Schoeberl, R. Kirner, and R. Klefstad. Toward libraries
for real-time Java. In Proceedings of the 11th IEEE International
Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC 2008), pages 458–462, Orlando, Florida, USA, May
2008. IEEE Computer Society.

[8] T. Harmon, M. Schoeberl, R. Kirner, R. Klefstad, K. K. Kim, and M. R.
Lowry. Fast, interactive worst-case execution time analysis with back-
annotation. IEEE Transactions on Industrial Informatics, accepted for
publication, 2012.

[9] T. Henties, J. J. Hunt, D. Locke, K. Nilsen, M. Schoeberl, and J. Vitek.
Java for safety-critical applications. In 2nd International Workshop
on the Certification of Safety-Critical Software Controlled Systems
(SafeCert 2009), York, United Kingdom, Mar. 2009.

[10] B. Huber. Worst-case execution time analysis for real-time Java.
Master’s thesis, Vienna University of Technology, Austria, 2009.

[11] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton, T. Henties, J. J.
Hunt, J. O. Nielsen, K. Nilsen, M. Schoeberl, J. Tokar, J. Vitek, and
A. Wellings. Safety-critical Java technology specification, public draft,
2011.

[12] P. Lokuciejewski, F. Gedikli, and P. Marwedel. Accelerating WCET-
driven optimizations by the invariant path paradigm - a case study of
loop unswitching. In The 12th International Workshop on Software
& Compilers for Embedded Systems (SCOPES), pages 11–20, Nice /
France, apr 2009.

[13] P. Lokuciejewski, F. Gedikli, P. Marwedel, and K. Morik. Automatic
WCET reduction by machine learning based heuristics for function
inlining. In Proceedings of the 3rd Workshop on Statistical and Machine
Learning Approaches to Architectures and Compilation (SMART), pages
1–15, Paphos / Cyprus, jan 2009.

[14] M. Schoeberl. A time predictable instruction cache for a Java processor.
In On the Move to Meaningful Internet Systems 2004: Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES 2004),
volume 3292 of LNCS, pages 371–382, Agia Napa, Cyprus, October
2004. Springer.

[15] M. Schoeberl. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54/1–2:265–286, 2008.

[16] M. Schoeberl. Time-predictable computer architecture. EURASIP
Journal on Embedded Systems, vol. 2009, Article ID 758480:17 pages,
2009.

[17] M. Schoeberl, T. B. Preusser, and S. Uhrig. The embedded Java
benchmark suite JemBench. In Proceedings of the 8th International
Workshop on Java Technologies for Real-Time and Embedded Systems
(JTRES 2010), pages 120–127, New York, NY, USA, August 2010.
ACM.

[18] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and B. Huber. Worst-case
execution time analysis for a Java processor. Software: Practice and
Experience, 40/6:507–542, 2010.

[19] S. Uhrig and J. Wiese. jamuth: an IP processor core for embedded Java
real-time systems. In Proceedings of the 5th International Workshop on
Java Technologies for Real-time and Embedded Systems (JTRES 2007),
pages 230–237, New York, NY, USA, 2007. ACM Press.

[20] R. von Hanxleden, N. Holsti, B. Lisper, E. Ploedereder, R. Wilhelm,
A. Bonenfant, H. Casse, S. Bnte, W. Fellger, S. Gepperth, J. Gustafsson,
B. Huber, N. M. Islam, D. Kstner, R. Kirner, L. Kovacs, F. Krause,
M. de Michiel, M. C. Olesen, A. Prantl, W. Puffitsch, C. Rochange,
M. Schoeberl, S. Wegener, M. Zolda, and J. Zwirchmayr. Wcet tool
challenge 2011: Report. In Proceedings of the 11th International
Workshop on Worst-Case Execution Time (WCET) Analysis, 2011.

[21] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution time problem – overview of methods and survey of tools.
Trans. on Embedded Computing Sys., 7(3):1–53, 2008.

[22] M. Zabel, T. B. Preusser, P. Reichel, and R. G. Spallek. Secure, real-time
and multi-threaded general-purpose embedded Java microarchitecture. In
Prceedings of the 10th Euromicro Conference on Digital System Design
Architectures, Methods and Tools (DSD 2007), pages 59–62, Lübeck,
Germany, Aug. 2007.

[23] W. Zhao, W. Kreahling, D. Whalley, C. Healy, and F. Mueller. Improving
WCET by applying worst-case path optimizations. Real-Time Syst.,
34:129–152, October 2006.

[24] X. Zhou, L. Yan, and J. Lilius. Function inlining in embedded systems
with code size limitation. In Proceedings of the 3rd international
conference on Embedded Software and Systems, ICESS ’07, pages 154–
161, Berlin, Heidelberg, 2007. Springer-Verlag.


