
Real-Time Wait-Free Queues using Micro-Transactions

Fadi Meawad
Purdue University

fmeawad@cs.purdue.edu

Karthik Iyer
Purdue University

iyer2@cs.purdue.edu
Martin Schoeberl

Technical University of
Denmark

masca@imm.dtu.dk

Jan Vitek
Purdue University

jv@cs.purdue.edu

ABSTRACT
This paper evaluates the applicability of transactional mem-
ory to the implementation of different non-blocking data
structures in the context of the Real-time Specification for
Java. In particular, we argue that hardware support for
micro-transaction allows us to implement efficiently data
structures that are often difficult to realize with the atomic
operations provided by stock hardware. Our main imple-
mentation platform is the Java Optimized Processor sys-
tem. We report on the performance of data structures imple-
mented with locks, compare and swap and micro-transactions.
Our results confirm that transactional memory is an inter-
esting alternative to traditional concurrency control mecha-
nisms.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming–
parallel programming; D.1.5 [Programming Techniques]:
Object-oriented Programming; H.2.4 [Systems]: Transac-
tion Processing

General Terms
Memory, Optimizations, Real-time, Java Processor

Keywords
Transactional Memory, CAS, MCAS, Wait-Free queue

1. INTRODUCTION
Embedded electronic devices have become ubiquitous and

an integral part of daily lives. As our expectations in terms
of processing power and battery life keep increasing, multi-
core systems are being considered for high performance ap-
plications, including real-time ones, owing to their low en-
ergy and thermal profile [30, 13]. One challenge in pro-
gramming multi-core, real-time, embedded systems is how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES ’11, September 26 - September 28 2011, York, United Kingdom
Copyright 2011 ACM 978-1-4503-0731-4I/11/09 ...$10.00.

to implement efficient synchronization amongst tasks exe-
cuting concurrently on the system. Dedicated lock-free data
structures have been proposed in the literature [5, 6, 16].
These algorithms are usually based on dedicated hardware
instruction such as compare and swap (CAS). Although ini-
tial hardware realizations were slow, the performance of
CAS is now comparable to regular instructions. Also, CAS
instructions are fully integrated in current multi-processor
systems. The main limitation of CAS is that it operates on
a single memory location while some algorithms require a
multi-word CAS (MCAS) [15, 16]. Although many designs
have been proposed for MCAS, they are not available in
commodity hardware.

Transactional Memory (TM) is an alternative synchro-
nization infrastructure that solves some of the problems as-
sociated with CAS [7, 11]. Transactions are non-blocking,
serializable, atomic read/write operations executed by con-
current threads. Transactions own a part of shared memory
and they either complete and commit memory changes or
abort and retry if the same area is owned by another transac-
tion. Transactional Memory has been explored both in hard-
ware (HTM) [1, 4, 7] and in software (STM) [22, 24]. Trans-
actional Memory features several advantages like ease of
implementation, straight-forward programming model and
ability to combine fine and coarse grained operations [11].
However, both STM and HTM come with their problems.
STM system have not been able to exhibit acceptable per-
formance and HTM requires programmers to be aware of
cache and buffer sizes.

The purpose of this paper is to show that HTM can serve
as basis for implementing non-blocking algorithms in real-
time systems. We focus on the Real-time Specification for
Java [2] and look at the implementation of the wait-free
queue classes that are part of the specification. Some of the
problems associated with non-blocking CAS based queue im-
plementations can be solved using TM. Ideas that required
MCAS, like the wait-free bounded capacity queue can in-
stead utilize an efficient HTM for small transactions, which
we call micro-transactions.

In this paper we show efficient wait-free implementations
of concurrent FIFO queues based on micro-transactions and
compare them with lock and CAS based implementations.
Similar to [20], this paper provides real-time guarantee and
therefore wait-freedom if the number of cores and the non-
atomic code executed allows the transactions to abort only
a fixed number of times. For more details check equation 5
in section 6. We implement dynamically growing wait-free
singly linked, doubly linked and limited capacity queues and

1

evaluate their performance against their CAS and lock coun-
terparts. We also carry out a worst-case execution time anal-
ysis of our queue implementations and bound their execution
times proving them time-predictable and hence suitable for
real-time systems. For our experiments, we use the Real
Time Transactional Memory (RTTM) infrastructure avail-
able on JOP, an FPGA implementation of a multi-core Java
processor system. To evaluate the scalability of our work,
we ran our experimentation on the Azul machine using a
large number of cores. The Azul machine has a runtime
feature called Speculative Multi-address Atomicity (SMA)
that attempts to run synchronized blocks transactionally.
Our experiments show that TM based wait-free queue im-
plementations perform better as contention increases and
atomic sections grow in size, rendering TM as an ideal syn-
chronization platform for wait-free algorithms.

The paper is organized as follows. Section 2 presents back-
ground and motivation for our work. Section 3 introduces
JOP and RTTM. Implementation of wait-free queues is ex-
plained in Section 4. Section 5 presents the experimentation
and evaluation of the queues on JOP. The WCET analysis is
presented in Section 6. Section 7 describes experimentation
on the Azul machine and results. The paper is concluded in
Section 8.

2. BACKGROUND
The Real-Time Specification of Java offers wait-free con-

current Queue classes as synchronization primitives for shared
object access [28, 29]. Double Ended queues are preferred
for real-time scheduling [26]. Traditional implementations
of concurrent queues using locks have been proven to de-
grade performance and unsuitable for real-time systems as
they cause blocking [23, 8]. As a solution, CAS-based non-
blocking concurrent queues have been proposed and exten-
sively analysed. But they do not always perform very well.
Either because of the sheer number of CAS operations, of
high failed CAS rates or due to overhead of maintaining con-
sistent queue nodes in list based implementations [10, 26].

