
WCET Analysis for a Java Processor

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria

mschoebe@mail.tuwien.ac.at

Rasmus Pedersen
Department of Informatics

CBS, Denmark
rup.inf@cbs.dk

ABSTRACT
In this paper we propose a solution for a worst-case execution time
(WCET) analyzable Java system: a combination of a time pre-
dictable Java processor and a tool that performs WCET analysis
of Java bytecode. We present a Java processor, called JOP, de-
signed for time-predictable execution of real-time tasks. JOP is
an implementation of the Java virtual machine (JVM) in hardware.
The execution time of bytecodes, the instructions of the JVM, is
known cycle accurate for JOP. Therefore, JOP simplifies the low-
level WCET analysis. A method cache, that fills whole Java meth-
ods into the cache, is analyzable with respect to the WCET. The
WCET analysis tool is based on integer linear programming. The
tool performs the low-level analysis at the bytecode level and inte-
grates the method cache analysis for a two block cache.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Run-time envi-
ronments, Java

Keywords
Real-time system, Java processor, Worst-case execution time

1. INTRODUCTION
The Java programming language is a simple and safe object-

oriented language. Java is in wide use for general purpose appli-
cations. The safety aspect (with respect to programming errors) of
Java makes it also a candidate as a language for (hard) real-time
systems [4]. For real-time systems we need to know the worst-case
execution time (WCET). In this paper we present a time predictable
Java processor and a WCET analysis tool. This combination is an
important step towards a real-time Java system.

Worst-case execution time (WCET) analysis is a well established
research area. However, there is still a gap between the theoretical
findings and the practical usage of WCET analyzer tools. WCET
analysis is usually divided into high level and low level techniques.
High level WCET analysis considers the program structure by path
analysis on the control flow graph (CFG). The low-level part is con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES ’06 October 11-13, 2006 Paris, France
Copyright 2006 ACM 1-59593-544-4/06/10 ...$5.00.

cerned with the execution time of machine instructions or instruc-
tion sequences. The main issue for WCET tools is the growing
complexity of new processors. It is almost impossible to model
them for the low-level analysis.

We attack this problem by a processor architecture designed to
be a feasible target for the low-level analysis. The Java processor
JOP [25] provides time predictable execution of Java bytecodes and
a real-time method cache [23]. JOP is open-source with all VHDL
files available. Therefore, the architecture is fully documented. In
this paper we also present a WCET analysis tool based on integer
linear programming (ILP) [22, 13]. We analyze the WCET at the
bytecode level. The two block variant of the method cache is inte-
grated in the WCET analysis.

Other issues with Java for real-time systems [4], such as real-
time garbage collection, are considered as a scheduling problem
[26] (including a memory allocation analysis of the application
threads) and not a WCET analysis problem. WCET analysis of
the garbage collection thread itself is necessary to prove that the
whole system will fulfill the expected temporal properties.

The paper is structured as follows: The remainder of this section
describes related work in the field of Java processors, WCET anal-
ysis based on ILP and WCET analysis for Java. Section 2 gives a
brief overview of the Java processor. Section 3 gives an introduc-
tion into the WCET analysis and presents our WCET analysis tool.
Analysis of the instruction cache is given in Section 4. The combi-
nation of the real-time Java processor and the WCET analysis tool
is evaluated in Section 5. Section 6 concludes the paper.

1.1 Java Processors
Sun introduced the first version of picoJava [17] in 1997. How-

ever, this processor was never released as a product by Sun. A
redesign followed in 1999, known as picoJava-II that is now freely
available. The architecture of picoJava is a stack-based CISC pro-
cessor implementing 341 different instructions and is the most com-
plex Java processor. The processor can be implemented [7] in about
440K gates.

aJile’s JEMCore is a Java processor that is available as both an
IP core and a stand alone processor [10]. It is based on the 32-
bit JEM2 Java chip developed by Rockwell-Collins. The Lightfoot
32-bit core [6] is a hybrid 8/32-bit processor based on the Harvard
architecture. The core is provided as an EDIF netlist for dedicated
Xilinx devices and as an ASIC. The Cjip processor [9, 11] supports
multiple instruction sets, allowing Java, C, C++ and assembler to
coexist. The JVM is implemented largely in microcode (about 88%
of the Java bytecodes). Microcode instructions execute in two or
three cycles. A JVM bytecode requires several microcode instruc-
tions. Komodo [12] is a multithreaded Java processor with a four-
stage pipeline. It is intended as a basis for research on real-time
scheduling on a multithreaded microcontroller.

For all, except the Cjip, described Java processors no timing in-
formation for the instructions are available1. Therefore, it is not
possible, at least for us, to provide a safe low-level analysis for
those processors. A detailed comparison of embedded Java sys-
tems and JOP can be found in [24].

1.2 WCET Analysis
Shaw presents in [28] timing schemas to calculate minimum and

maximum execution time for common language constructs. The
rules allow to collapse the control flow graph of a program till
a final single value represents the WCET. However, with this ap-
proach it is not easy to incorporate global low-level attributes, such
as pipelines or caches.

Computing the WCET with an integer linear programming solver
is proposed by Puschner and Schedl [22] and Li and Malik [13].
The approach is named graph-based and implicit path enumeration
respectively. We base our WCET analyzer on the ideas from these
two groups.

Puschner and Schedl [22] calculate the WCET by transforming it
to an integer linear programming (ILP) problem. Each basic block
is represented by an edge ei in the T-graph (timing graph) with
the weight of the execution time of the basic block. Vertices vi
in the graph represent the split and join points in the control flow.
Furthermore, each edge is also assigned an execution frequency
fi. The constraints resulting from the T-graph and additional func-
tional constraints (e.g. loop bounds) are solved by an ILP solver.
The T-graph is similar to a control flow graph (CFG), where the
execution time is modeled in the vertices. The motivation to model
the execution time in the edges results from the observation that
most basic blocks end with a conditional branch. Those branches
usually have different execution times when taken or not. This dif-
ference is represented by two edges with different weights.

