
User-Defined Clocks in the
Real-Time Specification for Java

Andy Wellings
Department of Computer Science

University of York, UK
andy@cs.york.ac.uk

Martin Schoeberl
Department of Informatics and Mathematical

Modeling
Technical University of Denmark

masca@imm.dtu.dk

ABSTRACT
This paper analyses the new user-defined clock model that is to be
supported in Version 1.1 of the Real-Time Specification for Java
(RTSJ). The model is a compromise between the current position,
where there is no support for user-defined clocks, and a fully inte-
grated model. The paper investigates the implications of support-
ing a fully generalized model from both the specification’s and an
implementation’s viewpoint. It concludes that for RTSJ the scope
of changes required to fully integrate user-defined clocks into the
specification would have a major impact on current implementa-
tions.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems

Keywords
Real-time Java, user-defined clocks

1. INTRODUCTION
The introduction of user-defined clocks (and consequently

timers that are based on those clocks) into Version 1.1 of the
Real-Time Specification for Java (RTSJ) facilitates the release
of periodic schedulable objects and timeouts both based on
user-detected events. The approach adopted is a compromise
between providing no support (as in Version 1.02) and full support
throughout the specification. The latter would require that all
operations, which either delay a schedulable object for a duration
of time or has an associated timeout, would need to allow time
values based on user-defined clocks to be supported. Such an
approach is considered to be too large a change for the 1.1 version.
User-defined clocks have also been discussed in the context of
the Ada programming language. Although models have been
proposed, they have yet to find their way into the language’s
definition [7].

In this paper, we first present the requirements that underpin the
rationale for RTSJ Version 1.1 time and clock models. Section 3

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES 2011 September 26-28, 2011, York, UK
Copyright 2011 ACM 978-1-4503-0731-4I/11/09 ...$10.00.

presents the new model. In section 4, we consider the implications
of supporting fully generalized user-defined time and clock mod-
els and show how the class hierarchy would need to be changed.
Section 5 considers how the revised model can be implemented.
Finally, conclusions are drawn.

There are a myriad of definitions and terminology associated
with the literature on clocks and time. Throughout our discussions,
we assume the following definitions [2].

• A clock has monotonicity, if each successive time reading
from that clock yields a time that is not before a previous
reading.

• Two clocks are synchronized when the difference between
their time values is less than some specified offset. Synchro-
nization in general degrades with the passage of time, and
may be lost, given a specified offset. The error is called clock
drift.

• Resolution is the minimal time value interval that can be dis-
tinguished by a clock.

• Uniformity refers to the measurement of the progress of time
at a consistent rate, with a tolerance on the variability. Uni-
formity is affected by two other factors, jitter and stabil-
ity. Jitter is a short-term and non-cumulative small variation
caused by noise sources, like thermal noise. More practi-
cally, jitter refers to the distribution of the differences be-
tween when events are actually fired or noticed by the soft-
ware and when they should have really occurred according to
time in the real world. (Lack-of) stability accounts for large
and often cumulative variations, due to e.g. supply voltage
and temperature. In practice a clock is driven by an oscil-
lator. Accuracy is the difference between the desired fre-
quency and the actual frequency of the oscillator, and a major
reason of synchronization loss.

2. REQUIREMENTS
An embedded real-time computer system needs to coordinate its

execution with the ‘time’ of its environment. The term ‘real time’
is used to draw a distinction from the computer’s time. It is real
because it is external.

The introduction of the notion of time into a programming lan-
guage can best be described in terms of three largely independent
topics [1]:

1. Interfacing with ‘Time’; for example, accessing clocks so
that the passage of time can be measured, delaying tasks un-
til some future time, and programming timeouts so that the

non-occurrence of some event can be recognized and dealt
with.