Work on lock-free queues started a couple of decades ago [27,
31]. The Michael and Scott first-in, first-out queue [12] is
considered efficient and scalable with two CAS operations for
node insertions and one for node removal. Insertions can be
reduced to a single CAS [10] by maintaining a doubly linked
structure and reversing the direction of insert/remove opera-
tions. However, this comes at the cost of occasional an O(n)
queue traversals to patch inconsistencies. Kogan and Pe-
trank [9] proposed a wait-free implementation where higher
priority threads help the lower priority peers to complete
execution. However, their solution works only under certain
system configurations. Most CAS-based wait-free queues are
unbounded. Bounded queues require two atomic operations,
one for the queue’s end and the other for its size. Implemen-
tations resort to locks in such scenarios. We did not find
literature on non-blocking implementations of dynamically
growing bounded queues. Many other non-blocking algo-
rithms and data-structures like concurrent hash tables and
graph structures need MCAS [15, 16, 25]. Bounded wait-
free queues are usually implemented using locks, queues are
either optimized for reads or writes, a WaitFreeReadQueue

has the write operations guarded with locks, while a Wait-
FreeWriteQueue has the read operations guarded with locks
[29].

3. JOP
JOP, the Java Optimized Processor, is a hardware imple-

mentation of the Java Virtual Machine [17]. It is a time-
predictable bytecode processor with real-time garbage col-
lection capabilities. It is a RISC based stack computer that
is capable of dynamically translating Java bytecodes into
a stack based ’microcode’. It features a 4 stage pipeline
each executed in a single processor cycle with the first stage
performing the bytecode to microcode translation. It fea-
tures a time-predictable instruction and data caches allow-
ing accurate low-level WCET analysis. JOP is implemented
as a soft-core in an FPGA. The time-predictable proper-
ties and the availability of Real Time Transactional Mem-
ory (RTTM) infrastructure, rendered JOP as the processor
of choice for our experiments. We use the multi-core ver-
sion of JOP [14] with four JOP cores for our experiments.
Garbage collection for the multi-core version of JOP is un-
der development, so we did not rely on GC for the queue
implementations.

JOP is available for different targets like Altera and Xil-
inx FPGAs. The design flow [18] involves steps to gener-
ate, compile and program the JVM VHDL microcode onto
the FPGAs; compile, download and execute Java applica-
tions on the programmed JVM. The Jopa, JOP Assembler
assembles the microcoded JVM to generate the VHDL files
which is compiled and programmed by Quartus via the Byte-
Blaster interface. The microcoded JVM is configured to load
the Java application from the RS232 interface and start its
execution. The Java application is first compiled using a
Java compiler and then it is linked using the JOPizer tool.
JOPizer links the class files generated and converts it to a
JOP readable form using the Bytecode Engineering Library.
The jop file is downloaded to the main memory of the Altera
board using the RS232 interface.

3.1 Real-Time Transactional Memory on JOP
RTTM on JOP [20] is a time-predictable hardware imple-

mentation of transactional memory that aims at low WCET
instead of a high average case throughput. It supports small
atomic sections in concurrent threads with a few read and
write operations. The RTTM infrastructure contains a fully
associative buffer cache local to each core that caches changed
(write operations) data during a transaction. A set of tag
memories (local to the core and non-cached) maintain the
read locations. The processor state is saved before initial-
izing a transaction. On a commit, the changed data in the
local cache is copied atomically to the shared area using a
global lock. A conflict is said to occur if the read set of one
transaction interferes with the write set of another transac-
tion. Intersection of write sets is not a conflict, as the writes
are serialized during the commit.

Conflict detection happens only during a commit when all
n−1 (on a n core multiprocessor) cores listen to the core that
commits the transaction and not during local read/writes
thus saving valuable CPU cycles. When a conflict is detected
the transaction is aborted and restarted.

The real-time behaviour of such transactions is estab-
lished by bounding the number of retries r to n − 1 on a
n core multiprocessor [19]. Assuming periodic threads, non-
overlapping periods and execution deadline not exceeding
the period, the WCET of any thread t is given by the equa-
tion

twcet = tna + (r + 1)tamax (1)

2

where twcet is the worst case execution time, tna is the execu-
tion time of the non-atomic section of the thread and tamax

is the maximum of the execution times of the atomic sec-
tions of all the n threads in the system. Since r is bounded,
the WCET of any thread is bounded.

4. IMPLEMENTATION
We have implemented dynamically growing singly linked,

doubly linked, and limited capacity wait-free queues using
three different synchronization techniques, CAS, lock and
transactional memory, resulting in ten variants of the queue.
All the queues are FIFO queues with supported primitives
‘insert at tail’ and ‘remove from head’. The different variants
are explained below.

In our implementations, we use the Java synchronized
keyword to simulate locks and the annotation @atomic for
micro-transactions. The JOP hardware does not provide
native support for CAS instructions. Hence, we simulate
CAS using available synchronization infrastructure like locks
and TM. This results in two different implementations for
CAS, CAS TM where a CAS call is a micro-transaction and
CAS LOCK where a CAS call is surrounded by a lock. In
the paper, we use the term CAS as a generalization for both
implementations. CAS TM code snippet is as follows:

// CAS_TM

@atomic boolean CASHead(Node oldh, Node newh) {

if (head == oldh) { head = newh; return true;

} else return false;

}

CAS LOCK is similar except that @atomic is replaced
with synchronized.

4.1 Wait-free Singly Linked Queue (SLQ)
The SLQ has been implemented in four variants using

the 2 CAS, LOCK and the TM synchronization primitives.
The LOCK and the TM variants are standard singly linked
based FIFO queue implementations except that the ‘insert’
and the ‘remove’ methods are surrounded by either a LOCK
or are micro-transactions. This implementation involves a
special ‘head’ node to keep track of the queue-empty condi-
tion. Both the head and the tail pointers point to the ‘head’
node at the beginning and when the queue is empty. The
following code snippet summarizes the implementation.

final static class Node {

final Object value;

volatile Node next = null;

}

volatile Node head = new Node(null);

volatile Node tail = head;

void insert(Node n) {

tail.next = n;

tail = n;

}

Object remove() {

if (head.next != null) {

head = head.next;

return head.value;

}

return null;

}

In the remove method, the removed node is retained as
the special ‘head’ node until the next node is removed. This
does not affect the number of retries.

