
A Modular Worst-case Execution Time Analysis Tool for Java Processors

Trevor Harmon
Electrical Engineering and Computer Science

University of California, Irvine
tharmon@uci.edu

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Raimund Kirner
Institute of Computer Engineering

Vienna University of Technology, Austria
raimund@vmars.tuwien.ac.at

Raymond Klefstad
Electrical Engineering and Computer Science

University of California, Irvine
klefstad@uci.edu

Abstract

Recent technologies such as the Real-Time Specification
for Java promise to bring Java’s advantages to real-time
systems. While these technologies have made Java more
predictable, they lack a crucial element: support for de-
termining the worst-case execution time (WCET). Without
knowledge of WCET, the correct temporal behavior of a
Java program cannot be guaranteed. Although consider-
able research has been applied to the theory of WCET anal-
ysis, implementations are much less common, particularly
for Java.

Recognizing this deficiency, we have created an open-
source, extensible tool that supports WCET analysis of Java
programs. Designed for flexibility, it is built around a plug-
in model that allows features to be incorporated as needed.
Users can plug in various processor models, loop bound
detectors, and WCET analysis algorithms without having
to understand or alter the tool’s internals.

1 Introduction

The increasing size and complexity of real-time systems
are starting to push developers away from C. Despite its
status as the most popular language in real-time computing,
it is relatively low-level, error-prone, and difficult to scale
to large systems.

An increasing number of developers and researchers are
looking to Java as a potential alternative. This much newer
language offers direct benefits: Compilers for Java catch
many errors that C compilers miss; the language defini-
tion specifically addresses safety and security issues; and
the high-level nature of Java makes it more productive [2].

At the same time, Java is a terrible match for real-time
systems. Its combination of automatic garbage collection,
underspecified threading semantics, and pervasive object-
orientation (i.e., dynamic dispatch) are all impediments to
building time-predictable software.

Recent efforts to address some of these issues have fo-
cused on the Real-time Specification for Java (RTSJ) [4].
It provides scoped memory to avoid high-latency garbage
collection, tightens the threading model to support real-time
scheduling, and adds other features that make Java a viable
platform for real-time applications.

The RTSJ is only a partial solution, however. It is de-
signed mainly for soft real-time environments that have sig-
nificant hardware resources. (The Sun Real-time System,1

for instance, requires an UltraSparc III or higher with at
least 512 MB of RAM.) For embedded applications where
processing power and memory are at a premium, the RTSJ
is infeasible.

The RTSJ also lacks an essential element necessary for
hard real-time and safety-critical systems. Though it may
provide deterministic scheduling, priority inversion avoid-
ance, and predictable memory allocation, it offers no sup-
port for computing the worst-case execution time (WCET)
of a task, and without knowing the WCET, no guaran-
tees can be made on the timeliness of the system. The
RTSJ’s only provision is in its scheduler interface—the
ReleaseParameters class—which takes as input the
WCET of a schedulable object. But even this basic support
may be useless in practice, as evidenced by the documen-
tation note accompanying the class: Cost measurement and
enforcement is an optional facility for implementations of
the RTSJ.

1http://java.sun.com/javase/technologies/realtime.jsp

1.1 Java Microprocessors

In the last few years, a new approach for dealing with
WCET analysis in Java has emerged. Rather than fight the
increasingly unpredictable behavior of virtual machines and
superscalar processors, an alternative strategy eliminates
them entirely. The approach relies on specialized proces-
sors that understand Java bytecode as their native instruc-
tion set. Examples include the aJ-100 [8], the Cjip [11], and
the JOP [19, 20].

These Java-specific processors offer several advantages
for real-time systems. Predictability is one of the key fac-
tors. For example, Java’s jump instructions are guaranteed
never to target beyond the address range of the declaring
method; therefore, a method-based cache, such as the one
employed by JOP [17], makes every non-invocation and
non-return instruction a cache hit. These characteristics
yield a much tighter bound when performing static WCET
analysis. Java processors also eliminate the operating sys-
tem and virtual machine layers, making analysis and safety
certification far simpler.

These qualities make Java processors an attractive plat-
form for hard real-time systems. Although moving to such a
novel and unique architecture may seem drastic, developers
of real-time systems have a tradition of adopting new plat-
forms when special needs arise, as evidenced by the pop-
ularity of ARM and PowerPC architectures in embedded
devices.

1.2 The Volta Project

Despite the advantages of Java-based processors for real-
time systems, tools for WCET analysis in the Java domain
are virtually non-existent. Only two implementations have
ever been created: Javelin [3] and WCA [21], both of which
are now unmaintained. Without working implementations
to build upon, testing new theories and finding new avenues
of research are exceedingly difficult. The lack of implemen-
tations also prevents real-time developers from gaining the
productivity advantages offered by Java.

To address these problems, we have constructed a suite
of tools for developing and analyzing real-time software on
Java processors. The suite, called Volta, is completely open-
source2 and implemented entirely in Java. It currently con-
sists of a control flow analyzer called Cascade and a static
WCET analyzer called Clepsydra.

In prior work [9], we described the Clepsydra tool and
its support for back-annotation, a technique that automati-
cally annotates every statement in a real-time Java program
with its worst-case execution time. Clepsydra is unique in
that it can perform this back-annotation interactively, as the

2Available at http://volta.sourceforge.net/ under the GNU Public Li-
cense.

program is being written. The Volta project includes a Clep-
sydra plug-in for jEdit3 as a demonstration of how back-
annotations can be integrated seamlessly into a real-time
programmer’s development environment.

In this work, we have extended the tool to support WCET
analysis across method invocations. The support includes
an enhanced control flow analyzer with improved visualiza-
tion of control flow graphs, as well as a pluggable model of
the method cache, a novel cache design introduced in the
Java Optimized Processor (JOP).