Li and Malik [13] follow a similar approach with ILP. However,
they use the CFG as the basis to build the ILP problem. In [14]
they extend the approach to model the instruction cache with cache
conflict graphs. The evaluation with an Intel i960 processor shows
tight results for small programs. However, the conservative mod-
eling of the register window (overflow/underflow on each function
call/return) adds 50 cycles to each call and return. This observation
is another argument for a WCET aware processor architecture. An
overview of WCET related research can be found in [19].

1.3 WCET Analysis for Java
WCET analysis at the bytecode level became a research topic, at

the time Java was considered for future real-time systems. WCET
analysis at the bytecode level was first considered in [3]. It is
argued that the well formed intermediate representation of a pro-
gram in Java bytecode, that can also be generated from compil-
ers for other languages (e.g. Ada), is a viable path to a portable
WCET analysis tool. In that paper, annotations for Java and Ada
are presented to guide the WCET analysis at bytecode level. This
work is extended by [2] to address the machine-dependent low-
level timing analysis. Worst-case execution frequencies of Java
bytecodes are introduced for a machine independent timing infor-
mation. Pipeline effects (on the target machine) across bytecode
boundaries are modeled by a gain time for bytecode pairs.

In [18] a portable WCET analysis is proposed. The abstract
WCET analysis is performed on the developer site and generates
abstract WCET information. The concrete WCET analysis is per-
formed on the target machine by replacing abstract values within
the WCET formulae by the machine dependent concrete values.

1We tried hard to get information for the aJile processor.

JOP Core

Bytecode
Fetch

Fetch

Decode

Stack
Execute

Busy

BC Address

BC Data

Control

Data

A

B

Interrupt

Data

Data

Control

Control

Memory Interface

Method
Cache

Extension

Multiplier

I/O Interface

Figure 1: Block diagram of JOP

2. A TIME PREDICTABLE PROCESSOR
Traditionally, only simple processors can be analyzed using prac-

tical WCET boundaries. Architectural advancements in modern
processor designs tend to abide by the rule: ‘Make the average
case as fast as possible’. This is orthogonal to ‘Minimize the worst
case’ and has the effect of complicating WCET analysis.

JOP [25], the Java Optimized Processor, is an intended solution
to this issue. The processor architecture is built from ground up to
be WCET analyzable. Features, such as the real-time stack cache
and method cache, provide top performance and are still analyz-
able. The execution time for Java bytecodes can be exactly pre-
dicted in terms of the number of clock cycles. JOP is the smallest
and fastest Java processor available today [24].

2.1 JOP Architecture
JOP is a stack computer with its own instruction set, called mi-

crocode. Java bytecodes are translated into microcode instructions
or sequences of microcode in hardware. The difference between
the JVM and JOP is best described as the following:

The JVM is a CISC stack architecture, whereas JOP is
a RISC stack architecture.

Figure 1 shows JOP’s major function units. A typical configu-
ration of JOP contains the processor core, a memory interface and
a number of IO devices. The processor core contains the three mi-
crocode pipeline stages: microcode fetch, decode and execute and
an additional translation stage bytecode fetch. The module called
extension provides the link between the processor core, and the
memory and IO modules. The memory interface provides a con-
nection between the main memory and the processor core. It also
contains the method cache. The extension module controls data
read and write. The busy signal is used by a microcode instruction
to synchronize the processor core with the memory unit. The core
executes microcode concurrently to memory access.

2.2 The Processor Pipeline
JOP is a fully pipelined architecture with single cycle execution

of microcode instructions and a novel approach to mapping Java
bytecode to these instructions.

Three stages form the JOP microcode pipeline, executing mi-
crocode instructions. An additional stage in the front of the core
pipeline fetches Java bytecodes – the instructions of the JVM – and
translates these bytecodes into addresses in microcode. The second
pipeline stage fetches JOP instructions from the internal microcode
memory. Besides the usual decode function, the third pipeline stage
also generates addresses for the stack cache.

The last pipeline stage performs ALU operations, load, store and
stack spill or fill. At the execution stage, operations are performed
with the two topmost elements of the stack. A stack machine with
two explicit registers for the two topmost stack elements and au-
tomatic fill/spill needs neither an extra write-back stage nor any
data forwarding. The short pipeline results in short branch delays.
Therefore, a hard to analyze branch prediction logic can be avoided.

In [27] we have shown that no processor resources are shared
across bytecode boundaries. That means that there are no pipeline
dependencies between two bytecodes that could generate an un-
bound timing effect. The processor is designed to avoid any timing
anomalies as found in standard microprocessors [16]. We do not
need to model the pipeline in the low-level WCET analysis.

2.3 Cache
In order to fill the gap between processor speed and the mem-

ory access time, caches are mandatory, even in embedded systems.
However, standard cache organizations improve the average exe-
cution time but are difficult to predict for WCET analysis. Two
time-predictable caches are proposed for JOP: a stack cache as a
substitution for the data cache and a method cache to cache the
instructions.

2.3.1 Stack Cache
JOP contains no data cache in the traditional sense. However,

the stack that contains method local variables and is used for the
stack operations is a heavily accessed memory region. Therefore
we place the stack – or part of it – in on-chip memory. This stack
cache is not automatically exchanged with the main memory. That
would result in a very hard to analyze feature. The exchange with
the main memory can be done either at method invocation and re-
turn or at the thread switch.

The stack height is statically known for each instruction (a result
from the verification restrictions of Java class files). The transfer
time between the on-chip stack cache and the main memory can be
integrated in the same way as the method cache load at the invoke
and return instruction.

Keeping the stack in the cache for each thread results in faster
invokes and returns, but limits the maximum stack hight for each
thread. The local stack is now part of the threads context and has to
be saved and restored on a thread switch. The additional time has
to be added to the context switch time. As the maximum height of
the stack is known (by analyzing the call graph for each thread) this
time is bounded.