2. Representing timing requirements; for example, specifying
rates of execution and deadlines.

3. Satisfying timing requirements; for example through real-
time scheduling techniques.

A language can also support other forms of ‘time’, not just the
intuitive notion of calendar (or wall clock) time. For example, sim-
ulation time, execution time, monotonic time (time that has the
monotonicity property given in Section 1) [3]. Hence, depending
on the notion of time being used there is a different basis for that
time – this can be called the time base. For every time base there
is an associated clock. The value of the time read from the clock
is some transformation from its associated time base. Time values
read from clocks should ideally be of an opaque type.

There are three main issues that are of interest.

• The definition of a “time base". The key issue is to be able to
differentiate between time bases that can be used to support
active and passive clocks. An active clock allows the asso-
ciation of software timers and hence time values supported
by such a clock can also be used to support Java’s sleep and
timed wait statements, along with the RTSJ’s explicit and im-
plicit use of timers to support the ReleaseParameter class
hierarchy. The underlying time base for an active clock can
be as simple as a hardware timer chip.

A passive clock simply allows the current time to be read. It
does not support timers, and time values supported by such
a clock cannot be used to trigger events. An example of an
underlying time base for such a clock is a CPU cycle counter
or one that takes time from a GPS signal.

• The relation between the absolute and relative time supported
by a clock and “real time”. The key issue here is whether
the epoch of a clock can be (directly) determined in relation
to wall clock time. If it can, then does this imply that all
time values from a clock can be mapped to time values from
wall clock time? They are synchronized in some way. Also
whether expressing duration in milliseconds and nanosec-
onds is appropriate for all clocks. For example, consider a
time base that is provided by the rotation of a crankshaft.
The full or partial rotation of which represents the tick of
the associated clock. This will depend on the speed of ro-
tation and therefore absolute time values will not have a di-
rect correlation with wall clock time and milliseconds and
nanoseconds is not a relevant measure of relative time. More
practical would be that a tick represents a fraction of the rota-
tion. Such a clock would be monotonic but not have uniform
progress.

3. THE RTSJ VERSION 1.1 MODEL
Version 1.1 of the RTSJ provides some support for user-defined

passive and active clocks, all of which can act as the base
clock in its HighResolutionTime class hierarchy. However,
HighResolutionTime instances that use clocks, other than the
real-time clock, are not valid for any purpose that involves sleeping
(e.g., Thread.sleep(long millis) method) or waiting (e.g.,
Object.wait(long timeout)), including the members of
the RealtimeThread.waitForNextPeriod() family. They
may, however, be used in the fire times and the periods of
OneShotTimer and PeriodicTimer. There are two reasons

for this compromise. The first is due to the difficulty of linking
user-defined clocks to mechanisms that might be implemented
by the underlying operating systems. For example, the timed
Object.wait method might be implemented by mutexes and
condition variables supported by a POSIX-compliant operating
system. Allowing the timeout to be based on a user-defined clock
would significantly complicate the VM’s internal structure. The
second reason, is the more pragmatic reason of limiting the impact
of any changes on the rest of the specification. For example, any
part of the specification that takes a high resolution time type
would need to be updated.

Figure 1 shows the main clock and time related classes in the
RTSJ Version 1.1. The main new components are additional meth-
ods in the clock class and the introduction of a ClockCallBack
interface. The approach is based on the premise that a user-defined
clock should only be responsible for providing the current time
and signalling when a single absolute time has been reached. Any
queue management associated with timer functions should be sup-
ported by the JVM.

Hence, the following new instance methods have been added:

• drivesEvents – returns true if the current clock is an active
clock and can be used to signal events.

• registerCallBack(AbsoluteTime, ClockCallBack)
– called by the JVM to request a call back when the absolute
time has been reached.

• resetTargetTime(AbsoluteTime) – reset the time for the
last callback. Returns null if “now” is passed the time to be
set.

The ClockCallBack interface contains two methods

• atTime(Clock) – called by the user-defined clock when the
last set absolute time has been reached.

• discontinuity(Clock, AbsoluteTime) – called by the
user-defined clock if the clock has experienced a discontinu-
ity. This is for the case where the clock is not monotonic.
A discontinuity might occur, for example with the calendar
clock when it is adjusted for daylight savings time.