The paper is organized in a bottom-up fashion, start-
ing with the low-level tools and working up to high-level
WCET analysis. Section 2 focuses on the Cascade tool, our
control flow analyzer, to explain its design and show the
improvements it offers in the display of flow information.
Section 3 discusses the enhancements made in Clepsydra,
our WCET analyzer, to support analysis across method in-
vocations. (Earlier versions of the Cascade and Clepsydra
tools could analyze only one method in isolation.) Finally,
in Section 4, we evaluate the performance of the Clepsydra
tool to support our claim that it is sufficiently fast for inter-
active analysis of real-time software, even in the presence
of method invocations.

2 Control Flow Analysis

WCET analysis necessarily begins with knowledge of
the exact bytecode that will run on the target device. The
analysis must also build up a control flow model of the
bytecode. To accomplish these goals, two general tactics
have been employed: 1) Write a custom tool that parses
Java bytecode and, by analyzing branch targets, groups the
bytecode into its constituent basic blocks; or 2) add hooks
to a Java compiler so that the abstract syntax tree (AST) it
produces can be saved to a file for later analysis by a WCET
tool.

Through our research on the Volta tool suite, we have de-
veloped a third tactic: decompilation. We observed that the
high-level nature of bytecode allows Java decompilers to re-
produce a near-perfect representation of the original source
code (assuming the bytecode contains standard debugging
symbols and has not been obfuscated). Decompilers of-
fer a practical foundation for WCET analysis because they
perform almost the same task—that is, analyzing bytecode
and building up control flow information—that traditional
WCET tools have always done. Moreover, decompilers are
usually simpler than compilers and therefore easier to mod-
ify for the purpose of WCET analysis.

Decompilers also offer an intriguing side-effect: They
map every control flow element (e.g., basic block) to a rep-
resentative expression in the Java language. By exploit-
ing this feature, analysis tools can annotate control flow

3http://jedit.org/

data structures with source code information, making them
much easier to comprehend. For example, a node in a con-
trol flow graph generated by conventional tools would show
only bytecode instructions:

iload_1
iload_2
iload_3
imul
iadd

With decompiler support, the tool can combine this byte-
code sequence with the source code expression it repre-
sents:

startVelocity + acceleration * deltaTime

This feature greatly improves readability of control flow
data, yet it would be extremely difficult to implement prop-
erly in lower-level languages such as C. In Figure 1, for
example, a typical control flow analyzer would show only
the bytecode of each basic block, but with decompilation
support, the nodes of the graph can be annotated with the
Java statements they represent, as shown here.

2.1 JODE

To exploit these benefits, our Volta suite includes a de-
compiler to serve as the foundation for all of its tools. We
chose to integrate an existing tool called JODE4 rather than
reimplement one from scratch. We selected JODE for three
reasons: 1) It exposes control flow data in a public API;
2) our experiments indicate that it produces more accurate
results than other decompilers; and 3) it is distributed un-
der an open-source license, allowing the freedom to modify
JODE for the benefit of Volta’s higher-level tools.

This freedom is especially important because the origi-
nal version of JODE discards bytecode during the process
of reconstructing source code. Though such details may be
unnecessary for a decompiler, they are vital for WCET anal-
ysis, and thus we modified JODE to preserve the original
bytecode instructions and associate them with their corre-
sponding control flow blocks. We also translated the byte-
code into BCEL5 format (now a de facto standard in the Java
domain) to enable interoperability with other Java tools.

2.2 Cascade

With a strong decompiler as the foundation, we were
able to create a unique control flow analyzer for the Volta
tool suite. Called Cascade, this tool is built directly on top
of JODE and translates the decompiler-specific control flow

4http://jode.sourceforge.net/
5http://jakarta.apache.org/bcel/

+ getNext() : Node
+ getInstructions() : List<InstructionHandle>
+ getSourceCodeLineNumber() : int

…

Loop

Node

ForLoop WhileLoopDoWhileLoop

Statement

ReturnStatement

Goto IfThenElse

Figure 2. Our control flow analyzer, Cascade, trans-
lates Java programs into control flow graphs and trees
consisting of the classes shown in this UML diagram.
Each class provides operations for obtaining informa-
tion about the control flow element, such as the byte-
code sequence it represents.

structures into a general-purpose class hierarchy, as shown
in Figure 2. Other tools, such as WCET analyzers, can use
these classes directly, shielding them from the complexities
of the decompiler. Cascade also provides important reflec-
tion services for loading classes, obtaining method handles,
computing the static code size of a method, and so on.

Note that Cascade is purely a control flow analyzer. The
specifics of WCET analysis are kept out of the tool en-
tirely. This modular, self-contained design allows other re-
searchers to build on our implementation. For example, one
could write a new WCET analyzer, or some other tool en-
tirely, without any conflicts between existing tools in the
Volta project that also rely on control flow analysis.

For the benefit of such tools, Cascade offers flexibility
in how it represents control flow data. It provides both a
traditional control flow graph as well as a control flow tree
that is necessary for tree-based WCET algorithms. For each
data structure, Cascade provides an API for operations such
as:

• Iterating through the control flow structure

• Detecting loops

• Finding method invocations

• Obtaining the bytecode and human-friendly source code as-
sociated with any given node

• Exporting control flow data to SVG, DOT, GML, GraphML,
and plain text file formats

The latter feature is particularly valuable because it al-
lows Cascade’s output to be fed into other tools for further
processing and visualization. For example, the DOT ex-
port format allows control flow graphs to be displayed in a
Graphviz6 program, as shown in Figure 1.