The CAS based SLQ variants implement the non-blocking
concurrent queue algorithm described in [12]. Our imple-
mentation closely follows the Java implementation of the
Java utility class ‘java.util.concurrent.ConcurrentLinkedQueue’.
1 It uses primitives CASHEAD, CASTAIL and CASNEXT
to modify the head, tail and the node pointers respectively.
The multi-core version of JOP is yet to introduce garbage
collection. We make sure that the node insertions and re-
movals follow the intended order through verification.

4.2 Wait-free Doubly Linked Queue (DLQ)
The LOCK and TM based implementation of the DLQ is

similar to the SLQ implementation except that the nodes
have both ‘next’ and the ‘previous’ pointers and the ‘insert’
and the ‘remove’ primitives modify both these node pointers.
As in SLQ, the queue primitives are surrounded by either a
‘synchronized’ keyword or annotated with ‘@atomic’.

The CAS variants of the DLQ implement the algorithm
described in [10]. The algorithm uses an approach where
the doubly linked node pointers are updated using regular
‘store’s resulting in the usage of only one CAS instruction
each to insert and remove queue nodes. It is optimistic in the
sense that the algorithm assumes that queue inconsistencies
will not occur. But, if they do, the inconsistencies are fixed
in subsequent operations which can be quite expensive. This
algorithm has been proven to perform better than many
wait-free linked list based FIFO queues but it suffers with
a problem where the queue links are consistent only in one
direction and needs to be corrected when necessary. Our
implementation, as explained in the previous section, do not
use pointer tags or counters.

4.3 Wait-free Limited Capacity Queue (LIMQ)
The LIM is a doubly linked queue with capacity con-

straints. This requires that the queue size is maintained and
is checked against the capacity during insertions for queue-
full condition. Also, the insertion and the removal primitives
now have to atomically increment and decrement the queue
size. This problem is usually solved by using a Multi-Word
CAS primitive or by limiting the queue to a single reader or a
single writer [29]. Hence we do not present implementations
for the CAS variants. We only implement the LOCK and
the TM variants. The following code snippet summarizes
the implementation.

final static class Node {

final Object value;

volatile Node next = null;

volatile Node previous = null;

}

volatile Node head = new Node(null);

volatile Node tail = new Node(null);

final int capacity;

volatile int size = 0;

1http://fuseyism.com/classpath/doc/java/util/concurrent/

3

boolean put_tr(Node n){

boolean done = false;

if (this.size < this.capacity) {

n.previous = tail.previous;

n.next = tail;

tail.previous.next = n;

tail.previous = n;

done = true;

this.size++;

}

return done;

}

Object get_tr(){

Node n = null;

Object value = null;

if (head.next != tail) {

n = head.next;

head.next = n.next;

n.next.previous = head;

this.size--;

value = n.value;

}

return value;

}

As in SLQ and DLQ, the queue insertion and removal
primitives are associated with one of ‘synchronized’ or ‘@atomic’.

5. EXPERIMENTATION AND EVALUATION
The experimentation environment is an FPGA programmed

with a symmetric shared-memory multi-processor hardware
system with four JOP cores. As hardware platform we us
an Altera DE2-70 Development board2 consisting of a Cy-
clone II EP2C70 FPGA. The Altera board contains 64 MB
SDRAM, 2 MB SSRAM and an 8 MB Flash Memory and
I/O interfaces such as USB 2.0, RS232, and a ByteBlasterMV
port. Each JOP core has a core local 4 KB instruction cache
and 1 KB stack cache. The Cyclone FPGA was programmed
to simulate the afore-mentioned symmetric shared-memory
multi-processor environment.

To evaluate and compare the various synchronization prim-
itives for concurrent wait-free queues, we conducted exper-
iments using a producer-consumer framework on a four-
core symmetric multi-core system each capable of executing
Java bytecode. Each of the four cores executed an indepen-
dent shared memory thread with one of producer, consumer
or a consumer-producer combination functionality embed-
ded in them. The queue nodes were exchanged among the
concurrent threads rendering the queue head, tail pointers
and nodes as collision points. Synchronization was achieved
through CAS, LOCK and TM primitives. Data on the ex-
ecution time and other TM properties were collected and
compared. The rest of the section explain the framework
and the evaluation in detail.

5.1 Producer-Consumer Framework
The experiments were conducted using a Producer-Consumer

Framework where producers produce nodes and insert them
at the tail of the queue while the consumers remove the

2http://www.altera.com/education/univ/materials/boards/de2-
70/unv-de2-70-board.html

nodes from the queue head and consume them. Each exper-
iment involved two wait-free queues A and B, both empty
at the beginning of the experiment. The producer and the
consumer functionality were performed by independent JOP
threads referred to as Inserter and Remover Threads each of
which executing on a separate JOP core. The Inserter, in a
loop, inserts a specified number num of queue nodes into A
and similarly, the Remover removed num number of nodes
from B. Another thread called the Mover Thread removes a
node from A and inserts the same node into B. Each experi-
ment had two instances of the Mover thread each running on
a separate JOP core. Each Mover processes exactly num/2
queue nodes.

The queue insertions and removal operations were per-
formed atomically using the four synchronization variants
mentioned above. Note that the Java programs associated
with the threads did not incorporate any synchronization
primitives, meaning each iteration of the various threads ex-
ecuted without any knowledge of the status of other threads.
Only the queue insertion and removal methods guaranteed
atomicity. Such a system of threads, composed of atomic
and a non-atomic sections, confirms with the thread model
used to establish real-time bounds on the number of retries
in [19].