The sequence diagram in Figure 2 illustrates how a user-defined
clock is used by the application and the JVM. The main flows are
described below.

1. The application creates an instance of its user-defined clock.

2. The application creates a new absolute time value based on
the created clock.

3. The application creates an asynchronous event handler

4. The application creates a one shot timer that should release
the handler at the specified absolute time.

5. The RTSJ infrastructure creates an internal object to handle
the clock callback.

6. The RTSJ infrastructure calls the user-defined clock to regis-
ter the callback for the specified absolute time (assuming no
callbacks already registered).

7. When the user-defined clock recognizes that the specified ab-
solute time has arrived it makes the callback to indicate that
the time has arrived.

javax.realtime::AbsoluteTime

+add(millis:long nanos:int): AbsoluteTime
+add(millis:long nanos:int, dest:AbsoluteTime): AbsoluteTime
+add(time:RelativeTimet): AbsoluteTime
+add(time:RelativeTime, dest:AbsoluteTime): AbsoluteTime
+subtract(time:AbsoluteTime) : RelativeTime
+subtract(time:AbsoluteTime, dest : RelativeTime) : RelativeTime
+subtract(time:RelativeTime) : AbsoluteTime
+subtract(time:RelativeTime, dest : RelativeTime) : AbsoluteTime

«constructors»
+AbsoluteTime(millis:long nanos:int)
+AbsoluteTime(time : AbsoluteTime)
+AbsoluteTime(millis:long nanos:int, clock : Clock)
+AbsoluteTime(clock : Clock)

javax.realtime::HighResolutionTime

+getClock()
+getMilliseconds(): long {frozen}
+getNanoseconds(): int {frozen}
+set(time: HighResolutionTime)
+set(millis:long)
+set(millis:long, nanos: int)
+equals(time:HighResolutionTime) : boolean
+compareTo(time:HighResolutionTime) : int

+waitForObject(target : Object, time:HighResolutionTime)
...

javax.realtime::RelativeTime

+add(millis:long, nanos:int):RelativeTime
+add(time:RelativeTime):RelativeTime
+add(millis:long, nanos:int, dest:RelativeTime):RelativeTime
+add(time:RelativeTime, dest:RelativeTime):RelativeTime
+subtract(time:RelativeTime) : RelativeTime
+subtract(time:RelativeTime, dest:RelativeTime) : RelativeTime

«constructors»
RelativeTime()
RelativeTime(millis:long, nanos:int)
RelativeTime(clock:Clock)
RelativeTime(millis:long, nanos:int,clock:Clock)
RelativeTime(time:RelativeTime)

«interface»
java.lang::Comparable

javax.realtime::Clock

+getRealtimeClock():Clock
+getTime():AbsoluteTime
+getTime(dest:AbsoluteTime):AbsoluteTime
+getResolution():RelativeTime
+getResolution(dest:RelativeTime):RelativeTime
+drivesEvents():Boolean
+getEpochOffset():RelativeTime
+registerCallBack(time:AbsoluteTime, event:ClockCallBack)
+resetTargetTime(time:AbsoluteTime):boolean

«constructors»
+Clock()

«interface»
javax.realtime::ClockCallBack

atTime(clock:Clock)
discontinuity(clock:Clock, updatedTime:AbsoluteTime)

Figure 1: RTSJ Version 1.1 Clock and Time Classes

8. The RTSJ infrastructure then calls infrastructure code to fire
the one shot timer.

9. The one shot timer then calls RTSJ infrastructure code to in-
form the scheduler to release the application event handler.

10. The handler eventually runs and the handleAsyncEvent
method is called.

user-define clock

:OneShotTimer :Clock:Application

1. new

:AbsoluteTime

userDefinedClock

2. new(..., userDefinedClock)

timeValue

:ClockCallBack

6. registerCallBack(timeValue, callBack)

when clock at
timeValue

7. callBack.atTime(This)

4. new(timeValue,
handler)

:ASEH

3. new

handler

5. new

callBack

8. fire

:Scheduler

9. release(
handler)

10.
handleAsyncEvent

Figure 2: Callbacks

4. EXTENDING THE MODEL
This section considers how the RTSJ user-defined clock mech-

anisms can be generalized and evaluates the consequences of that
generalization.