6http://www.graphviz.org/

SpeedSensor.getVelocityData(int[],int[],int[],int[])

i = 0; for (i < 64)

v[i] = computeVelocity(u[i], a[i], dt[i]);

i++;

goto

return;

SpeedSensor.computeVelocity(int,int,int)

return startVelocity + acceleration * deltaTime;

Block 1
0: iconst_0
1: istore 5

Block 2
3: iload 5
5: bipush 64
7: if_icmpge -> 37

2

Block 7
10: aload_1
11: iload 5
13: aload_0
14: aload_2
15: iload 5
17: iaload
18: aload_3
19: iload 5
21: iaload
22: aload 4
24: iload 5
26: iaload

8 (true)

Block 6
37: return

6 (false)

Block 9
cache miss

10 (false)

Block 3
30: iastore

Block 4
31: iinc 5 1

3

Block 8
cache miss

9

Block 10
27: invokespecial 2

12

13

Block 12
0: iload_1
1: iload_2
2: iload_3
3: imul
4: iadd

18

Block 5
34: goto -> 3

4

5

Block T
Exit

7

11

Block 11
5: ireturn

17

14

Block 13
cache miss

15
16

Block S
Entry

1

Figure 1. In addition to programmatic access to control flow via its API, Cascade can generate output for visualization. This
figure shows the result of Cascade’s analysis of the program in Figure 3. Note how Cascade groups the nodes according to
the method in which they belong to enhance readability.

Note that this figure is not a mock-up; it is the actual out-
put produced by Cascade of the program in Figure 3. The
figure also illustrates how Cascade annotates each control
flow node in the graph with the corresponding source code
provided by the decompiler. Without this extra information,
the CFG would be much more difficult to comprehend, and
the relationship between the control flow and the original
program would be far from obvious. Cascade is the first
control flow analyzer to provide such a feature.

3 WCET Analysis

In keeping with the modular spirit of the Volta project,
our WCET analysis tool is, like Cascade, constructed as an
independent program. Called Clepsydra, it implements cur-
rent WCET analysis theory, including path analysis, exec-
time modeling, and longest path search [12]. The follow-
ing sections describe this theory and its implementation in
Clepsydra.

Note that garbage collection is absent from this discus-
sion, despite its traditional importance in Java-based sys-
tems. In real-time systems, garbage collection is typically
disabled for critical tasks and can therefore be ignored. In
addition, it is largely a scheduling issue and can be consid-
ered independent of WCET analysis on individual threads.

class SpeedSensor {
private final static int VELOCITY_SIZE = 64;

private int computeVelocity(
int startVelocity, int acceleration, int deltaTime) {
return startVelocity + acceleration * deltaTime;

}

public void getVelocityData
(int[] v, int[] u, int[] a, int[] dt) {

@LoopBound(max=VELOCITY_SIZE)
for (int i = 0; i < VELOCITY_SIZE; i++)
v[i] = computeVelocity(u[i], a[i], dt[i]);

}
}

Figure 3. This program is the basis of Figures 1 and 5.
The @LoopBound statement is a custom annotation
for communicating loop bounds to a WCET analyzer.

3.1 Path Analysis

Prior to calculating a WCET bound, information about
the feasible execution paths in a program must be collected.
This information is often called flow information or flow
facts. Identifying precise flow information normally re-
quires some form of control flow reconstruction from the
binary code. In the Volta suite, the Cascade tool takes care

while (someCondition)
{
 if (otherCondition)
 variable *= 5;

 else
 {
 variable--;
 flag = true;
 }
}

500 ns

500 ns
200 ns

150 ns

400 nsgoto instruction

iterations = 10

150 ns
300 ns

500 + max(600, 300)
= 1100 ns

400 nsgoto instruction
600 ns

1500 ns

Figure 4. A tree-based WCET algorithm recurses to the
leaves of a control flow tree and returns the sum for each
node. When branches are encountered, the worst-case
time among all branches is taken, resulting in a WCET
of 1500 for the loop body shown here. The body is then
multiplied by the maximum number of iterations for a fi-
nal WCET of 500 + 10 (1500 + 500) = 20,500.

of this reconstruction.
However, even a perfect reconstruction of the flow model

is insufficient. For programs containing loops, their WCET
is essentially unbounded; a pure control-flow analyzer with-
out deep semantic analysis has no way of knowing how
many times a loop will iterate in the worst case. While
recent work has focused on abstract interpretation to find
bounds automatically [6, 7], the more common approach is
to rely on annotations. These loop bound annotations must
be inserted manually, thus they require more effort from the
developer and are error-prone, but they make WCET analy-
sis much faster and simpler. (Our prior efforts have focused
on adapting Java’s built-in annotation mechanism for this
purpose [10]. Benefits include “for free” syntax checking,
type safety, and support from existing tools.)

3.2 Exec-Time Modeling

Once the control flow has been reconstructed and loop
bounds obtained, the core of the analysis begins with a pro-
cess known as exec-time modeling [12]. It assigns each in-
struction in the program an execution time. The nanosecond
values in Figure 4, for example, must be derived from some
model of the target processor. In addition, knowledge of
cache behavior is required for a tight bound on the WCET.

3.2.1 Instruction Timing

Exec-time modeling on modern processors is quite difficult.
They include multi-level caches, branch prediction, and out-
of-order execution that introduce state whose exact value
depends on a large execution history. Modeling this his-

tory leads to a state explosion for the final WCET calcula-
tion. As a result, low-level WCET analysis usually requires
simplifications of the CPU model, producing an excessively
conservative estimate.

A novel solution, as discussed in Section 1.1, is to rely on
a Java-specific processor such as JOP, which strikes a bal-
ance between average case performance and ease of WCET
analysis. JOP avoids complex features such as pipeline de-
pendencies, prefetch queues, and automatic stack dribbling,
as found in other Java processors [15]. As a consequence,
there are no timing dependencies across bytecode bound-
aries, and pipeline analysis [5] can be omitted. The rules to
aggregate timing values [22] can be applied without intro-
ducing significant conservatism.

