
A TIME-TRIGGERED NETWORK-ON-CHIP

Martin Schoeberl

Institute of Computer Engineering
Vienna University of Technology, Austria

mschoebe@mail.tuwien.ac.at

ABSTRACT

In this paper we propose a time-triggered network-on-
chip (NoC) for on-chip real-time systems. The NoC pro-
vides time predictable on- and off-chip communication, a
mandatory feature for dependable real-time systems. A regu-
lar structured NoC with a pseudo-static communication sched-
ule allows for a high bandwidth. In this paper we argue for
a simple, time-triggered NoC structure to achieve maximum
bandwidth. We have implemented the proposed TT-NoC in
a low-cost FPGA. The base bandwidth is 29 Gbit/s and the
peak bandwidth 230 Gbit/s for eight nodes. The idea is in line
with current on-chip multiprocessor designs, such as the Cell
processor. The simple design of the network and the network
interface easies certification of the proposed NoC for safety
critical applications.

1. INTRODUCTION

The concept of the time-triggered architecture (TTA) [1] is
well established for dependable real-time systems. The main
application of the TTA is on communication over a time-
triggered bus. In this paper we apply the TTA concepts to
an on-chip communication channel usually named network-
on-chip (NoC). Using the TTA on-chip provides the same
real-time guaranties in the communication as it provides for
a classical time-triggered bus – an off-chip serial bus such
as TTP/C [2] or TT-Ethernet [3]. Common within this time-
triggered protocol (TTP) family is the fact that the TTP sched-
ule determines the schedule of tasks within a node. This
mechanism provides a straightforward synchronization be-
tween the communication controller and the host. The pro-
posed NoC has to be validated against safety critical stan-
dards such as DO-178B [4]. We rely on the TTA for the fault
containment. As certification is expensive we aim for a sim-
ple network design and a minimal trusted area to isolate the
real-time nodes.

Figure 1 shows an example configuration of a time-triggered
(TT) NoC with on-chip and off-chip nodes. All nodes are
connected via the network interface (NI) to the on-chip net-
work. In this example one node, the digital signal processing
(DSP) unit, is directly connected to the NI. Two microproces-
sors, the on-chip CPU and the off-chip host, are connected

NI NI

NI NI NI

TT SoC Network

M-Mux

TNA

CPU

M-Mux DMA

DSP

Host CPU
Memory

Trusted Area

SoC FPGA

Time
Sync

Host
with

TT-Eth.

M-Mux

Fig. 1. TT SoC configuration example

via a message multiplexer (M-Mux) to the NI. One possi-
bility for a high bandwidth connection is via a DMA unit.
When the SoC is part of a larger TT cluster, communication
and synchronization with the cluster time is provided via a
TT-Ethernet [3] interface.

The proposed network is intended to be part of a dis-
tributed, safety-critical real-time system. As a consequence
the communication system has to be certified. We call the
area that has to be certified the trusted area, shaded in Fig-
ure 1. It contains: the core network, the NI, the trusted net-
work authority (TNA), and the time synchronization unit. To
ease certification the M-Mux and other higher level compo-
nents are not part of the trusted area.

Network-on-Chip (NoC) is an active research area. The
various projects are described in a recent survey [5]. Sonics
µNetwork [6] is based on a pipelined bus with a TDMA ap-
proach to guarantee latency and pipeline requirements. The
TDMA frame is divided into 256 cycles that can be pre-allocated
for real-time cores. The pre-allocation of send slots is simi-
lar to our proposal. The difference is in the organization of



the bus: The µNetwork is a pipelined bus, where we use a
ring structure where each segment can be used individually
(similar to the Cell architecture).

The Cell multiprocessor [7, 8, 9] shares some ideas with
the proposed TT NoC. The Cell implements a very regular
NoC. The Cell contains, beside a PowerPC microprocessor,
8 synergistic processors. The bus is clocked at half of the
processor speed (1.6 GHz). It is organized in 4 rings each
128 bit wide, two in each direction. A maximum of 3 non-
overlapping transfers on each ring are possible. This would
result in a peak bandwidth of 307 Gbyte/s. The true limit re-
sults from the address resolution from the central arbiter: one
address per cycle. With all messages of the maximum size of
128 bytes the theoretical upper limit is 128 byte × 1.6 GHz
= 204.8 Gbyte/s. Although our NoC looks very similar to the
bus architecture in the Cell there are major differences: Due
to our pseudo-static schedule we have no arbitration phase.
The bus can be switched each clock cycle between message
forward and send. All bus segments can be used by indepen-
dent transfers compared to maximal three concurrent trans-
fers in the Cell. We use message buffers in the NI whereas
in Cell the messages are directly streamed into and out of the
node local memory.

Compared to the described NoC designs we use a net-
work clock that is independent of the individual node clocks.
Due to the simple interconnection structure this clock is usu-
ally higher than a node clock. We perform the clock domain
crossing in the NI and the message synchronization at the
higher level of the TTA. The clock domain crossing in the NI
also simplifies system composition of nodes running at differ-
ent local clocks. The network clock serves as the reference
time base for the TTA. The time base can be synchronized (at
a higher granularity) over SoC boundaries.