In each experiment, all the four threads were started si-
multaneously. The collision points in such an experimental
setup are the head and tail pointers of the queues A and B
and the pointers associated with the queue nodes exchanged
among various threads. The presence of two Mover Threads
increases the contention as two threads may try to remove
the same node from queue A or try to insert different queue
nodes at the same time.

5.2 Experimentation
Experiments were conducted to record the execution time,

number of commits, retries, size of read and write sets of
the different queue implementations. The combination of
singly/doubly linked, limited capacity queues and the four
synchronization primitives resulted in 10 different queue im-
plementations, four variants of the singly linked queue, four
of the doubly linked and two variants of the limited capacity
queue as it is not feasible to implement the CAS TM and
CAS LOCK variants. For each such variant of the queue,
the experiment involved executing the Inserter, Mover and
Remover threads to completion for a specified value of num.
The value of num was varied from 10 to 5000 and for each
value, the above mentioned parameters were recorded.

5.3 Evaluation
For the comparison and evaluation of various synchroniza-

tion techniques, we are interested in the total number of
commits, retries and the maximum size read/write sets of
an experiment (involving all threads/cores) than those of in-
dividual cores. The effect of workload and transactional data
size on the number of commits/retires and the read/write
sets of an individual core has been dealt in detail by [19].

5.3.1 Transactional Read-Write Sets
Table 1 shows the sizes of the read, write and the union

of the read and the write sets for the TM and the CAS TM
cases. The sizes are 0 for the LOCK and the CAS LOCK
cases as they don’t use any transactions. It can be noted that
there is a significant increase in the sizes of the read/write

4

Read Set Write Set Read-Write Set

TM
SLQ 7 2 7
DLQ 11 4 12
LIMQ 11 5 12

CAS TM
SLQ 3 1 3
DLQ 3 1 3

Table 1: Read, Write, and Read-Write sets of TM
and CAS TM based queues

sets from SLQ to DLQ and LIMQ for the TM case. This can
be attributed to the extra pointers that need to be modified
while inserting and removing nodes from a DLQ as compared
to a SLQ. Limited capacity queue (LIMQ) is implemented
as a doubly linked list with a ’capacity’ parameter. Hence
there is a small increase in the write set size. However,
the read and write set sizes for the CAS TM based queues
do not vary. Although there is an increase in the number
of queue node pointers from SLQ to DLQ, the DLQ algo-
rithm described in [10] uses one CAS operation per queue
operation which is comparable to the SLQ case. Also, a
comparison of the read/write set sizes in the TM case with
those of CAS TM reveals that the sets are smaller in the
case of CAS TM. This is because, CAS implementations of
wait-free queues involve smaller transactions as compared to
the TM case. For example, inserting a node in a CAS based
implementation of SLQ requires two CAS operations, one to
modify the tail’s next pointer (CASNEXT operation) and
the other to modify the tail (CASTAIL operation) itself in-
volving two transactions as compared to a single transaction
in the TM case where both the pointers are modified in one
attempt.

5.3.2 Transactional Commits
In the queue versions CAS TM and TM, the number of

transactional commits vary depending on the number of
CAS operations and transactions used. Table 2 indicates
the number of commits per queue operation for the vari-
ous queue implementations. Note that the commits stated
here does not include the commits associated with a retried
transaction.

Insertions Removals

SLQ
CAS TM 2 1

TM 1 1

DLQ
CAS TM 1 1

TM 1 1
LIMQ TM 1 1

Table 2: Commits per queue operation

Table 2 indicates that all the TM implementations in-
volve only one commit per queue operation. Because, no
matter how may queue node pointers and/or other queue
parameters are to be updated, TM based implementations
can atomically update in one transaction. However, it is not
the case with CAS TM based implementations. In the case
of CAS TM, each CAS operation corresponds to a commit.
Note that the number of commits recorded by SLQ is higher
than the case of CAS TM based DLQ. This is because our
CAS based DLQ uses only one CAS per queue operation,
while SLQ uses two for insertion.

A few general points worth noting about commits are as
follows. The CAS based implementation records more com-
mits than the TM versions because CAS implementations
involve more transactions than the corresponding TM im-
plementations. An example is CAS TM based SLQ. As the
number of queue node pointers increase, number of CAS in-
struction increases and hence the number of commits. For
example, the double ended queue implementation described
in [26] requires several CAS instructions to insert/remove
nodes from a doubly linked list. In the case of TM, increase
in queue node pointers may not increase commits as all the
necessary pointer modifications can be atomically carried
out using a single transaction. Also, as the number of pro-
cessed nodes increase, the number of commits increase. As
the number of transactions increase, there is a high probabil-
ity that the number of retries also increases as transactions
being committed may conflict with other transactions.

5.3.3 Singly Linked Queues

10 50 100 250 500 1000 2000 3000 4000 5000

SLQ−Time

0
50

10
0

15
0

20
0

CAS_LOCK
CAS_TM
LOCK
TM

Figure 1: SLQ Time The x-axis gives number of
nodes and the y-axis gives the execution time in
milli-seconds.

Figure 1 plots the execution time to insert, move and re-
move a specified number of nodes from the singly linked
queues. The x-axis indicates the number of nodes used in the
experiment, we chose a sample of the small number of nodes
followed by a linear increment starting from 1000. The bars
indicate the time taken to complete the experiment when
different synchronization methods are used. Time is mea-
sured from the instance when the insertion of the first node
is started till the removal of the last node is completed. It
can be noted that, as the number of nodes processed increase
the average execution time increases almost linearly due to
an increase in the number of locks, transactions and retries.