4.1 Rationale
One of the constraints of the current RTSJ model is that the com-

ponents of all time values are considered to be milliseconds and
nanoseconds. Most notions of time deal in the notion of seconds;
for example, calendar time, monotonic time, simulation time, exe-
cution time. Even absolute time values are usually stored as relative
time values (i.e. milli and nano seconds) passed an epoch. In Sec-
tion 2, we gave an example of a time base that was based on the
rotation of a crankshaft. This clearly cannot be represented as a
milliseconds and nanosecond component. Philosophically, any at-
tribute can be used as a time base as long as it has the necessary
useful properties. The main property is that the attribute changes
its value, and these changes can be detected. This is the role of a
clock: to measure the passage of “time”. For example, atomic time
is currently measured by a clock which counts the vibration of ce-
sium atoms in response to being exposed to microwaves; counting
the corresponding cycles is a measure of time. A single oscilla-
tion can be considered as a tick of the clock. It is important to
distinguish between the physical device that is used to measure the
passage of time (hardware clock) and the software clock that keeps
track of how much time has passed since the clock’s epoch. The
hardware clock might have some internal counter that might keep
track of a number of “ticks” and this may overflow. The software
clock can set an arbitrary epoch and be specified to have whatever
range is deemed appropriate. For the real-time clock, a long mil-
liseconds and int nano seconds components with an epoch of the

first of January 1970 is considered to provide a significant enough
range of values for clock overflows to be safely ignored. Where the
software clock does not intervene with the reading provided by the
hardware clock (as perhaps in a passive clock based on a hardware
counter), then clock overflow may again become an issue.

From an engineering viewpoint, it may be appropriate to con-
sider a physical attribute as a source of a user-defined time base if
we want to:

1. release an asynchronous event handler (ASEH) from a timer
associated with the time base;

2. release real-time threads from a timer associated with the
time base;

3. associate the deadline of some computation with a number
of times the physical attribute of the system changes;

4. use the change in the physical attribute as a "timeout" on
waiting for another event to occur: e.g. entering into a scope
memory area (joinAndEnter), a timed Object.wait;

5. use it for a minimum inter-arrival “time”; that is, the minimal
inter-arrival time of another event should be related to the
change in the physical attribute;

6. delay a computation until a certain number of changes have
occurred;

7. use “time” values to obtain partial ordering between other
events.

Of course, most of the above can be achieved by using the
“clock” as a device, and associating asynchronous events with the

javax.realtime::HighResolutionTime

+getClock()
+getMilliseconds(): long {frozen}
+getNanoseconds(): int {frozen}
+set(time: HighResolutionTime)
+set(millis:long)
+set(millis:long, nanos: int)
+equals(time:HighResolutionTime) : boolean
+compareTo(time:HighResolutionTime) : int

+waitForObject(target : Object, time:HighResolutionTime)
...

«interface»
java.lang::Comparable

CrankShaftClock

+getTime():AbsoluteRotationalTime
+getTime(dest:AbsoluteRotationalTime):AbsoluteRotationalTime
+getResolution():RelativeAbstractTime
+getResolution(dest:RelativeAbstractTime):RelativeAbstractTime
+drivesEvents():boolean

«constructors»
+CrankShaftClock()

«interface»
javax.realtime::ClockCallBack

atTime(clock:Clock)
discontinuity(clock:Clock, updatedTime:AbsoluteAbstractTime)

«interface»
javax.realtime::AbstractTime

+equals(time : AbstractTime) : boolean
+compareTo(time : AbstractTime) : int
+getClock()
+getTicks() : long
+setTicks(value : long)

RotationalTime

+getClock()
+getRotations(): long {frozen}
+getDegrees(): int {frozen}
+set(time: RotationalTime)
+set(rotations:long)
+set(rotations:long, degrees: int)
+equals(time: RotationalTime) : boolean
+compareTo(time: RotationalTime) : int

+waitForObject(target : Object, time: RotationalTime)
...