The rest of the paper is organized as follows. Section 2
introduces the time-triggered message scheduling. Section 3
discusses the proposed network topology and some possible
variations. In Section 4 we describe the central part of the
network, the network interface. We present the results from
an implementation in a low-cost FPGA in Section 5. For the
further discussion we assume a bus width of 128 bit and a
network clock of 225 MHz as used in this implementation.

2. TIME AND MESSAGE SCHEDULING

Time-triggered messages are sent periodically. The period
and the phase of the message are predefined and known a-
priori by all nodes. This schedule is pseudo-static and can
only be changed by the TNA to adapt to different bandwidth
needs of an application through a mode change. This pseudo-
static schedule eliminates any needs of dynamic bus arbitra-
tion. This property results in three important features of the
network: (a) message transmission is time predictable, (b)
no addresses or message identifiers have to be transmitted,
and (c) it allows for a high network clock. Furthermore, the

schedule table contains an entry for each clock cycle. That
means we can transmit a different message from a different
node at each clock tick resulting in a very fine grained re-
source allocation. The schedule table is part of the NI (see
Section 4).

In a distributed system (a TT cluster), where the SoC is
just one node, the internal periods are synchronized with the
cluster time. The cluster time can by synchronized via GPS to
the global time. In this configuration we accomplish a time-
triggered architecture from the low-level NoC up to the sys-
tem level.

The network clock and the clocks of the nodes are differ-
ent and unrelated resulting in several clock domains. Only the
network time is directly synchronized with the cluster time.
To accomplish this synchronization we choose a slightly faster
clock for the network than the nominal clock for the sched-
ule. The synchronization of the network time to the cluster
time is accomplished by inserting empty slots dynamically
into the network schedule. The nodes are time synchronized
at the scheduler level by the time-triggered interrupts received
from the NI.

A new message is sent each network clock cycle. As the
bus is pipelined the message latency is several cycles. Using
a ring topology the fixed latency depends on the location of
the sender and the receiver. Therefore, each NI has its own
distinct schedule. The size of the schedule table (e.g. 1024
entries) restricts the maximum period to e.g. 4.6 µs. The min-
imum period, when two nodes consume the whole network
bandwidth, is 4.4 ns.

To adapt the NoC to different modes with different band-
width needs the bus schedule can be changed by the TNA.
Update of the schedule shall not disturb slots that are not af-
fected by the schedule change. The correct order of disabling
and enabling the receivers and transmitters in several steps
allow for a non disturbing schedule change.

3. THE NETWORK TOPOLOGY

The underlying network topology is simple and optimized for
easy routing (wire routing, not message routing) and a high
bandwidth. As we are interested in maximizing the band-
width and can tolerate a known latency we will build a regis-
ter intensive design. Using many registers is a natural design
practice in FPGAs and also helps to compensate for long wire
delays1 between processing nodes. We choose an actual low-
cost FPGA, Alteras Cyclone II [10], for the implementation.

When we go for maximum system frequency we shall use
the simplest structure possible. A simple structure for a bus
is a ring. A ring connecting regular nodes, as the NIs are
expected to be, should be easy to route. This structure was
also chosen in the Cell processor [8] with the very regular
layout for the 8 processor elements.

1At lower feature sizes the wire delay constrains the maximum system
frequency more than the combinatorial delay.



Receive
Buffer

Transmit
Buffer

Scheduler

SimpCon Interface

Counter

to next node
from prev.  node

address, rd, wr

transmit

ad
dr

es
s,

 rd
, w

r

da
ta

da
ta

clock crossing

in
te

rr
up

t

Network

Signals

Fig. 2. Network interface for time-triggered messages

For more flexibility (and more bandwidth) we can dynam-
ically cut (with the multiplexer as shown in Figure 2) the bus
at each node when not using broadcast mode2. We achieve
a theoretical peak bandwidth n (the number of nodes) times
the broadcast bandwidth (BW ). For our example design this
results in:

BW = 128 bit×225 MHz = 29 Gbit/s
BWpeak = n×BW = 8×29 Gbit/s = 230 Gbit/s

The bandwidth for a single node is limited by the on-chip
memory. However, with more than one ring we add the flex-
ibility to come closer to the cumulative peak bandwidth for
concurrent messages. At the other end of the spectrum we
can reduce the bus size to the typical host size of 32 bit to
reduce resource usage (especially on-chip memory). Further
variations that can be considered: a bus that is wider than
the message buffer data size – this is very similar to multi-
ple busses; or a bus that is clocked higher than the message
buffers.

4. THE NETWORK INTERFACE

The network interface (NI) is the link between a node (in the
general case) and the on-chip network. The NI has follow-
ing properties: standard interface for nodes; several message
ports; single buffer for each port; scheduling of the messages;
clock domain crossing; belongs to the trusted area.