Note that the CAS based implementations are much slower
than their LOCK and TM based counterparts. This is be-
cause CAS based wait-free queue implementations involve
two CAS operations (resulting in two transactions/operation)
in the best case as opposed to one in the case of TM and
LOCK. CAS based algorithms, unlike their TM and LOCK
counterparts, also run additional checks to maintain queue
consistency adding to execution time. Although execution
times in the case of TM is 17% lower compared to the CAS
cases, it is 2.5% higher than the LOCK case. The higher ex-
ecution times of the TM implementation relative to that of

5

LOCK can be attributed to the small sizes of the read/write
sets and shorter atomic sections in singly linked queues. For
example, in a singly linked list, an insert operation involves
the modification only of a pointer and the queue tail. As
a result, locks are held for a short period reducing overall
waiting time. However, in the case of TM, retries, conflict
detection and other transactional memory overhead is high
as compared to the time lost in waiting for locks.

10 50 100 250 500 1000 2000 3000 4000 5000

SLQ−Retries

0
50

0
10

00
15

00
20

00

CAS_TM
TM

Figure 2: SLQ Retries The x-axis gives number of
nodes and the y-axis gives the total number of re-
tries.

Figure 2 plots the number of retries in the system. Note
that retries are plotted only for the CAS TM and TM cases.
LOCK based implementations do not involve retries. Figure
2 indicates that CAS TM records very low number of retries
(0 or 1) compared TM. This is because, CAS implementa-
tion do not modify queue/node pointers if they are already
modified by other threads in the system. Also, CAS TM
uses transactions of a size of a word. Since the transactions
are small and quick in nature, the number of conflicting
transactions reduce bringing down the retry count.

5.3.4 Doubly Linked Queues
Figure 3 plots the execution time for doubly linked queues.

10 50 100 250 500 1000 2000 3000 4000 5000

DLQ−Time

0
50

10
0

15
0

20
0

CAS_LOCK
CAS_TM
LOCK
TM

Figure 3: DLQ Time The x-axis gives number of
nodes and the y-axis gives the execution time in
milli-seconds.

Figure 3 indicates that CAS variants are slower compared
to the TM variant by 8%. This is because CAS implemen-
tations of doubly linked queues add significant overhead in
maintaining consistent queue node connections as insertions
and removals involve multiple pointer changes. Such im-
plementations involve additional checks to maintain queue
structure consistency and also allow non fatal inconsistencies
to occur and correct them during subsequent queue opera-
tions [10] [26]. It is interesting to note that our CAS TM
based DLQ implementation performs better than its SLQ
counterpart. This is because the DLQ, as explained above,
replaces costly CAS operations with regular stores using
only one CAS instruction each to insert and remove nodes
as opposed to two for inserting nodes into SLQ. The num-
ber of commits of the CAS version of DLQ is smaller than
that of the SLQ. This performance gain is also supported by
the experiments and results discussed in [10]. Figure 3 also
indicates an 15% performance gain in the case of TM com-
pared to LOCK. This gain can be completely attributed to
bigger read/write sets. Locks are held for longer periods in-
creasing waiting times hence increasing the execution time in
the case of LOCK. This illustrates the motivation for using
Transactional Memory based micro-transactions for shared
data synchronization. Another advantage of TM based DLQ
over the CAS based ones is in the fact that the TM im-
plementation maintains the queue node pointers consistent
at all times without extra effort to correct inconsistencies.
Hence it is straight-forward to scale the TM implementation
to construct a Double Ended Queue (Deque). Sundell and
Tsigas [26] discuss lock-free dequeues using single-word CAS
and Fetch & Add (FAA) operations. But their algorithm,
like others, involves multiple CAS operations, consistency
checks and correcting inconsistencies, which can be avoided
with TM based Deque implementations. The number of re-
tries in the DLQ experiment follows the same trend as SLQ.
As in SLQ, the number of retry in the case of CAS TM is
negligible.

5.3.5 Limited-capacity Queues
In our implementation, limited capacity queues are doubly

linked queues with limited capacity. Such queues increase
contention especially among Mover threads by forcing three
operations, a check for queue full, an increment of the cur-
rent queue size and the actual node insertion, to be executed
in a single atomic step. Experiments on limited capacity
queues were only conducted using the LOCK and the TM
variants as it is traditionally not possible to have single word
CAS based bounded queue implementations.

Figure 4 compares the execution time of the LOCK based
limited capacity queue with that of the TM based queue.
The plot indicates a 19% increase in the performance of the
TM based queue. Locks are held longer by threads due
to the additional check and increment operations while in-
sertion and a decrement operation during removal. This
significantly increases the execution time. Note that the
TM implementations do not add additional overhead for the
queue-full check as the queue ‘capacity’ is a read-only queue
parameter. The retries and commits follow the same trend
as the singly and doubly linked queues.

5.3.6 Summary
The singly linked, doubly linked and the limited capac-

ity queues test the transactional memory infrastructure and

6

10 50 100 250 500 1000 2000 3000 4000 5000

LIMQ−TIME
0

50
10

0
15

0
20

0
25

0

LOCK
TM

Figure 4: LIMQ Time The x-axis gives number of
nodes and the y-axis gives the execution time in
milli-seconds.

compares it with other synchronization methods with in-
creasing degree of contention and increasing read/write set
sizes. Table 1 shows the increase in the read/write set sizes
for the three queue types. Figure 5 indicates the average
number of retries per queue operation for SLQ, SLQ and
LIMQ. The average is calculated by dividing the total re-
tries by the total number of queue operations (4 operations
per queue node processed). Note that the retries of DLQ
are higher by a small amount compared to that of SLQ.
This is because DLQ has bigger read/write sets. But re-
tries per operation is two folds higher in the case of LIMQ
compared to DLQ and SLQ. LIMQ records high retries per
operation when the nodes processed are less. We discount
these cases because as the number of processed nodes in-
creases, retries per operation stabilizes. The high value in
the case of LIMQ compared to SLQ and DLQ is because
in LIMQ experiments, the queue size is modified both in
insertion and removal routines increasing contention among
threads. When the contention and the read/write set sizes
are low, as in the case of singly linked queues, LOCK out-
performs TM. But when contention and read/write set sizes
increase as in the case of doubly linked and limited capacity
queues, transactional memory based implementations per-
form better. Note that TM based implementations make
dynamically growing bounded buffer wait-free queues feasi-
ble which otherwise need multi-word CAS instructions. Fig-
ure 4 shows that LOCK based bounded buffer queues are
quite expensive. In our experiments, TM based implemen-
tation performs better than LOCK by 19%.