This simplicity in Java processors is an asset for low-
level WCET analysis. The process can ignore execution his-
tory and processor state, deriving the cycle count for each
bytecode instruction in isolation. Furthermore, low-level
analysis need not consider how bytecode will be translated
into native instructions, as there is no just-in-time compila-
tion on Java-specific processors.

On the JOP, for instance, the cycle count for the
GETSTATIC bytecode instruction is 12 + 2rws, where rws

is the number of wait states for a memory read. Almost all
bytecode timings can be computed with a simple formula
such as this, assuming that the instruction is already in the
instruction cache. The only input variables are the instruc-
tion opcode and the memory wait states.

3.2.2 Instruction Caching

Simple processors without caching are naturally an easier
target for WCET analysis. Yet even in resource-constrained
embedded systems, caches are now mandatory due to the
growing gap between processor performance and memory
access time. To bridge this gap, the design of JOP intro-
duces two time-predictable caches: A stack cache [18] to
speed up access to variables and operands on the execution
stack, and a method cache [17] as a special kind of instruc-
tion cache.

The stack cache is a simple two-level on-chip memory.
The two top-most elements of the stack are held in reg-
isters, and the subsequent elements are stored in on-chip
block RAM. There is no automatic exchange between on-
chip RAM and the main memory, as found in picoJava [15],
which would introduce complex timing interactions be-
tween instructions. The exchange is under microcode con-
trol and can be restricted to method invocation or thread
switching.

The method cache stores whole Java methods and is
filled only on an invoke or a return instruction; all other
instructions are a guaranteed cache hit. This observation
greatly simplifies low-level analysis because the context of

empty empty

empty

fillVelocityData

empty

fillVelocityData

fillVelocityDatacomputeVelocity

computeVelocity

MISS

MISS

MISS

MISS

Before invocation of
fillVelocityData

After invocation of
fillVelocityData

First invocation of
computeVelocity

fillVelocityDatafillVelocityData

computeVelocity

MISS HITFirst return from
computeVelocity

fillVelocityDatacomputeVelocity

computeVelocity

MISS

HIT

Subsequent invocations
of computeVelocity

fillVelocityDatafillVelocityData

computeVelocity

MISS HITSubsequent returns from
computeVelocity

Single Method Cache Dual Method Cache

Figure 5. A purely control-flow analysis can identify
guaranteed hits and misses of the method cache in cer-
tain situations. This diagram shows one such situation:
a leaf method within a loop, as in Figure 3. All invoca-
tions of computeVelocity are misses in the single
method cache, but only the first invocation is a miss for
the dual method cache.

the instruction, such as whether it lies within a loop, can
be ignored completely without neglecting the effects of the
cache.

JOP’s method cache is also unique in that its architecture
can vary according to the desired sophistication of WCET
analysis. In sharp contrast to block-level instruction caches,
its most basic form is the single method cache [17], in which
the total size of the cache matches the size of the largest
method to be executed. In this configuration, every method
invocation and return is a guaranteed miss, as shown in Fig-
ure 5. (Note that this is still a caching solution because it
converts all non-invocation and non-return instructions into
cache hits.)

Although the single method cache makes WCET anal-
ysis simple and fast, the cache miss on every invocation
and return causes programs to run slowly, especially given
the large number of method invocations in typical Java soft-
ware. To increase the cache hit ratio, JOP can also be con-
figured to store more than one method at a time. For exam-
ple, a dual method cache [17] stores two methods at once
using a least-recently used replacement strategy. As before,
both areas of the cache must be large enough to hold the

largest method in the program. (The largest method could
end up in either area, depending on the call graph).

While the dual method cache improves performance, it
also complicates WCET analysis. Whether a method invo-
cation is a hit or miss depends not only on the structure of
the program but on the input data, as well. For example:

for (int i = 0; i < 10; i++)
if (i % 3 == 0) methodA();
else methodB();

Without elaborate data flow analysis to determine when
i % 3 == 0, a WCET analyzer must assume that the in-
vocations of methodA and methodB are always misses.
Otherwise, it cannot guarantee a safe estimate.

Fortunately, other code structures are more amenable to
analysis. If, for example, the call to methodB were re-
moved, and methodA makes no further invocations, then
two guarantees can be made: the invocation of methodA
and the return from methodA will always be cache hits
(except for the first iteration when methodA is loaded into
the cache, as shown in Figure 5).

By identifying such structures in the code—that is, a
loop that executes only one kind of method—analyzers can
improve their estimate of the WCET. Our prior work de-
scribes how to add constraints to an IPET formulation in or-
der to achieve these improvements [21]. The variable block
method cache [17] is more WCET-friendly than a standard
cache (the analysis depends on method invocations instead
of individual instructions) but more complex. The integra-
tion of the analysis [13] into Clepsydra is future work.

3.3 Longest-Path Search

After identifying feasible paths through path analysis
and assigning execution times to instructions through exec-
time modeling, the WCET bound (i.e., the longest path) can
be calculated. This phase is also known as calculation of ex-
ecution scenarios [12] because additional information can
also be obtained from this final phase, such as best-case ex-
ecution time. The process normally takes one of two forms:
a tree-based algorithm or a graph-based algorithm.

3.3.1 Tree-based Algorithms

Tree-based algorithms were among the very first implemen-
tations of WCET analysis [16]. They operate by recursively
descending the nodes of a program’s control-flow tree, re-
turning the execution time for each node. The value re-
turned for the root node is the total WCET.