2.3.2 Method Cache
Typical Java programs consist of short methods (see [25]). There

are no branches out of the method and all branches inside are rel-
ative. In the proposed architecture, the full code of a method is
loaded into the cache before execution. The cache is filled on in-
vocations and returns. This means that all cache misses are lumped
together with a known miss penalty. The full loaded method and
relative addressing inside a method also result in a simpler cache
design. Tag memory and address translation are not necessary. As
the cache stores whole methods it is named method cache [23].

The simplest version of a method cache can cache just a sin-
gle method. Although less efficient than a conventional instruction

0

2000

4000

6000

8000

10000

12000

JOP Cjip Komodo aJ80 aJ100

Pe
rfo

rm
an

ce
 [i

te
ra

tio
ns

/s
]

Figure 2: Performance comparison of different Java processors

cache, it can be incorporated very easily into the WCET analysis.
The time needed for the memory transfer has to be added to the
invoke and return instructions.

An extension is a method cache that can cache two methods –
the two-block cache. With two blocks/methods we have to decide
which block is replaced on a cache miss. With only two blocks,
least-recently used (LRU) is natural and trivial to implement. The
WCET analysis is slightly more complex than with a single block.
We can improve the hit rate by adding more blocks to the cache.
However, the cache size increases with the number of blocks.

Several cache blocks, all of the size as the largest method, are a
waste of cache memory. Using smaller block sizes and allowing a
method to span over several blocks, the blocks become very similar
to cache lines. The main difference from a conventional cache is
that the blocks for a method are all loaded at once and need to be
consecutive2. We name this organization of the cache the variable
block cache. Choosing the block size is a major design decision.
Smaller block sizes allow better memory usage, but hit detection
needs either more hardware or more time.

2.4 Performance
Although JOP is intended as a processor for embedded real-time

systems, whereas accurate WCET analysis is more important than
average case performance, its general performance is still impor-
tant.

To provide a realistic workload for embedded systems, a real-
time application (the Kippfahrleitung) was adapted to create the
benchmark. A second benchmark contains the generation of a re-
quest and response within an UDP/IP stack. Figure 2 shows the
geometric means of the two benchmarks. The results are in itera-
tions per second – a higher value means higher performance. Both
benchmarks are also used in the evaluation of our WCET analysis
tool in Section 5.

JOP is compared against some of the Java processors described
in Section 1.1: the Cjip [9], Komodo [12], and two versions of the
aJile processor [10] (aJ80 and aJ100). Only the aJ100 is almost
as fast as JOP. This comparison also shows that a time-predictable
processor architecture does not to be slow in the average case.

2.5 Size
One major design objective in the development of JOP is to cre-

ate a small system that can be implemented in a low-cost FPGA.

2A method loaded over the cache end to the cache start is consid-
ered continuous as the cache is addressed with a modulo counting
program counter.

Table 1: FPGA soft-core processors
Processor Resources Memory fmax

(LC) (KB) (MHz)

JOP Minimal 1,077 3.25 98
JOP Typical 2,049 3.25 100
Lightfoot 3,400 4 40
LEON3 7,978 10.9 35

Table 1 shows the resource usage for different configurations of
JOP and different soft-core processors implemented in an Altera
Cyclone low-cost FPGA. The size is given by the two basic struc-
tures in an FPGA: Logic Cells (LC) and embedded memory blocks.

The typical configuration contains some useful I/O devices such
as an UART and a timer with interrupt logic for multi-threading.
In the minimal configuration shift and multiply are implemented
in microcode. Lightfoot [6] is a commercial Java processor avail-
able to be implemented in an FPGA. As a reference, LEON3 [8],
the open-source implementation of the SPARC V8 architecture, is
given in the last row.

3. WCET ANALYSIS FOR JOP
In hard real-time systems the estimation of the worst-case execu-

tion time is essential. In general WCET analysis is undecidable. In
[21] Puschner and Koza provide program restrictions to make this
problem decidable:

1. Programs must not contain any recursion

2. Absence of function pointers

3. The upper bound of each loop has to be known

Recursive algorithms have to be transformed to iterative ones. For
our WCET analyzer the loop bounds have to be annotated in the
program source. However, we want to relax the second restric-
tion. Function pointers are very similar to inherited or overridden
methods. Function pointers and methods are dispatched at runtime.
For an object-oriented language this mechanism is fundamental. In
contrast to function pointers (e.g. in C) we can statically analyze
which methods can be invoked when the whole program is known.
Therefore we allow dynamic dispatching of methods in Java in our
analysis. We replace the function pointer restriction by the follow-
ing restriction:

• Dynamic class loading is not allowed

As the full application has to be available for the WCET analysis
dynamic class loading is of little use. For embedded real-time sys-
tems this is not a serious restriction.

3.1 High-Level WCET Analysis
From the class files that make up the application the relevant

information is extracted. The control flow graph (CFG) of the basic
blocks3 is extracted from the bytecodes. Annotations for the loop
counts are extracted from comments in the source. Furthermore,
the class hierarchy is examined to find all possible targets for a
method invoke.

Java bytecode generation has to follow stringent rules [15] in
order to pass the class file verification of the JVM. Those restric-
tions lead to an analysis friendly code, e.g. the stack size is known
3A basic block is a sequence of instructions without any jumps or
jump targets within this sequence.

at each instruction. The control flow instructions are well defined.
Branches are relative and the destination is within the same method.
In the normal program there is no instruction that loads a branch
destination in a local variable or onto the stack4. Thus detection
of basic blocks in Java bytecode and construction of the CFG is
straight forward.

In Java class files there is more information available than in
compiled C/C++ executables. All links are symbolic and it is pos-
sible to reconstruct the class hierarchy from the class files. There-
fore, we can statically determine all possible targets for a virtual
method invoke.

3.1.1 WCET Annotations
For our WCET analyzer we use loop bound annotations in the

Java source. The code in Figure 3 shows an example of the annota-
tion. When compiling Java, the source line information is included
in the class file. Therefore, when a loop is detected in the CFG, the
relevant source line for the loop header is looked up in the source
and the annotation is extracted.