5.4 Other Experiments
We conducted many different experiments on the various

implementation of the queues. Two of which are worth not-
ing:

1. Change in capacity of a limited capacity queue: We
conducted experiments on the limited capacity queues by
varying the capacity of the queue for a specified number of
queue nodes and measuring the execution time, retries and
commits. We did not notice any significant change in these
parameters with the change in queue capacity. We noticed
a slight increase in the execution time when the capacity
was lowered to very small values. This is due to the threads

10 50 100 250 500 1000 2000 3000 4000 5000

Retries Per Operation

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SLQ
DLQ
LIMQ

Figure 5: Retries Per Operation The x-axis gives
number of nodes and the y-axis gives the number of
retries per queue operation.

finding that the queue is full.
2. We also conducted experiments by changing the num-

ber of Mover, Inserter and Remover threads but we did not
notice a significant change in the behaviour, performance or
other parameters. No new trends were observed.

6. WCET ANALYSIS
In this section, we analyze the worst-case execution time

(WCET) properties of the threads that use our micro-transactions
based queue primitives. For the WCET analysis we use the
WCA tool [21], which is part of the JOP distribution. We
carry out the WCET analysis for the LIMQ since it con-
sists of the largest atomic sections and LIMQ is presented
as a contribution of this paper. LIMQ is particularly in-
teresting because both insert and remove primitives access
the queue size and hence the contention is high compared to
unbounded queues.

To prove any system of threads to be real-time, one needs
to be able to bound the execution times of all the threads.
The property that all the threads using our queue primitives
complete their execution is also sufficient to prove that our
queue implementation results in a wait-free system. The set
of arguments stated in the analysis is similar to the ones used
to prove the real-time property of the micro-transactions
themselves (Section 3.1), explained in detail in [19]. The
following explains the assumptions and analysis.

A major concern when calculating the WCET of a thread
using transactional memory is bounding the number of re-
tries of its transactional scopes. A thread is composed of
atomic and non-atomic sections. For our analysis we assume
the that the only atomic sections that a thread executes are
of our queue primitives and the non-atomic sections can be
executed independent of other threads without contention.
In this model, a thread finishes one iteration of its execution
if all of its atomic sections finish execution, i.e., if all the
transactions successfully commit. This is straightforward
when there are no retries, the transactions commit in the
first attempt. However, if there are retries, it is possible that
a low priority thread never completes because other higher
priority threads keep entering atomic sections and success-
fully commit. This problem can be solved if we divide time
into periods of equal length and limit the number of trans-

7

actions that can execute in a given period. In the thread
model described in [19], if a thread successfully commits its
transaction, it does not participate again. Every successful
commit reduces the number of contending threads and fi-
nally the last thread commits and completes the transaction.
This ensures that even the lowest priority thread that has
entered a transaction completes. An example is described
as follow:

Consider a system of n threads and let tamax be the time
taken by the largest atomic section, ‘insertion’ primitive in
our LIMQ implementation. If we define the period p to be
n× tamax time units and specify that no more than n trans-
actions execute in that period, then the number of retries is
limited to n − 1 and all threads finish execution. This can
be easily achieved by specifying that threads spend at least

p = n× tamax (2)

time units between any two transactions. This assumption
is technically the same as Lemma 1 of [19] and period p
corresponds to the resolution time tr (Equation 10 of [19]).

The implementation of the LIMQ insertion (put) and re-
moval get routines are composed of atomic and non-atomic
sections. For example, in the insert routine, memory alloca-
tion for the queue node is a non-atomic part. These routines
invoke the afore-mentioned put_tr and get_tr which are the
actual transactional part that access queue parameters. The
put routine creates a new queue node, and loops on put_tr

until the object is added to the queue. This is independent
of a transaction roll-back, put_tr is called more than once
only if the queue is full. Similarly, get loops on get_tr if
the queue is empty until an object is retrieved. For our anal-
ysis, we assume that the queue has enough capacity and the
queue is not empty. Note that the looping can be avoided
by having the put and get routines return an error.

We calculated the cost of the atomic sections as well as
the overall cost of the queue operations. Table 3 shows the
number of cycles for the atomic sections and the queue rou-
tines when the transaction succeed in the first attempt. To
calculate these numbers, we used the cycle accurate WCET
analysis as described in [21]. Cycles required for put is sig-
nificantly larger than put_tr unlike get and get_tr because
put includes Node creation that takes 347 cycles. These num-
bers does not include a small bounded transactional over-
head. Note that the cycle values are indicative in nature.
Number of cycles can be reduced by inlinig the atomic sec-
tions put_tr and get_tr methods into their callers removing
the cost of the method invocation.

put tr put get tr get
315 807 306 475

Table 3: Number of cycles required for the different
methods within LIMQ (assuming no retries)

Note that out of 807 cycles spent in the put routine, 315
cycles correspond to put_tr which are executed in transac-
tional scope and are vulnerable for retries. Similarly, out of
total 475 cycles of get, 306 cycles that correspond to get_tr

are vulnerable for retries. Using these values in equation 2,
the period p will have a value (n × 315), as tamax = 315
cycles are required by the largest atomic section put_tr.