As the algorithm encounters each control-flow node, it
must decide how to compute the WCET based on the node’s
type. For straight-line code, the time to execute each in-
struction is simply summed. For branches (if and switch

statements), the path whose execution time is highest—the
“worst” path—is taken as the total time. For loops, the max-
imum number of iterations is multiplied by the WCET of
the loop’s body. Figure 4 shows an example of this concept
for a simple loop.

In addition to being relatively easy to write and to un-
derstand, tree-based algorithms have benefits that are not
so commonly recognized. Raw speed is one example. The
expected running time of a recursive descent to determine
WCET is θ(n), where n is the number of nodes in the con-
trol flow tree. (In contrast, graph-based algorithms are the-
oretically NP-hard problems.)

The side effect of this performance advantage is that
analysis can be made interactive. Just as in Eclipse, where
the Java compiler runs in the background to reveal syntax
errors during typing, WCET analysis can run in parallel
with the text editor, providing immediate feedback to the
developer of the worst-case path [9]. Without tree-based
algorithms and the simplicity provided by Java micropro-
cessors, this feature would be nearly impossible, given the
time complexity of the problem and the speed of today’s
development workstations.

Despite these advantages, the tree-based algorithm has
fallen out of favor among WCET researchers. It suffers
from certain drawbacks, such as a susceptibility to the false
path (a.k.a. infeasible path) problem, in which data depen-
dencies between two if statements can fool the algorithm
into computing an overly pessimistic WCET [1]. In general,
tree-based algorithms have difficulty handling any type of
dependency across sibling nodes due to the nature of tree
traversal.

3.3.2 IPET-based Algorithms

As a solution to problems such as the false path, an al-
ternative technique known as implicit path enumeration
has emerged [14]. These algorithms require a control
flow graph, instead of a tree, as input. They operate by
finding the maximum possible “weight” (i.e., maximum
time) between the source of the graph and its sink. Thus,
they treat WCET computation as an instance of the max-
imum flow problem, solvable by a variety of techniques:
Ford-Fulkerson, Edmonds-Karp, integer linear program-
ming (ILP), etc.

WCET is a special case, however, due to the presence
of loops in software programs. Most maximum flow al-
gorithms assume an acyclic graph. For this reason, the
ILP technique is commonly used to compute the flow. ILP
solves the loop problem by defining maximum flow accord-
ing to constraints on the legal flow through the graph. Ac-
counting for a loop is simply a matter of adding an addi-
tional constraint to bound the amount of flow—that is, the
number of iterations—through the loop.

To illustrate, consider the control flow graph of Fig-
ure 1, whose source code is given in Figure 3. An IPET-
based algorithm would add constraints for each node in the
graph. The constraint on Block 7, for example, would be
edge8 = edge9 + edge12, indicating that the incom-
ing flow is equal to the outgoing flow. To account for the
loop, an additional constraint for Block 2 would be added:
64 · edge2 = edge8, indicating that the flow through edge 2
is 64 times as large as the flow through edge 8.

Solving the false path problem would be handled in a
similar way. A constraint to relate the two if statements
would be added to the ILP formulation. Determining this
constraint is far from trivial, however. Unless the false path
can somehow be identified—an NP-complete problem by
itself—then the IPET approach can offer no improvement,
degrading to the same level of pessimism as a simple tree al-
gorithm. This is an important point to remember: Contrary
to conventional wisdom, IPET algorithms are not inherently
more accurate than their tree-based counterparts. They im-
prove only when provided with the appropriate flow con-
straints, a task that is quite difficult to accomplish in prac-
tice.

Another disadvantage of IPET-based techniques is their
slothful performance. The time required by such algorithms
grows exponentially in the worst case as the cyclomatic
complexity of the analyzed program increases [9]. (By
comparison, tree-based algorithms grow linearly.) Their
slowness makes IPET algorithms impractical for the kind
of interactive WCET analysis described in Section 3.3.1.

3.4 Clepsydra

Clepsydra provides a complete implementation of the
theory described in this section, including the method cache
modeling. As an additional benefit, it is designed to sup-
port a variety of different theoretical approaches because,
as discussed in Section 3.3, WCET analysis techniques of-
fer different strengths and weaknesses. Some techniques
run fast but may not find a tight bound (e.g., tree-based
approaches); others can be made tighter but require expo-
nential running time in the worst case (e.g., implicit path
enumeration). No single approach is ideal, and for this rea-
son Clepsydra makes analysis techniques pluggable via the
Strategy pattern. Developers can switch between analysis
strategies with relative ease, allowing the same Clepsydra
framework to be used as existing techniques are refined and
new ones are created.

This flexibility is particularly important with respect to
back-annotation (see Section 3.3.1). When making back-
annotation interactive, the speed of the analysis technique
is a major factor in usability. A developer cannot afford to
wait for a lengthy analysis to complete after every change
of the source code. Therefore, Clepsydra offers a hybrid

public int getCycles(short opcode, boolean cacheHit)
{
int methodLoadTime = getMethodLoadTime(cacheHit);

switch (opcode) {
case SIPUSH:
return 3;

case LDC:
return 7 + readWaitStates;

case LDC2_W:
cycles = 17;
if (readWaitStates > 2)
cycles += readWaitStates - 2;

if (readWaitStates > 1)
cycles += readWaitStates - 1;

return cycles;
.
.
.

Figure 6. Clepsydra relies on the Strategy pattern to
make processor timing definitions easily swappable.
This listing shows a portion of the JOP timing strategy.

approach: Fast tree-based analysis is used by default for in-
teractive back-annotation, but if the developer suspects the
results are too pessimistic, Clepsydra can switch to a slower
technique for tighter WCET estimation.