Annotations given as source comments are simple and less intru-
sive than using a predefined dummy class [3]. Two variants of the
loop bounding annotation are supported: one with an exact bound5

(=) and one that places an upper bound on the iterations (<=).
The extension to more elaborate annotations, as suggested in [21,
3], can provide tighter WCET bounds.

3.1.2 ILP Formulation
The calculation of the WCET is transformed to an integer linear

programming (ILP) problem [22]. In the CFG each vertex repre-
sents a basic block Bi with execution time ci. With the basic block
execution frequency ei the WCET is:

WCET = max
N

∑
i=1

ciei

The sum is the objective function for the ILP problem. The maxi-
mum value of this expression results in the WCET of the program.

Furthermore, each edge is also assigned an execution frequency
f . These execution frequencies represent the control flow through
the WCET path. Two primary constraints form the ILP problem:
(i) For each vertex the sum of f j for the incoming edges has to
be equal the sum of the fk of the outgoing edges; (ii) The loop
constraints are formulated with the loop bound and edges from the
loop header.

From the CFG, that represents the program structure, we can
extract the flow constraints. With the execution frequency f of the
edges and the two sets Ii for the ingoing edges to basic block Bi and
Oi for the outgoing edges the execution frequency ei of Bi is:

ei = ∑
j∈Ii

f j = ∑
k∈Oi

fk

The f are the decision variables found by the solution of the ILP
problem. Furthermore, we add two special vertices to the graph:
The start node S and the termination node T . The start node S
has only one outgoing edge that points to the first basic block of
the program. The execution frequency fs of this edge is set to 1.

4The exception are bytecodes jsr and ret that use the stack and a
local variable for the return address of a method local subroutine.
This construct can be used to implement the finally clauses of the
Java programming language. However, this problematic subroutine
can be easily inlined [1]. Furthermore, Sun’s Java compilers ver-
sion 1.4.2 and later compile finally blocks without subroutines.
5The exact bound has been used to find best-case values for some
test settings.

public static int loop(boolean b, int val) {

for (int i=0; i<10; ++i) { //@WCA loop=10
if (b) {

for (int j=0; j<3; ++j) { //@WCA loop=3
val *= val;

}
} else {

for (int j=0; j<7; ++j) { //@WCA loop=7
val += val;

}
}

}
return val;

}

Figure 3: The example used for the WCET analysis with ILP

The termination node T has only incoming edges with the sum of
the frequencies also set to 1. When the method contains multiple
return statements, all are connected to the node T . That means that
the program is executed once and can only terminate through one
path.

Loop bounds are functional constraints for the ILP problem. A
special vertex, the loop header, is connected by following edges:

1. Incoming edges that enter the loop with frequency fh

2. One outgoing edge entering the loop body with frequency fl

3. One incoming edge that closes the loop

4. One loop exit edge

With the maximum loop count (the loop bound) n we formulate the
loop constraint as

fl ≤ n∑ fh

Without further global constraints the problem can be solved lo-
cally for each method. We start at the leaves of the call tree and cal-
culate the WCET for each method. The WCET value of a method
is included in the invoke instruction of the caller method. To incor-
porate global constraints, such as cache constraints [14], a single
CFG is built that contains the whole program by inserting the CFG
of a method at the invoke instruction. The effect is the same as
when we inline each method.

In Section 4 we will show that the cache constraints for a two
block method cache can be resolved using only method local in-
formation. Therefore, we can stay with the method local solving
of the ILP problem and avoid scaling issues from building a whole
program CFG.

3.1.3 An Example
To illustrate the WCET analysis flow we provide a small exam-

ple. Figure 3 shows the Java source code that contains nested loops
with a condition. The loops are annotated with the maximum loop
counts in a comment. In our target hardware the multiplication
takes longer than the addition. Therefore, in this example it is not
obvious which branch will result in the WCET path.

Table 2 shows the bytecodes and basic blocks of the example as
generated by our WCET analysis tool. The fourth column gives the
execution time of the bytecodes in clock cycles. The fifth column
gives the execution time of the basic blocks. These are the values
used for the ILP equations.

From the basic blocks we can construct the CFG as shown in
Figure 4. The vertices represent the basic blocks and include the

Table 2: Java bytecode and basic blocks
Block Addr. Bytecode Cycles BB Cycles

B1 0: iconst 0 1
1: istore 2 1 2

B2 2: iload 2 1
3: bipush 2
5: if icmpge 53 4 7

B3 8: iload 0 1
9: ifeq 29 4 5

B4 12: iconst 0 1
13: istore 3 1 2

B5 14: iload 3 1
15: iconst 3 1
16: if icmpge 47 4 6

B6 19: iload 1 1
20: iload 1 1
21: imul 35
22: istore 1 1
23: iinc 8
26: goto 14 4 50

B7 29: iconst 0 1
30: istore 3 1 2

B8 31: iload 3 1
32: bipush 2
34: if icmpge 47 4 7

B9 37: iload 1 1
38: iload 1 1
39: iadd 1
40: istore 1 1
41: iinc 8
44: goto 31 4 16

B10 47: iinc 8
50: goto 2 4 12

B11 53: iload 1 1
54: ireturn 19 20

S

B1
2

fs

B2
7

f1

B3
5

f2

B11
20

f3

B4
2

f4

B7
2

f5

T

ft

B5
6

f6

B8
7

f10

B6
50

f7

B10
12

f8 f9

f14

f12

B9
16

f11f13

Figure 4: CFG of the example

/* Objective function */
max: t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11;
/* flow constraints */
S: fs = 1;
B1: fs = f1;
B2: f14 + f1 = f2 + f3;
B3: f2 = f4 + f5;
B4: f4 = f6;
B5: f9 + f6 = f7 + f8;
B6: f7 = f9;
B7: f5 = f10;
B8: f10 + f13 = f11 + f12;
B9: f11 = f13;
B10: f12 + f8 = f14;
B11: f3 = ft;
T: ft = 1;
/* loop bounds */
f2 = 10 f1;
f7 = 3 f6;
f11 = 7 f10;
/* execution time (with incoming edges) */
t1 = 2 fs;
t2 = 7 f14 + 7 f1;
t3 = 5 f2;
t4 = 2 f4;
t5 = 6 f9 + 6 f6;
t6 = 50 f7;
t7 = 2 f5;
t8 = 7 f10 + 7 f13;
t9 = 16 f11;
t10 = 12 f12 + 12 f8;
t11 = 20 f3;

Figure 5: ILP equations

execution time in clock cycles. We can identify block B2 as the
loop header for the outer loop. B3 is the branch node. B5 and B8
are the loop headers for the inner loops.