«interface»
javax.realtime::

RelativeAbstractTime

...

«interface»
javax.realtime::

AbsoluteAbstractTime

...

AbsoluteRotationalTime

...
+AbsoluteCrankshaftTime(rotations : long;
 degrees :int, clock : Clock)

javax.realtime::AbsoluteTime

...
+AbsoluteTime(millis:long nanos:int, clock : Clock)

javax.realtime::RelativeTime

...

RelativeRotationalTime

...

javax.realtime::Clock

+getRealtimeClock():Clock
+getTime():AbsoluteAbstractTime
+getTime(dest:AbsoluteAbstractTime):AbsoluteAbstractTime
+getResolution():RelativeAbstractTime
+getResolution(dest:RelativeAbstractTime):RelativeAbstractTime
+drivesEvents():Boolean
+getEpochOffset():RelativeAbstractTime
+registerCallBack(time:AbsoluteAbstractTime, event:ClockCallBack)
+resetTargetTime(time:AbsoluteAbstractTime):boolean

«constructors»
+Clock()

Figure 3: Revised RTSJ Clock and Time Classes with a User-Defined Time Base

changes detected by the devices, and then using an event-based
programming model rather than a time-based programming model.
For example, considering above points:

1. – the program can use the asynchronous event directly;

2. – the program can use the release and waitForNextRelease
mechanisms available in version 1.1 of the RTSJ;

3. – in theory, the program can set a handler to go off when
the “time” has expired and interrupt the thread; in practice
this will not be well integrated with the semantics of
waitForNextPeriod and waitForNextRelease1;

1The RTSJ has supports a cost enforcement model where a schedu-
lable object cannot consume more that a given execution time per

4. – the program can achieve this using Thread.interrupt
and Thread.holdsLock(Object) – assuming the de-
vice knows the associate object on which the thread is
blocked (this might not be the case, for example, with
joinAndEnter);

5. – it is difficult to see how this can be achieved without the
integration into the time facilities of the RTSJ

6. – the programmer can achieve this using the Object wait
and notify facilities in conjunction with the device;

release. For periodic releases, the budget must be increased at each
release event even though a previous release may not have com-
pleted. Integrating this mechanism with user-defined clocks would
require an interface to be created which would allow the application
to indicate a new cost monitoring period has started.

7. – this can be achieved by reading the “clock” associated with
the “time” base.

For the above discussion, it is apparent that there are some ad-
vantages to being able to view a variety of attributes as a time base,
particularly as it allows greater integration with the RTSJ mecha-
nisms.

A limitation of the RTSJ Version 1.1 facilities is that it only al-
lows user-defined clocks to be used as the basis for explicit timers.
Hence, it is not possible, for example, to release a periodic real-
time thread from a user-defined clock – even when the time-base
associated with that clock is based on milliseconds and nanosec-
onds.

In the remainder of this section, we explore the implications of
a fully general model. In particular, we present a revised class hi-
erarchy for the clocks and time. This is followed, in section 5 with
a report of our initial experiences with implementing aspects of the
new model.

4.2 The Revised Class Hierarchy
The main challenge in modifying the RTSJ Version 1.1 time and

clock APIs comes from the requirement to have a root abstract time
which is not tied to representing milliseconds and nanoseconds. In-
troducing this as an abstract class would not allow a uniform notion
of relative and absolute type to be specified. For this reason, the
proposed revised API (shown in Figure 3) uses interfaces. This al-
lows the following simple replacement for time values throughout
the RTSJ.

HighResolutionTime -> AbstractTime
RelativeTime -> RelativeAbstractTime
AbsoluteTime -> AbsoluteAbstractTime

These changes are required as currently the root RTSJ types as-
sume milliseconds and nanosecond components. They would be
backward compatible with the current version of the RTSJ, assum-
ing that the names AbstractTime, RelativeAbstractTime and
AbsoluteAbstractTime are not used in an implementation’s sup-
port for the current model. There is precedence for this type of
change in the RTSJ. For example, the memory classes have been
refactored along similar lines to allow the introduction of pinned
memory areas.