Clepsydra also offers the flexibility to support arbitrary
CPUs for exec-time modeling. It provides a JOP processor
model by default, and users can plug in a custom timing
strategy to describe other Java processors, such as the aJile
chip. Creating the plug-in requires the implementation of a
simple Java interface, as illustrated in Figure 6.

Loop bound determination is factored out via the Strat-
egy pattern, as well. Developers can plug in the default
annotation-based strategy supplied by Clepsydra, or they
can implement their own without having to understand the
details of Clepsydra’s design.

3.5 Method Cache Analysis

Since our previous work [9], we have extended Clep-
sydra to support analysis of JOP’s method cache. It now
supports analysis of whole programs across method invoca-
tions. This required a change in Cascade, as seen in Figure
1. Note the extra cache miss blocks; these represent the al-
ternate path in control flow in the event of a method cache
miss. Miss blocks were also added to precede return in-
structions because they can also cause cache misses. The
execution time, or “cost,” of control flow passing through
these blocks is equal to the miss penalty alone (i.e., the num-
ber of extra cycles needed to load the method), not the total
time for invocation or return.

With the control flow graph adjusted for method cache
support, the next step was to add the appropriate constraints

in the IPET analysis to account for the method cache. For
the single method configuration, no additional constraints
were necessary because the miss path must always be taken,
and this happens automatically as a result of finding the
worst case path.

For the dual method configuration, only the simple anal-
ysis described in Section 3.2.2 was implemented. When
Clepsydra encounters a method invocation, it first checks
whether the invocation occurs within a loop and whether it
is the only one of its type in the entire loop body. If both
conditions are true, the invocation is a miss on the first itera-
tion but a guaranteed hit on all subsequent iterations. Clep-
sydra uses this fact to add a constraint in the IPET formula-
tion. In the case of Figure 1, for example, it would add the
following constraints for the invocation in block 10:

edge9 = edge2
edge12 = (n-1) edge2

where the constant n is the loop bound.
For return instructions, Clepsydra considers only leaves

in the call tree. (A leaf is a method that invokes no meth-
ods.) Any return instruction in a leaf is always a guaranteed
hit (for the dual-block cache), not only within loops. Cas-
cade’s API makes testing for this condition easy; it requires
only a simple expression:

getTree().getMethodInvocations().isEmpty()

This expression obtains the control flow tree belonging
to the return instruction, then checks whether the set of
method invocations in that tree is empty. (For a full expla-
nation of getMethodInvocations, refer to the Volta
API documentation.7)

Figure 7 shows the result of a complete analysis that puts
all of these constraints together. The listing is an ILP for-
mulation by Clepsydra of the CFG in Figure 1.

3.6 Tree Algorithm for Method Analysis

As discussed in Section 3.3.2, the IPET approach is com-
putationally expensive. Even for small programs, comput-
ing WCET in the presence of method invocations can take
ten seconds or more; larger programs may require several
minutes even on a fast workstation. For interactive analysis
of real-time software, this delay is unacceptable.

To solve this problem, we developed a tree-based algo-
rithm capable of analyzing the dual-method cache described
in Section 3.2.2. It offers accuracy that is identical to the
IPET algorithm but executes in a fraction of the time. (A
concrete performance analysis of the algorithm is provided
in Section 4.1.)

7http://volta.sourceforge.net/api/index.html

+edge1 = 1;
+edge7 = 1;
+edge1 -edge2 = 0;
+edge2 +edge5 -edge6 -edge8 -edge10 = 0;
-edge3 +edge17 = 0;
+edge3 -edge4 = 0;
+edge4 -edge5 = 0;
+edge6 -edge7 +edge11 = 0;
+edge8 -edge9 -edge12 = 0;
+edge9 -edge13 = 0;
+edge10 -edge11 = 0;
+edge12 +edge13 -edge18 = 0;
+edge14 +edge16 -edge17 = 0;
-edge14 -edge15 +edge18 = 0;
+edge15 -edge16 = 0;
-64 edge2 +edge8 = 0;
+3 edge1 -block1 = 0;
+8 edge2 +8 edge5 -block2 = 0;
+38 edge17 -block3 = 0;
+8 edge3 -block4 = 0;
+4 edge4 -block5 = 0;
+21 edge6 +21 edge11 -block6 = 0;
+119 edge8 -block7 = 0;
-block8 = 0;
-block9 = 0;
+75 edge12 +75 edge13 -block10 = 0;
+23 edge14 +23 edge16 -block11 = 0;
+39 edge18 -block12 = 0;
-block13 = 0;

Figure 7. This ILP formulation, shown here in lp solve
format, is produced by Clepsydra when applying the
IPET analysis strategy to Figure 3. Note that the cache
miss constraints (blocks 8, 9, and 13) evaluate to zero
because the methods are so small that their miss penal-
ties are zero.

Our algorithm is a two-pass variation of the standard tree
analysis approach (i.e., recursive descent). In the first pass,
we treat all method invocations as if they were cache misses.
We then execute a second pass through the control flow
tree and examine only the method invocations. For invo-
cations determined to be cache hits, we multiply the num-
ber of hits by the miss penalty for that particular invocation.
This penalty is actually the gain time because the first pass
assumed only cache misses. We simply subtract the gain
time from the first pass total to arrive at the final WCET
calculation. Figure 8 provides a pseudocode listing of this
approach. A complete implementation can be found in the
Volta distribution.