From the CFG we can extract the flow constraints by following
fact: The execution frequency of a basic block is equal to the exe-
cution frequency of all incoming edges and equal to the execution
frequency of all outgoing edges. E.g. for block B2 the execution
frequency e2 is:

e2 = f1 + f14 = f2 + f3

The loop constraints are formulated by multiplying the frequen-
cies of the edges that enter the loop via the header by the loop
bound. The loop bounds are automatically extracted from the source
annotations. For the outer loop in the example this is:

f2 = 10 f1

In Figure 5 the resulting equations, as generated by our tool,
for the integer linear programming problem are listed. We use the
open-source ILP solver lp solve.

The tool lp solve gives a result of 2029 cycles. We run this
example on the Java processor for verification. As the execution
time depends only on a single boolean variable, b (see Figure 3), it
is trivial to measure the actual WCET. We measure the execution
time with a cycle counter from the start of block B1 until the exit
of the outer loop at block B2. The measured result is 2009 cycles.
The last block B11, that contains the return statement, is not part of
the measurement. When we add the 20 cycles for the block B11 to
our measured WCET we get 2029 cycles. This measured result is
exactly the same as the analytical result.

3.1.4 Dynamic Method Dispatch
Dynamic dispatching at runtime of inherited or overridden in-

stance methods is a key feature of object-oriented programming.
Therefore, we allow dynamic methods as a better controlled form
of function pointers. The full class hierarchy can be extracted from

B1

iload_1
iload_2
aload_0

f1

invoke A.foo

f2

invoke B.foo

f3

istore_3

Figure 6: Split of the basic block for instance methods

the class files of the application. From the class hierarchy we can
extract all possible receiver methods for an invoke. We include all
possible receivers as alternatives in the ILP constraints. It has to be
noted that, without further analysis or annotations, this can lead to
pessimistic WCET estimates.

We split the basic block that contains the invoke instruction into
following blocks: the preceding instructions, the invoke instruc-
tion, and following instructions. Consider following basic block:

iload_1
iload_2
aload_0
invokevirtual foo
istore_3

When different versions of foo() are available in the class tree we
model the invocation of foo() as alternatives in the graph. The
example for two classes A and B that are part of the same hierarchy
is shown in Figure 6. Following the standard rules for the ingoing
and outgoing edges the resulting ILP constraint for this example is:

f1 = f2 + f3

3.2 Low-Level WCET Analysis
For the low-level WCET analysis a good model of the target ar-

chitecture is needed. In our case the target architecture is simple
with respect to the WCET and well known. In [27] we have per-
formed the WCET analysis of the microcode that implements the
bytecode instructions. That means the bytecode instruction timing
is derived by static analysis and no measurements are necessary.
We have shown that there are no dependencies, neither through
pipeline effects nor shared processor resources, between individual
bytecodes. The detailed bytecode instruction timing can be found
in [25]. The latest revision of the timing information is available at
http://www.jopdesign.com/.

3.2.1 Basic Bytecodes
Simple bytecode instructions are executed by either one microin-

struction or a short sequence of microinstructions. The execution
time in cycles equals the number of microinstructions executed. As
the stack is on-chip it can be accessed in a single cycle. We do
not need to incorporate main memory timing into the instruction
timing.

http://www.jopdesign.com/

3.2.2 Memory Access
Object oriented instructions, array access, and invoke instruc-

tions access the main memory. Therefore we have to model the
memory access time. We assume a simple SRAM with a constant
access time. Access time that exceeds a single cycle includes ad-
ditional wait states (rws for a memory read and wws for a memory
write). However, the memory subsystem performs read and write
parallel to the execution of microcode. Therefore, some access cy-
cles can be hidden.

The following example gives the exact execution time of byte-
code ldc2 w in clock cycles:

tldc2 w = 17+
{

rws−2 : rws > 2
0 : rws ≤ 2 +

{
rws−1 : rws > 1

0 : rws ≤ 1
Thus, for a memory with two cycles access time (rws = 1), as

we use it for a 100MHz version of JOP with a 15ns SRAM, the
wait state is completely hidden by microcode instructions for this
bytecode.

Memory access time also determines the cache load time on a
miss. For the current implementation the cache load time is cal-
culated as follows: the wait state cws for a single word cache load
is:

cws =
{

rws−1 : rws > 1
0 : rws ≤ 1

On a method invoke or return the bytecode has to be loaded into
the cache on a cache miss. The load time b is:

b =
{

6+(n+1)(2+ cws) : cache miss
4 : cach hit

where n is the length of the method in number of 32-bit words. For
short methods the load time of the method on a cache miss, or part
of it, is hidden by microcode execution. As an example the exact
execution time for the bytecode invokestatic is:

t = 74+ r +
{

rws−3 : rws > 3
0 : rws ≤ 3

+
{

rws−2 : rws > 2
4 : rws ≤ 2 +

{
b−37 : b > 37

0 : b≤ 37

For invokestatic a cache load time b of up to 37 cycles is com-
pletely hidden.

3.2.3 Bytecodes in Java
Bytecode can even be implemented in Java on JOP. In this case

a static method from a JVM internal class gets invoked when such
a bytecode is executed. For the WCET analysis we have to sub-
stitute this bytecode by an invoke instruction to this method. The
influence on the cache (the bytecode execution results in a method
load) is analyzed in the same way as for ordinary static methods
(see Section 4).