Figure 3 also includes a user-defined time type and its associ-
ated clock that are based on RotationalTime. This time base is
supported by the crankshaft’s rotation discussed in Section 2.

The following Java code illustrates the application implementa-
tion of the user-defined clock for rotational time. First, the extended
clock class is illustrated. This is a tick-driven clock.

import javax.realtime.*;
public class CrankshaftClock extends Clock {
public CrankshaftClock() {
super();

}

public void tick() {
now++;
if(now == nextTime) { cback.atTime(this); }

}

@Override
public AbsoluteAbstractTime getTime(

AbsoluteAbstractTime dest) {
if(dest != null) {
dest.setTicks(1);
return dest;

} else return new AbsoluteRotationalTime(now);
}

@Override
public RelativeAbstractTime getResolution(

RelativeAbstractTime dest) {
if(dest != null) {
dest.setTicks(1);
return dest;

} else return new RelativeRotationalTime(1);
}

@Override
protected boolean drivesEvents() {
return true;

}

@Override
protected void registerCallBack(

AbsoluteAbstractTime time,
ClockCallBack clockEvent) {

cback = clockEvent;
nextTime = time.getTicks();

}

@Override
protected boolean resetTargetTime(

AbsoluteAbstractTime time) {
if (now > time.getTicks()) {
nextTime = time.getTicks();
return true;

}
return false;

}

...

private long now = 0;
private long nextTime = 0;
private ClockCallBack cback;
private AbstractRelativeTime resolution =

new RelativeRotationalTime(1);
}

Now it is necessary for the crankshaft interrupt to call the tick
method in the clock. Here, we assume that RTSJ Version 1.1 su-
ports first-level interrupts using an InterruptServiceRoutine
class. The name passed to the constructor allows the interrupt to be
identified. When the interrupt occurs the handle method is called.

public class CrankshaftInterruptHandler
extends InterruptServiceRoutine {

private CrankshaftClock clock;

public CrankshaftInterruptHandler(String name,
CrankshaftClock clock) {

this.clock = clock;
}

@Override
protected synchronized void handle() {
// interrupt handling code here
clock.tick();

}
}

5. IMPLEMENTATION OF THE MODEL
ON JOP

To verify that the proposed API for user-defined clocks is sound,
we have implemented a prototype on the Java processor JOP [5].
We have chosen JOP, as it is relatively simple to add a hardware
device for an additional time base and associate an interrupt with
it. Interrupt handlers and the scheduler, which is just the interrupt
handler of the default clock, are written in Java and no operating
system is in the way.

The runtime system of JOP does not contain a full RTSJ imple-
mentation. Instead it targets the upcoming safety-critical Java spec-
ification (SCJ) [4]. As SCJ will include the user-defined clocks, this
runtime system is a valid platform for experiments. We have refac-
tored the RTSJ 1.1 clock and time classes to the extended model as
shown in Figure 3.

JOP contains two counters: one that ticks at 1 MHz and one
that ticks with the clock frequency. The first counter can be pro-
grammed to drive an interrupt and is used for the scheduler. The de-
fault clock, as returned by Clock.getRealtimeClock(), is based
on the 1 MHz counter. Therefore, this is an active clock. That clock
is used for scheduling for the periodic real-time threads. The sec-
ond counter represents CPU clock cycles and is a passive clock.
In the following examples we assume that the CPU clock ticks at
100 MHz, a common operating frequency of JOP in low-cost FP-
GAs.

5.1 A Passive Clock
For the passive clock example we use the clock cycle counter on

JOP. First it is represent with the RTSJ 1.1 model, where the time
needs to be mapped to AbsoluteTime. Second the clock cycle
counter is represented by a user-defined clock from the extended
model. In this case the time is also represented by a user-defined
type.

5.1.1 The RTSJ Version 1.1
As a first experiment we implemented a passive clock based on

the RTSJ version 1.1 model. The following code snippet shows the
the core of the implementation.