Let tnaimax be the maximum of the execution times of the

non-atomic sections of put and get routines and tnae be the
execution time of a thread t outside of put or get. Note
that tnaimax can be calculated by

tnaimax = tput − tamax (3)

where tput is the time required for put to execute without
any retries. We use tput as its non-atomic section takes
the maximum number of cycles to execute. The non-atomic
section execution time tna of equation 1 is given by

tna = tnaimax + tnae (4)

Revisiting equation 1,

twcet = tnae + (m)(tnaimax + (n× tamax)) (5)

where m is the number of atomic sections in a thread each
separated by (n× tamax) time units.

7. AZUL
We carried out the experiments described in Section 5 on

the Azul machine, but with a higher number of threads.
The Azul environment does not provide a facility to explic-
itly specify the intention to use micro-transaction support.
Instead, it offers a runtime flag called Speculative Multi-
address Atomicity (SMA). With this flag set, the Azul run-
time attempts to run the synchronized parts (java synchronized

keyword) transactionally using hardware transactional sup-
port. Azul is known to perform well for small transactions.
Unlike experimenting with JOP, since we do not have enough
information on how SMA works in Azul nor the number of
retries for each transaction, we cannot provide any guarantee
on the real-time behavior of the algorithms. But it is inter-
esting to observe experimentally that the algoritm scales up
to 64 cores. We experimented only with the LOCK and the
CAS LOCK versions both with and without SMA support.
In the rest of the text, NoSMA indicates that the SMA prop-
erty is disabled. With SMA flag enabled CAS LOCK cor-
responds to CAS TM and LOCK to TM. Also, the number
of each node processed should be a multiple of the number
of threads in Azul. So, we carry-out experiments starting
from 4K (K = 1024) nodes to 1024K nodes. The Azul ma-
chine is an Azul Vega 3 3310B, with two 54-core processors
and 48GB of RAM. The benchmark ran on top of the Azul
Virtual Machine with the Concurrent Pauseless GC [3].

Given that the synchronized code scopes are small across
all experiments, the runs with the SMA flag set performed
better. Unfortunately, the number of commits and retries
is not provided by the Azul runtime for further analysis.
The results displayed are using 16 Inserter, 32 Mover and
16 Remover threads (a total of 64 threads). The number
of threads have been chosen to use as many cores from the
Azul machine (108 cores available) without overflowing. The
figures below are based on the average of 3 runs with thread
configuration described above. Experiments were also con-
ducted starting from 4 up to 128 total threads with similar
results.

Figure 6 shows the execution time of SLQ on the Azul ma-
chine. For most node sizes, the CAS LOCK version without
SMA support is the slowest followed by the CAS LOCK
with SMA support. This is because NoSMA acquire block-
ing locks and SMA use transactions. In the Azul exper-
iments, the number of threads are high compared to JOP.
This increases the contention and hence the number of failed

8

CAS instructions. This is one of the main reasons for low
CAS performance over non CAS versions. The execution
time of LOCK with SMA performs slightly better than the
NoSMA case. But in a few experiments NoSMA performed
better than the SMA experiment. Although it is difficult
to state the exact reason why NoSMA case wins over SMA
without knowing SMA’s implementation, a possible reason
could be that the atomic sections are very small and lock
contention is very low while SMA enabled version is paying
for the transactional check overhead.

4K 8K 16K 32K 64K 128K 256K 512K 1024K

Azul SLQ−Time

0
20

00
60

00
10

00
0

14
00

0 CAS No SMA
CAS SMA
LOCK No SMA
LOCK SMA

Figure 6: Azul SLQ Time The x-axis gives number
of nodes and the y-axis gives the execution time in
milli-seconds.

Figure 7 shows the results of the DLQ experiment on Azul
machine. Similar to the SLQ results, the CAS versions are
slower than the LOCK (with and without SMA) versions.
Although we do not have data on the number of times the
fixlist routine [10] was invoked, we believe high contention
increases queue inconsistencies and hence calls to fixlist.
As a result, CAS based versions are much slower on Azul
as compared to JOP. It can be noted that the LOCK ver-
sion with SMA enabled performs better than its NoSMA
counterpart. The analysis is similar to that of JOP. As the
number of pointers increase, atomic sections grow increasing
locking periods. It can be noted that under high contention,
SMA case performs better than NoSMA.

Finally, Figure 8 shows the results of the LIMQ experi-
ments. As stated in the previous sections, LIMQ offers the
largest read/write sizes and high contention as compared to
other queue implementations. In such a scenario, LOCK
with NoSMA experiments not only acquire locks and hold
for longer time but also contend for the lock during both
insertions and removals. Similar to the evaluation on JOP,
SMA case performs better as locking increases the waiting
time and hence overall execution time. SMA enabled exper-
iments perform 9% better than the NoSMA case.

8. CONCLUSION AND FUTURE WORK
This work considers Transactional Memory (TM) as an

alternative to CAS and LOCK based synchronization primi-
tives. We showed that concurrent algorithms requiring multi-
word CAS primitives can be implemented using TM in a
straight-forward way. Our experiments suggest that TM
based implementations of concurrent non-blocking queue al-
gorithms perform better than the CAS based implementa-

4K 8K 16K 32K 64K 128K 256K 512K 1024K

Azul DLQ−Time

0
20

00
60

00
10

00
0

14
00

0

CAS No SMA
CAS SMA
LOCK No SMA
LOCK SMA

Figure 7: Azul DLQ Time The x-axis gives number
of nodes and the y-axis gives the execution time in
milli-seconds.

4K 8K 16K 32K 64K 128K 256K 512K 1024K

Azul LIMQ−Time

0
50

00
10

00
0

15
00

0

LOCK No SMA
LOCK SMA

Figure 8: Azul LIMQ Time The x-axis gives number
of nodes and the y-axis gives the execution time in
milli-seconds.

tions. We also showed that as atomic sections and con-
tention grow, TM based implementations perform better.
The experiments on Azul platform indicate that TM based
implementations are scalable. We have analysed the worst
case execution times of a system using our queue implemen-
tations and proved that our TM based queue implementa-
tions result in a wait-free system and are suitable for real-
time applications.