3.2.4 Native Methods
In JOP most of the JVM internal functionality, such as input,

output, and thread scheduling, is implemented in Java (i.e. imple-
mented in software). However, Java and the JVM do not allow
access to memory, peripheral devices or processor registers. For
this low-level access to system resources we need native methods.
However, for a Java processor the native language is still Java byte-
code. We solve this issue by substituting the native method invo-
cation by a special bytecode instruction on class loading. Those
special bytecodes are implemented in JOP microcode in the same
way as regular bytecodes. With this translation trick we get a link
from standard Java code to microcode without the overhead of a
native method call. The execution time of the native methods (or

B1

iload_1
iload_2

invoke foo
ifeq

f1

B5

f5

B6

f6

B2

f2

B3

f3

Figure 7: Basic block with an invoke instruction

in other words special bytecodes) is given in the same way as the
execution time for standard bytecodes.

3.3 Implementation
The WCET analyzer (WCA) is an open source Java program

based in the ILP approach, as described in Section 3.1.2. To access
the class files we use the Byte Code Engineering Library (BCEL)
[5]. BCEL allows inspection and manipulation of class files and
the bytecodes of the methods. WCA extracts the basic blocks from
the methods and builds the CFG. Within the CFG the WCA de-
tects loops and the loop head. From the source line attribute of the
loop head the annotation of the loop count is extracted. WCA uses
the open-source ILP solver lp solve. lp solve is integrated into
WCA by directly invoking it via the Java library binding.

Besides generating a single number (the WCET in clock cycles)
WCA gives a more detailed feedback on the program structure.
Each individual method is listed with basic blocks and execution
time on bytecodes, basic blocks, and cache miss times. This output
is similar to Table 2, but with more detailed information. WCA also
generates a graphical representation of the CFG for each method
and for the whole program. The WCET path through the CFG is
highlighted in the graph. This form of feedback for the programmer
can help to optimize the WCET path in the application.

4. CACHE ANALYSIS
From the properties of the Java language — usually small meth-

ods and relative branches — we derived the novel idea of a method
cache [23], i.e. an instruction cache organization in which whole
methods are loaded into the cache on method invocation and on the
return from a method.

The method cache is designed to simplify the WCET analysis.
Due to the fact that all cache misses are included in two instructions
(invoke and return) only, the instruction cache can be ignored on all
other instructions. The time needed to load a complete method is
calculated using the memory properties (latency and bandwidth)
and the length of the method. On an invoke, the length of the in-
voked method is used, and on a return, the method length of the
caller.

Integration of the method cache into the WCET analysis is straight
forward. As the cache hits or misses can only happen at method
invocation or return from a method we can model the miss times
as extra vertices in the graph. Figure 7 shows an example with 6
connected basic blocks. Basic block B4 is shown as a box and has
three incoming edges (f1, f2, f3) and two outgoing edges (f5, f6). B4
contains the invocation of method foo() surrounded by other in-
structions. The execution frequency e4 of block B4 in the example

B1

iload_1
iload_2

f1

invoke foo

fih
invoke
miss

fim

B2

f2

B3

f3

ifeq

frh
return
miss

frm

B5

f5

B6

f6

Figure 8: Split of the basic block and cache miss blocks

is

e4 = f1 + f2 + f3 = f5 + f6

We split a basic block that contains a method invoke (B4 in our
example) into several blocks so one block contains just the invoke
instruction. The miss on invoke and return are modeled as extra
blocks with the miss penalty as execution time.

The miss for the return happens during the return instruction. On
a miss the caller method has to be loaded into the cache. Therefore
the miss penalty depends on the caller method size. However, as
the return instruction is the last instruction executed in the called
method we can model the return miss time at the caller side after
the invoke instruction instead of the called side. This approach sim-
plifies the analysis as both methods, the caller and the called, with
their respective length are known at the occurrence of the invoke
instruction.

Figure 8 shows the resulting graph after the split of block B4
and inserting vertices for the cache misses. The miss penalty is
handled in the same way as execution time of basic blocks for the
ILP objective function. The additional constraints for the control
flow in our example are

e4 = fih + fim

e4 = frh + frm

with the invocation hit fih and miss fim frequency and the return hit
frh and miss frm frequency.

It has to be noted that misses are always more expensive than
hits. A conservative bound on the hit frequency is a safe approxi-
mation when the exact information is missing. As the hit or miss
time is contained within a single bytecode execution there are no
issues with timing anomalies [16].

As a next step we have to formulate the relation between the hit

and the miss frequency. In [23] several variants of the method cache
are described:

1. A single block that can only cache a single method

2. Several blocks that can each cache a single method

3. A variable block cache where a method can span several
blocks

4.1 Single Block Cache
The single block cache can store only a single method. Therefore

it is very simple to analyze: Each invoke and each return results in a
miss. We can include both miss times in the invoke execution time.
It has to be noted that this single method cache still is a caching
solution. The actual fetch of the bytecodes is from the cache. It
provides a performance enhancement compared to a non-caching
architecture.

4.2 Dual Block Cache
A natural extension to the single block cache is usage of several

cache blocks, each one storing exactly one method. With more than
one method in the cache, cache hit detection has to be performed
as part of the WCET analysis. Considering the minimal variant of
two blocks the analysis can be performed locally. We do not need
to consider the whole program flow. We use a least recently used
(LRU) replace strategy. LRU is quite natural for two blocks as we
fill the block which we are currently not using.

A cache hit on invoke or return can only happen when the in-
voked method is a leaf in the call tree. In that case the cache con-
tains the caller method and the called method. If we would invoke
another method the former caller method would be replaced in the
cache.