SysDevice sys =
IOFactory.getFactory().getSysDevice();

public PassiveClock() {
}

public AbsoluteTime getTime(AbsoluteTime dest) {
int val = sys.cntInt;
dest.set(val/100000, val%100000);
return dest;

}

On JOP I/O devices are mapped to so-called hardware ob-
jects [6]. Hardware objects are created by the runtime system and
field read and writes are directed to I/O port read and writes. In the
example, a hardware object represents the system device, which
contains, besides other system services, the CPU cycle counter.
The counter value is read by reading field cntInt from that object.

As it can be seen, the implementation of a passive user-defined
clock for the RTSJ Version 1.1 model is trivial. However, practi-
cally we observe two issues with this model: the CPU clock cycle
counter in JOP is a 32-bit counter and conversion to the standard
RTSJ time format is expensive.

A 32-bit counter clocked at 100 MHz will overflow after around
43 seconds. It can still be used to measure time differences up to 21

seconds. However, this behavior cannot be specified with the cur-
rent Clock class. A passive clock has no option to detect the over-
flow and provide correcting actions. This can only be performed by
an active clock.2

The second issue is more subtle. Conversion between a tick num-
ber representing ticks at 10 ns and the RTSJ time format needs one
division and one reminder operation. Furthermore, these operations
have to be performed on long values. Division is often expensive
on an embedded processor, and even with hardware support for di-
vision, the operation on a long data type will be expensive on a
32-bit processor.

5.1.2 The Extended Model
A more flexible, and more efficient, representation of a

CPU clock cycle counter is possible with the extended model.
To represent clock ticks we define two user-defined time types:
AbsoluteUserTick, which implements AbsoluteAbstractTime
and RelativeUserTick, which implements RelativeAbstract-
Time. The following Java code shows a few methods of the passive
user defined clock with user-defined types.

public PassiveExtendedClock() {
}

public RelativeAbstractTime getResolution() {
return new RelativeUserTick(1, this);

}

public AbsoluteAbstractTime getTime() {
int val = sys.cntInt;
return new AbsoluteUserTick(val, this);

}

public AbsoluteAbstractTime
getTime(AbsoluteAbstractTime dest) {

int val = sys.cntInt;
dest.setTicks(val);
return dest;

}

public long getMaxValue() {
return 0xffffffff;

}

The resolution of this clock is individual ticks, represented
by RelativeUserTick. The actual time is reported as
AbsoluteUserTick. Note that in this case we need no (ex-
pensive) conversion to a different time type. To indicate that this
clock represents a 32-bit counter, the method getMaxValue()
was added to this clock. It might be useful to add this method to
the base class Clock.

5.2 An Active Clock
An active clock can be used to drive scheduling events for peri-

odic threads that base their period on that clock. We implemented
the crankshaft clock, which is driven by a simulation of a motor.
The simulation generates interrupts and an interrupt handler in Java
triggers the tick of the clock (as shown in the code in Section 4.2).
A periodic thread uses the crankshaft clock for the period and start
time. The scheduling events of this thread are driven by the active
user-defined clock.
2Another option is to use a periodic thread that performs overflow
corrections. In that case we do not consider the clock strictly pas-
sive.

To support user-defined, active clocks the scheduler must be
aware of the additional release events. The original scheduler of
JOP uses the timer that ticks at 1 MHz. To avoid unnecessary
interrupts from the timer, it is programmed on a thread dispatch to
interrupt the current thread when a higher priority thread’s release
is due. The scheduler is also invoked on a waitForNextPeriod()
to find the highest priority thread, which is ready. Therefore, the
ready queue is implicitly encoded in the priority ordered list of
threads.

For an extension of the scheduler with additional active clocks,
before a dispatch of a threads, the callbacks of all active clocks
need to be enabled with registerCallBack()). As the clocks
are unrelated it is not possible to find the single higher priority
thread that will be released next.

We have adapted the thread and scheduler implementation to
support different clocks for periodic release parameters. The
changes have been relative moderate and the implementation was
done in less than a day.