Future work involves exploring larger data-structures like
double ended queue, graph structures and hash tables. Analysing
TM performance on larger systems with increased contention
is useful. The wcet analysis states that in a given period only
a fixed number of transactions are to be executed. Such a
requirement raises questions like which transactions to exe-
cute and based on what parameters (thread priority, dead-
line etc.) such a decision is to be made. Such questions can
be explored from a scheduling theory perspective.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 0958465, 0811691 and

9

0720652.

9. REFERENCES
[1] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E.

Leiserson, and S. Lie. Unbounded transactional
memory. In Proceedings of the 11th International
Symposium on High-Performance Computer
Architecture (HPCA), pages 316–327, 2005.

[2] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
and M. Turnbull. The Real-Time Specification for
Java. Java Series. Addison-Wesley, June 2000.

[3] C. Click, G. Tene, and M. Wolf. The pauseless GC
algorithm. In International Conference on Virtual
Execution Environments (VEE), pages 46–56, 2005.

[4] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. SIGARCH
Comput. Archit. News, 32:102–, 2004.

[5] T. Harris, K. Fraser, and I. A. Pratt. A practical
multi-word compare-and-swap operation. In
Proceedings of the 16th International Symposium on
Distributed Computing, pages 265–279, Oct 2002.

[6] M. Herlihy. Wait-free synchronization. ACM Trans.
Program. Lang. Syst., 13(1):124–149, 1991.

[7] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures.
SIGARCH Comput. Archit. News, 21:289–300, May
1993.

[8] M. Herlihy and J. E. B. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Structures.
In Proceedings of the 1993 International Symposium
on Computer Architecture, 1993.

[9] A. Kogan and E. Petrank. Wait-free queues with
multiple enqueuers and dequeuers. In Proceedings of
the 16th ACM symposium on Principles and practice
of parallel programming (PPoPP), pages 223–234.
ACM, 2011.

[10] E. Ladan-Mozes and N. Shavit. An optimistic
approach to lock-free fifo queues. Distributed
Computing, 20(5):323–341, 2008.

[11] V. J. Marathe and M. L. Scott. A qualitative survey of
modern software transactional memory systems.
Technical report, 2004.

[12] M. M. Michael and M. L. Scott. Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms. In ACM Symposium on Principles of
Distributed Computing, pages 267–275, 1996.

[13] F. Nemati, J. Kraft, and T. Nolte. Towards migrating
legacy real-time systems to multi-core platforms. In
Proceedings of the Work-In-Progress (WIP) session of
the 13th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA’08),
pages 717–720, September.

[14] C. Pitter and M. Schoeberl. A real-time Java
chip-multiprocessor. ACM Trans. Embed. Comput.
Syst., 10(1):9:1–34, 2010.

[15] C. Purcell and T. Harris. Non-blocking hashtables
with open addressing. Technical Report
UCAM-CL-TR-639, University of Cambridge,
Computer Laboratory, Sept. 2005.

[16] S. Ramamurthy. A Lock-Free Approach to Object
Sharing in Real-Time Systems. PhD thesis, University
of North Carolina at Chapel Hill, 1997.

[17] M. Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54/1–2:265–286, 2008.

[18] M. Schoeberl. JOP Reference Handbook: Building
Embedded Systems with a Java Processor. Number
ISBN 978-1438239699. CreateSpace, August 2009.

[19] M. Schoeberl, F. Brandner, and J. Vitek. Rttm:
real-time transactional memory. In Proceedings of the
2010 ACM Symposium on Applied Computing (SAC),
pages 326–333, 2010.

[20] M. Schoeberl and P. Hilber. Design and
implementation of real-time transactional memory. In
Proceedings of the 20th International Conference on
Field Programmable Logic and Applications (FPL),
pages 379–284, 2010.

[21] M. Schoeberl, W. Puffitsch, R. U. Pedersen, and
B. Huber. Worst-case execution time analysis for a
Java processor. Software: Practice and Experience,
40/6:507–542, 2010.

[22] N. Shavit and D. Touitou. Software transactional
memory. In ACM symposium on Principles of
distributed computing (PODC), pages 204–213, 1995.

[23] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating system concepts (7. ed.). Wiley, 2005.

[24] M. F. Spear, V. J. Marathe, L. Dalessandro, and
M. L. Scott. Privatization techniques for software
transactional memory. In Proceedings of the
twenty-sixth annual ACM symposium on Principles of
distributed computing (PODC), pages 338–339, 2007.

[25] H. Sundell. Wait-free multi-word compare-and-swap
using greedy helping and grabbing. In Parallel and
Distributed Processing Techniques and Applications,
pages 494–500, 2009.

[26] H. Sundell and P. Tsigas. Lock-free deques and doubly
linked lists. J. Parallel Distrib. Comput.,
68(7):1008–1020, 2008.

[27] R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ5118, IBM Almaden
Research Center, April 1986.

[28] P. Tsigas and Y. Zhang. Efficient wait-free queue
algorithms for real-time synchronization. Technical
report, Department of Computing Science, Chalmers
University of Technology, 2002.

[29] P. Tsigas, Y. Zhang, D. Cederman, and T. Dellsen.
Wait-free queue algorithms for the real-time java
specification. In IEEE Real Time Technology and
Applications Symposium, pages 373–383. IEEE
Computer Society, 2006.

[30] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat,
Z. Petrov, C. Rochange, E. Quinones, M. Gerdes,
M. Paolieri, J. Wolf, H. Casse, S. Uhrig, I. Guliashvili,
M. Houston, F. Kluge, S. Metzlaff, and J. Mische.
Merasa: Multicore execution of hard real-time
applications supporting analyzability. IEEE Micro,
30:66–75, 2010.

[31] J. D. Valois. Implementing lock-free queues. In In
Proceedings of the Seventh International Conference
on Parallel and Distributed Computing Systems, pages
64–69, 1994.

10