As a conservative estimate we only consider methods that are
statically known to be leafs, i.e. methods that do not contain any
invoke statement. Furthermore, we restrict the analysis to methods
invoked within a loop. In that case the hit detection is as follows:

Invoke A hit on invoke is only possible if the method is the same
as the last invoked. That means a single method invoked
in a loop6. In this case the first invocation is probably a
miss and all following invokes are guaranteed hits. With the
loop count n and the execution frequency fh entering the loop
head the hit and miss frequencies are:

fim = fh
fih = (n−1) fh

Return A return is always a hit on the leaf as the caller is still in
the other block. In this case we can remove the miss block
from the graph.

Figure 9 illustrates the invocation of a method in a loop. Basic
block B2 is the loop head. With loop bound n the resulting loop
and cache constraints for this example are:

f2 ≤ n f1
f2 = fim + fih

fim = f1
fih ≤ (n−1) f1

6A second invocation of the same method in straight line code,
without an invoke of a different method in between, will also result
in a hit.

B1

B2

f1

iload_1
iload_2

f2

B4

f4

invoke foo

fih
invoke
miss

fim f3

Figure 9: A method invocation in a loop

It has to be noted that the cache constraints are conservative as
there could be another surrounding loop without a method invoca-
tion in the control flow.

An extension of the two block cache to several blocks needs the
whole control flow to model. Furthermore, reserving blocks for
single methods is a waste of cache capacity. A better solution is
described in the next section.

4.3 Variable Block Cache
The variable block cache divides the cache in several blocks

similar to cache lines in a conventional cache. However, a single
method has to be loaded in a continuous region of the cache.

The variable block cache needs the whole program call graph
and the whole program CFG for the analysis and is considered as
future work. However, every hit in the two-block cache will also
be a hit in a variable block cache (of the same size). Consider, as
an example, two blocks each 1KB and a variable block cache of
2KB. In that case the method size is restricted to 1KB due to the
dual block cache size. The variable block cache can at least cache
two methods. At method invocation the blocks that are currently
used are not replaced in the variable block cache. Therefore, we
use the other blocks for the called method. The sum of those other
blocks is at least 1KB. On the return from a leaf method we find
the caller method still in the cache. This configuration is stable for
the invoke hit case in the loop. A tradeoff is to analyze the program
by assuming a two block cache but using a variable block cache.

With the variable block cache, it could be argued that the WCET
analysis becomes too complex, but it is nevertheless simpler than
that with the direct-mapped cache. We only have to consider invoke
and return instructions and not all instructions in a cache line for a
cache analysis.

5. EVALUATION
For the evaluation of our tool we analyze and measure various

benchmarks (see Table 3). It has to be noted that we actually cannot
measure the real WCET. If we could measure it, we would not need
to perform the WCET analysis at all. The measurement gives us
confidence that we have no serious bugs in the analysis and an idea
of the pessimism of the analyzed WCET. The benchmarks Lift
and Kfl are real-world examples that are in industrial use. Kfl and
UdpIp are also part of an embedded Java benchmark suit that is

Table 3: Benchmark examples
Program Description LOC

crc CRC calculation for short messages 8
robot A simple line follower robot 111
Lift A lift controler 635
Kfl Kippfahrleitung application 1,366
UdpIp UDP/IP benchmark 1,297

Table 4: Measured and estimated WCET with result in clock
cycles

Measured Estimated Pessimism
Program (cycle) (cycle) (ratio)

crc 1,552 1,620 1.04
robot 736 775 1.05
Lift 7,214 11,249 1.56
Kfl 13,334 28,763 2.16
UdpIp 11,823 219,569 18.57

used in Section 2.4.
Table 4 shows the measured execution time and the analyzed

WCET. The last column gives an idea of the pessimism of the
WCET analysis. For very simple programs, such as crc and robot,
the pessimism is quite low. For the Lift example it is in an accept-
able range. The difference between the measurement and the anal-
ysis in the Kfl example results from the fact that our measurement
does not cover the WCET path. We only simulate input values and
commands for the mission phase. However, the main loop of Kfl
also handles service functions. Those functions are not part of the
mission phase, but make up the WCET path.

The large conservatism in UdpIp results from the loop bound in
the IP and UDP checksum calculation. It is set for a 1500 byte
packet buffer that can be handled by our UDP/IP stack. However,
in the benchmark the UDP payload is only 8 bytes. When setting
this loop bound according to the benchmark, the WCET drops to
25,792 cycles. This example provides a strong argument to add
dataflow analysis to the WCET analysis tool.

The last two examples also show the issue when a real-time
application is developed without a WCET analysis tool available.
Getting the feedback from the analysis earlier in the design phase
can help the programmer to adapt to a WCET aware programming
style. In one extreme this can end up in the single-path program-
ming style [20]. A less radical approach can use some heuristics
for a WCET aware programming style. E.g. for the UdpIp example
a special version of the UDP and IP checksum calculation for short
messages can be added to the UDP/IP stack.

6. CONCLUSION
In this paper we have presented the combination of a time pre-

dictable Java processor and a WCET analysis tool based on the
integer linear programming approach. The architecture of the Java
processor greatly simplifies the low-level part of the WCET anal-
ysis. An instruction cache, named method cache, stores complete
methods and is easy to integrate into the WCET analysis.

The WCET analysis tool, with the help of loop annotations, pro-
vides WCET values for the schedulability analysis. We have also
integrated a two block method cache into the analysis. This cache
configuration can be analyzed at the method level and does not
need the full program CFG. As a future extension we will also
integrate the variable block cache. Besides the calculation of the

WCET the tool provides user feedback by generating bytecode list-
ings with timing information and a graphical representation of the
CFG with timing and frequency information. This representation of
the WCET path through the code can guide the developer to write
WCET aware real-time code.

As future work we consider integrating the WCET analysis into
the Eclipse IDE. The worst-case program path will be colored in
the Java source. Furthermore, methods can be annotated with their
WCET values and a graphical representation of the CFG. This form
of immediate feedback can guide the programmer to optimize the
worst-case path. More types of annotations can lead to tighter
WCET estimates. Automatic detection of loop bounds (for sim-
ple cases) and a more elaborate data flow analysis will simplify the
usage of the WCET analyzer.