The original scheduler of JOP manipulated only integer
values, which represent microseconds, for efficient scheduling
decisions.With user defined clocks the scheduling check for
user-defined clocks is as follows:

ref[i].clock.getTime(now);
if ((next[i] - now.getTicks()) <= 0) {
break; // found a ready task

}

Each thread object (ref[i])) contains a reference to its clock
and the actual time is retrieved with getTime(). For the compar-
ison with the next release time (next[i]) the time is converted to
ticks. It would be more efficient when the notion of ticks is asso-
ciated with the class Clock and not with the class AbstractTime.
When all time values are based on a long value that represents
ticks, a method getTicks() can be added to the abstract class
Clock. The check for the release time would be simplified to:

if ((next[i] - ref[i].clock.getTicks()) <= 0) {
break; // found a ready task

}

An active clock supports the registration of a callback for a time
in the future. However, with the current API the callback time can-
not be queried. For the the usage of the callbacks by the JVM
scheduler it would be convenient to also query the time of an al-
ready registered callback. Therefore, we suggest to add a method
getTargetTime() to Clock.

5.3 Source Access
As the prototype of the extended model is experimental, it is not

included in the master branch of the JOP repository, but in the
branch clock. The source can be checked out with:

git clone -b clock git://www.soc.tuwien.ac.at/jop.git

The file doc/paper/README.UD_CLOCKS contains the instructions
to build the examples and run them on the software simulation of
JOP.

6. CONCLUSIONS
In this paper we have presented the upcoming model of user-

defined clocks in RTSJ version 1.1. This model is driven by com-
promises related to current operating systems engineering prac-
tice. We have taken that model a step further to represent user-
defined clocks that may not only represent time, but other reoc-
curring events, which can be represented as a form of monotonic

time. Time values, based on user-defined clocks, are allowed for
thread release parameters. However, supporting user-defined active
clocks for general scheduling, such as release times for periodic
threads, needs changes in the scheduler. As we have seen in the
implementation on JOP, those changes are relative moderate. Sup-
porting scheduling based on user-defined clocks is possible when
thread scheduling is implemented by the JVM, but might be almost
impossible when the JVM delegates scheduling to the underlying
real-time operating system.

Acknowledgements
The authors gratefully acknowledge the contributions made by
Kelvin Nielsen and Alan Burns to some of the ideas expressed in
this paper.

7. REFERENCES
[1] A. Burns and A.J. Wellings. Real-Time Systems and

Programming Languages:. Addison Wesley, 4th edition, 2009.
[2] P. Dibble, R. Belliardi, B. Brosgol, D. Holmes, and A.J.

Wellings. The real-time specification for Java (RTSJ 1.02).
http://www.rtsj.org.

[3] Object Management Group. Enhanced view of time
specification, v2.0. http://www.omg.org/spec/EVoT/2.0.

[4] Doug Locke, B. Scott Andersen, Ben Brosgol, Mike Fulton,
Thomas Henties, James J. Hunt, Johan Olmütz Nielsen,
Kelvin Nilsen, Martin Schoeberl, Joyce Tokar, Jan Vitek, and
Andy Wellings. Safety-critical Java technology specification,
public draft, 2011. http://www.jcp.org/en/jsr/detail?id=302.

[5] Martin Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture,
54/1–2:265–286, 2008.

[6] Martin Schoeberl, Stephan Korsholm, Tomas Kalibera, and
Anders P. Ravn. A hardware abstraction layer in Java. ACM
Trans. Embed. Comput. Syst., accepted 2009, 2011.

[7] A. J. Wellings and A. Burns. User-defined clocks is it the right
time now? Ada Lett., 30(1):104–115, 2010.

	Introduction
	Requirements
	The RTSJ Version 1.1 Model
	Extending the Model
	Rationale
	The Revised Class Hierarchy

	Implementation of the Model on JOP
	A Passive Clock
	The RTSJ Version 1.1
	The Extended Model

	An Active Clock
	Source Access

	Conclusions
	References