4 Performance Analysis

One of the key benefits of the Volta tool suite is in-
teractive development of real-time software, such as the
back-annotation feature described in Section 3.3.1. Given
the importance of speed in interactive back-annotation, the
running time of the various WCET analysis techniques be-
comes a prime consideration. Almost all prior work has fo-
cused on reducing pessimism in WCET analysis, but there

getWCET(node)
if node is null return 0
if node is if-then-else
return getExprWCET(if expression) +

max(getWCET(then branch), getWCET(else branch))
if node is loop
return getExprWCET(loop expression) +

getWCET(loop body) * loop bound
if node is statement
return getExprWCET(statement expression)

getExprWCET(expression)
return the sum of CPU cycles for all instructions
(assume all invocation instructions are cache misses)

getGainTime()
gainTime = 0
for each node in the control flow tree
if the node contains a method invocation
gainTime += number cache hits for invocation *

cache miss penalty
return gainTime

getTotalWCET()
return getWCET(root node) - getGainTime()

Figure 8. The standard recursive descent algorithm in
tree-based analysis cannot account for method invo-
cations because method cache hits are not constant
across loop iterations. A two-pass variation of the algo-
rithm, shown here in pseudocode, solves this problem.

has been little to no emphasis on reducing its execution
time. The idea of near-instantaneous analysis offers the po-
tential for a new breed of real-time software development
tools, such as the editor plugin described in Section 1.2.

An obvious question to answer, then, is how fast the anal-
ysis techniques perform. Tree-based analysis has long been
recognized as the fastest; its running time grows linearly
with the size of the program. In contrast, the IPET tech-
nique is slower; it has in the worst case NP-hard complexity.
Before we discount IPET, however, consider the remarkable
speed of today’s processors. Could the IPET approach be
fast enough for interactivity on modern workstations, de-
spite its complexity?

4.1 Speed of Analysis

Our performance measurements with Clepsydra show
that this is not yet possible, as evidenced by Figure 9. The
chart shows benchmarks for three analysis techniques: the
tree technique, the IPET technique using lp solve,8 and the
IPET technique using GLPK.9 (The seemingly redundant
benchmarks for IPET are designed to rule out the possibil-
ity that a lackluster performance of the IPET approach is
merely the result of an inefficient ILP solver.)

8http://lpsolve.sourceforge.net/5.5/
9http://www.gnu.org/software/glpk/

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

S
ec

on
d

s

Call Stack Height

Tree method
IPET method (GLPK)
IPET method (lp_solve)

Figure 9. In the presence of method invocations with
cache analysis, the tree technique still outperforms the
IPET alternative.

In prior work [9], we tested how each technique per-
formed as the cyclomatic complexity of a contrived in-
put program increases. It showed that the tree-based tech-
nique was the clear winner. Its performance, while linear in
growth, appears virtually constant, requiring only a few mil-
liseconds even at high complexity. As expected, the IPET
technique is much slower, growing exponentially with pro-
gram size. For interactive back-annotation, tree-based anal-
ysis is clearly the best choice and deserves greater attention
from the research community.

In light of our recent improvements in Clepsydra to sup-
port method invocations, there was a question of whether
the tree-based technique’s stellar performance would re-
main. We evaluated the speed of all three algorithms again
using the same hardware and software testbed, this time
running a benchmark that invokes methods (see Figure 9).
Note that it contains three curves, one for the tree technique
and two for the two independent implementations of IPET.)

For the evaluation, we measured the performance of the
algorithms under increasing complexity by increasing the
height of the call stack. (For example, a method that calls
a method that calls a method has a stack height of three.)
Although the presence of methods slowed the performance
of all techniques, the trends were the same: The tree-based
approach is extremely fast while the IPET approach is ex-
ponentially slower.

4.2 Accuracy of Analysis

Although the primary focus of this work is the flexibility
and speed of WCET analysis tools, the accuracy of those
tools is certainly a factor as well. We define the accuracy

Discrete Cosine Transform

Fibonacci

Matrix Count

Matrix Multiplication

Binary Search

Bubble Sort

Cyclic Redundancy Check

Nested Search

Simultaneous Linear Equations

Exponential Integral

Janne Complex

Quicksort (non-recursive)

Insertion Sort

Select Smallest

0 2 4 6 8

7.18

6.84

6.63

6.33

3.80

1.77

1.63

0.86

0.43

0.03

0

0

0

0

Figure 10. Clepsydra’s pessimism ratio for a variety of
WCET benchmarks.

of a WCET analysis tool in terms of pessimism; that is, the
amount by which the predicted and measured WCET values
differ.

To evaluate the pessimism of our Clepsydra tool, we cre-
ated a set of fifteen WCET benchmark programs. They are
based on a similar suite of benchmarks from the Mälardalen
Real-Time Research Center.10 They are available in the
Volta distribution under a public domain license. We of-
fer these benchmarks as a de facto standard for evaluating
Java-based WCET analysis tools.

Figure 10 shows the results of running the benchmarks
on Clepsydra with a 100 MHz JOP processor (Altera Cy-
clone implementation) as the target.11 The benchmarks
vary widely. Discrete Cosine Transform, Fibonacci, Matrix
Count, and Matrix Multiplication exhibit the ideal behavior
of 0% pessimism because they are simple loops. The Select
Smallest benchmark, a complex piece of code with many
nested conditionals and loops, fared the worst at more than
700% pessimism. (That is, the time predicted by Clepsy-
dra was about 7 times larger than the actual worst-case time
measured on the JOP.)

The poor pessimism for some of these benchmarks is in
part due to their nature. They are designed to stress typical
weaknesses that often afflict WCET analyzers. The Janne
Complex benchmark, for example, has an inner loop whose
maximum number of iterations depends on the outer loop’s
current iteration number. Structural analyzers that ignore
data flow, such as Clepsydra, suffer greatly from this be-
havior. Nevertheless, for benchmarks representing typical
numerical computations in embedded systems, such as the
matrix and DCT benchmarks, the bounds are quite tight.

10http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
11The Petri Net benchmark is missing from these results because it con-

tains a single method 20 kilobytes in size, which overflows the method
cache in our FPGA version of JOP.