Acknowledgment
The authors thank Peter Puschner for the discussion on ILP based
WCET analysis and his constructive comments on early versions
of the paper.

7. REFERENCES
[1] C. Artho and A. Biere. Subroutine inlining and bytecode

abstraction to simplify static and dynamic analysis.
Electronic Notes in Theoretical Computer Science,
141(1):109–128, December 2005.

[2] I. Bate, G. Bernat, G. Murphy, and P. Puschner. Low-level
analysis of a portable Java byte code WCET analysis
framework. In Proc. 7th International Conference on
Real-Time Computing Systems and Applications, pages
39–48, Dec. 2000.

[3] G. Bernat, A. Burns, and A. Wellings. Portable worst-case
execution time analysis using java byte code. In Proc. 12th
EUROMICRO Conference on Real-time Systems, Jun 2000.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[5] M. Dahm. Byte code engineering with the BCEL API.
Technical report, Freie Universitat Berlin, April 2001.

[6] DCT. Lightfoot 32-bit Java processor core. data sheet,
September 2001.

[7] S. Dey, P. Sanchez, D. Panigrahi, L. Chen, C. Taylor, and
K. Sekar. Using a soft core in a SOC design: Experiences
with picoJava. IEEE Design and Test of Computers,
17(3):60–71, July 2000.

[8] J. Gaisler. A portable and fault-tolerant microprocessor based
on the SPARC v8 architecture. In DSN ’02: Proceedings of
the 2002 International Conference on Dependable Systems
and Networks, page 409, Washington, DC, USA, 2002. IEEE
Computer Society.

[9] T. R. Halfhill. Imsys hedges bets on Java. Microprocessor
Report, August 2000.

[10] D. S. Hardin. Real-time objects on the bare metal: An
efficient hardware realization of the Javatm virtual machine.
In Proceedings of the Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, page 53.
IEEE Computer Society, 2001.

[11] Imsys. Im1101c (the cjip) technical reference manual /
v0.25, 2004.

[12] J. Kreuzinger, U. Brinkschulte, M. Pfeffer, S. Uhrig, and
T. Ungerer. Real-time event-handling and scheduling on a
multithreaded Java microcontroller. Microprocessors and
Microsystems, 27(1):19–31, 2003.

[13] Y.-T. S. Li and S. Malik. Performance analysis of embedded
software using implicit path enumeration. In LCTES ’95:
Proceedings of the ACM SIGPLAN 1995 workshop on
Languages, compilers, & tools for real-time systems, pages
88–98, New York, NY, USA, 1995. ACM Press.

[14] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient
microarchitecture modeling and path analysis for real-time
software. In RTSS ’95: Proceedings of the 16th IEEE
Real-Time Systems Symposium (RTSS ’95), page 298,
Washington, DC, USA, 1995. IEEE Computer Society.

[15] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, MA, USA, second
edition, 1999.

[16] T. Lundqvist and P. Stenström. Timing anomalies in
dynamically scheduled microprocessors. In RTSS ’99:
Proceedings of the 20th IEEE Real-Time Systems
Symposium, page 12, Washington, DC, USA, 1999. IEEE
Computer Society.

[17] J. M. O’Connor and M. Tremblay. picoJava-I: The Java
virtual machine in hardware. IEEE Micro, 17(2):45–53,
1997.

[18] P. Puschner and G. Bernat. Wcet analysis of reusable
portable code. In ECRTS ’01: Proceedings of the 13th
Euromicro Conference on Real-Time Systems, page 45,
Washington, DC, USA, 2001. IEEE Computer Society.

[19] P. Puschner and A. Burns. A review of worst-case
execution-time analysis (editorial). Real-Time Systems,
18(2/3):115–128, 2000.

[20] P. Puschner and A. Burns. Writing temporally predictable
code. In WORDS ’02: Proceedings of the The Seventh IEEE
International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2002), page 85, Washington,
DC, USA, 2002. IEEE Computer Society.

[21] P. Puschner and C. Koza. Calculating the maximum
execution time of real-time programs. Real-Time Syst.,
1(2):159–176, 1989.

[22] P. Puschner and A. Schedl. Computing maximum task
execution times – a graph-based approach. Journal of
Real-Time Systems, 13(1):67–91, Jul. 1997.

[23] M. Schoeberl. A time predictable instruction cache for a Java
processor. In On the Move to Meaningful Internet Systems
2004: Workshop on Java Technologies for Real-Time and
Embedded Systems (JTRES 2004), volume 3292 of LNCS,
pages 371–382, Agia Napa, Cyprus, October 2004. Springer.

[24] M. Schoeberl. Evaluation of a Java processor. In
Tagungsband Austrochip 2005, pages 127–134, Vienna,
Austria, October 2005.

[25] M. Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna
University of Technology, 2005.

[26] M. Schoeberl. Real-time garbage collection for Java. In
Proceedings of the 9th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed
Computing (ISORC 2006), pages 424–432, Gyeongju,
Korea, April 2006.

[27] M. Schoeberl. A time predictable Java processor. In
Proceedings of the Design, Automation and Test in Europe
Conference (DATE 2006), pages 800–805, Munich,
Germany, March 2006.

[28] A. C. Shaw. Reasoning about time in higher-level language
software. IEEE Trans. Softw. Eng., 15(7):875–889, 1989.

	Introduction
	Java Processors
	WCET Analysis
	WCET Analysis for Java

	A Time Predictable Processor
	JOP Architecture
	The Processor Pipeline
	Cache
	Stack Cache
	Method Cache

	Performance
	Size

	WCET Analysis for JOP
	High-Level WCET Analysis
	WCET Annotations
	ILP Formulation
	An Example
	Dynamic Method Dispatch

	Low-Level WCET Analysis
	Basic Bytecodes
	Memory Access
	Bytecodes in Java
	Native Methods

	Implementation

	Cache Analysis
	Single Block Cache
	Dual Block Cache
	Variable Block Cache

	Evaluation
	Conclusion
	References