When measuring these benchmarks, we also observed
that the largest increase in pessimism was often a result
of ineffective loop bound annotations. The Insertion Sort
and Quicksort benchmarks in particular expose this prob-
lem; they contain inner loops whose bounds depend on the
outer loop’s state. The loop bound annotation mechanism
currently supplied with Clepsydra can only specify constant
bounds, leading to overly conservative estimates. Future
work should focus on improved loop bound detection.

5 Conclusion

Given the importance of WCET analysis tools, espe-
cially in the case of safety-critical real-time systems, it
is surprising that some commercial vendors have license
agreements that prohibit publication of any user-experience
data.12 Even serious defects in the tools offered by these
vendors will be hidden. In contrast, the Volta suite is 100%
open source, and we encourage users to evaluate it and re-
port their findings.

References

[1] P. Altenbernd. On the false path problem in hard real-time
programs. In Proceedings of the Eighth Euromicro Work-
shop on Real-Time Systems (EURWRTS 2006), pages 102–
107, Los Alamitos, CA, USA, June 1996. IEEE Computer
Society.

[2] E. G. Benowitz and A. F. Niessner. Experiences in adopting
real-time Java for flight-like software. In On The Move to
Meaningful Internet Systems 2003: OTM 2003 Workshops,
volume 2889 of Lecture Notes in Computer Science, pages
490–496. Springer Berlin, October 2003.

[3] G. Bernat, A. Burns, and A. Wellings. Portable worst-case
execution time analysis using Java byte code. In Proceed-
ings of the 12th Euromicro Conference on Real-Time Sys-
tems (Euromicro-RTS 2000), pages 81–88, Los Alamitos,
CA, USA, June 2000. IEEE Computer Society.

[4] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time Specification
for Java. Addison Wesley Longman, January 2000.

[5] J. Engblom. Processor Pipelines and Static Worst-Case Exe-
cution Time Analysis. PhD thesis, Uppsala University, 2002.

[6] P. A. Guedes and S. V. Cavalcante. On the design of an ex-
tensible platform for flow analysis of Java using abstract in-
terpretation. In Proceedings of the Third International Work-
shop on Worst-Case Execution Time Analysis (WCET 2003),
pages 47–50, July 2003.

[7] J. Gustafsson, B. Lisper, R. Kirner, and P. Puschner. Code
analysis for temporal predictability. Real-Time Systems,
32(3):253–277, March 2006.

[8] D. S. Hardin. Real-time objects on the bare metal: An
efficient hardware realization of the Java virtual machine.
Fourth IEEE International Symposium on Object-Oriented

12http://www.cs.york.ac.uk/hise/safety-critical-archive/2007/0497.html

Real-Time Distributed Computing (ISORC 2001), pages 53–
59, May 2001.

[9] T. Harmon and R. Klefstad. Interactive back-annotation of
worst-case execution time analysis for java microprocessors.
In Proceedings of the Thirteenth IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and
Applications (RTCSA 2007), 2007.

[10] T. Harmon and R. Klefstad. Toward a unified standard for
worst-case execution time annotations in real-time Java. In
Proceedings of the Fifteenth International Workshop on Par-
allel and Distributed Real-Time Systems, page 151. IEEE
Computer Society, March 2007.

[11] Imsys Technologies. IM1101C Technical Reference Manual,
0.25 edition, October 2004.

[12] R. Kirner and P. Puschner. Classification of WCET analy-
sis techniques. In Proc. 8th IEEE International Symposium
on Object-oriented Real-time distributed Computing, pages
190–199, Seattle, WA, May 2005.

[13] R. Kirner and M. Schoeberl. Modeling the function cache
for worst-case execution time analysis. In Proceedings of the
44rd Design Automation Conference, DAC 2007, San Diego,
CA, USA, June 2007. ACM.

[14] Y.-T. S. Li and S. Malik. Performance analysis of embed-
ded software using implicit path enumeration. In LCTES
’95: Proceedings of the ACM SIGPLAN 1995 workshop on
Languages, compilers, & tools for real-time systems, pages
88–98, New York, NY, USA, 1995. ACM Press.

[15] J. M. O’Connor and M. Tremblay. picoJava-I: The Java vir-
tual machine in hardware. IEEE Micro, 17(2):45–53, 1997.

[16] P. Puschner and C. Koza. Calculating the maximum execu-
tion time of real-time programs. Real-Time Syst., 1(2):159–
176, 1989.

[17] M. Schoeberl. A time predictable instruction cache for a
Java processor. In On the Move to Meaningful Internet
Systems 2004: Workshop on Java Technologies for Real-
Time and Embedded Systems (JTRES 2004), volume 3292 of
LNCS, pages 371–382, Agia Napa, Cyprus, October 2004.
Springer.

[18] M. Schoeberl. Design and implementation of an efficient
stack machine. In Proceedings of the 12th IEEE Recon-
figurable Architecture Workshop (RAW2005), Denver, Col-
orado, USA, April 2005. IEEE.

[19] M. Schoeberl. JOP: A Java Optimized Processor for Em-
bedded Real-Time Systems. PhD thesis, Vienna University
of Technology, Vienna, Austria, January 2005.

[20] M. Schoeberl. A Java processor architecture for embed-
ded real-time systems. Journal of Systems Architecture,
doi:10.1016/j.sysarc.2007.06.001, 2007.

[21] M. Schoeberl and R. Pedersen. WCET analysis for a Java
processor. In Proceedings of the 4th international workshop
on Java technologies for real-time and embedded systems
(JTRES 2006), pages 202–211, New York, NY, USA, 2006.
ACM Press.

[22] A. C. Shaw. Reasoning about time in higher-level language
software. IEEE Trans. Softw. Eng., 15(7):875–889, 1989.