Adaptation to different host types is provided by a NI/host
translation unit, for an example see Section 4.3. As the NI
belongs to the trusted area it has to be as simple as possible
to ease verification.

Figure 2 shows the block diagram of the NI. The compo-
nents that make up the network interconnection are the mul-

2Broadcast mode is meant when a message is received by all nodes.

index in out wr rd tx intAB intCD

0 0 0 0 0 0
1 A 1 0 0 0 0
2 B1 0 1 1 0 0
3 B2 0 1 1 1 0
4 0 0 0 0 0

...
8 C D 1 1 1 0 1
9 0 0 0 0 0

10 0 0 0 0 0
...
16 0 0 0 0 0
17 A 1 0 0 0 0
18 B1 0 1 1 0 0
19 B2 0 1 1 1 0
20 0 0 0 0 0
...

Table 1. Example of a schedule table

tiplexer and the register. The multiplexer decides whether a
message is forwarded from the previous node or a message
from the current node is inserted into the network. This de-
cision is driven by the scheduler at each network clock cy-
cle. The register implements the network pipeline with one
pipeline stage per node.

The transmit and receive buffers are connected via a stan-
dard SoC interface [11]. The data bus width for this interface
can be configured between 8 and 128 bit. The interface pro-
vides atomic read and write operation at the network width
(i.e. for 128 bit words) between the host and the message
buffer. Furthermore, time-triggered interrupts (or signals) are
provided by the NI. The scheduler decides when a message
is transferred from the bus to the receive buffer and when a
message from the transmit buffer is placed on the bus. The
scheduler is a simple table indexed by a counter. When the
on-chip network is synchronized to an off-chip network idle
cycles have to be inserted. Therefore, the scheduler becomes
slightly more complex. The size of the message buffers and
the schedule table is configurable and can be adapted for dif-
ferent application domains.

An example of a schedule table is given in Table 1. The
index is the address of the schedule entry as generated by the
counter. The column in is the address into the receive buffer
and the column out the address into the transmit buffer. Sig-
nals wr and rd select writing or reading a message into or
from the buffers, signal tx controls the network multiplexer.
The symbolic message names in Table 1 represent the ad-
dresses of the messages pointing into the transmit and receive
buffers. intAB and intCD are two signals (interrupts in Fig-
ure 2) sent from the NI to the node to indicate that a message
has been sent or received.

The example contains the four messages (or ports) A, B,
C, and D. A and B both have a period of 16 clock cycles, C
and D are messages with a longer period. A and C are input



messages – we can see that the wr signal for the receive buffer
is 1 at index 1, 8, and 17. B and D are output messages – the
rd signal goes to 1 for the transmit buffer and the tx signal
selects the multiplexer. In our example A is a broadcast mes-
sage. Therefore, it is read into the receive buffer and routed
to the next node. B is a longer message that takes two send
slots. Message C is a message that is not further routed to the
next node. In that case we can use the same slot to transmit
message D. All fixed, known latencies between the different
nodes are incorporated into the schedule table. The schedule
table is generated by the TNA and transmitted to the NI.

4.1. Schedule Update

To adapt the NoC to different application modes with dif-
ferent bandwidth needs the bus schedule can be updated by
the TNA. Update of the schedule shall not disturb slots that
are not affected by the schedule change. It has to be noted
that each NI has its own distinct schedule table. As a conse-
quence the update can not happen in one instant. It has to be
performed incrementally.

With a carefully change of the schedule table on each
node no bus idle time for a schedule change is necessary. The
schedule update does not need to happen at the same time for
all nodes.

4.2. Time-Triggered Messages

Time-triggered messages avoid resource conflicts per design.
The host network interface is therefore very simple and needs
no explicit synchronization. A dual-port message buffer with
one buffer per host port is all we need (simultaneous access
to the same address is prevented by the TT schedule). To fur-
ther simplify the implementation (and increase the possible
system frequency) we use one memory for output messages
and a second memory for input messages. As an additional
service we provide time-triggered signals (interrupts). The
signals are used by the host as the reference time-base for the
timer-triggered scheduler.

4.3. Message Multiplexer

Several different hosts can be connected to the TT-NoC: on-
chip host (microprocessor), off-chip host via a memory type
interface, DMA, TT-Ethernet controller, and on-chip special
purpose hardware. From this list we can conclude that there
will not be a single host interface that fits for all host types.
However, we can use a minimal interface (the NI) that be-
longs to the trusted area and a translation unit to the actual
host. One example of such a translation unit is the message
multiplexer.

The bit-clock frequency of an off-chip network is usually
lower (or equal) to the operation frequency of the CPU inside
a node (e.g. a 100 Mbit network connection to a GHz CPU).
On-chip busses can be designed much simpler than on-chip

IP cores resulting in a higher frequency of the bus than the
operating frequency from e.g. an on-chip CPU. As an exam-
ple we can design an on-chip bus in a low-cost FPGA that
runs at 400 MHz3. In the same technology a soft-core CPU
can be clocked at several 10 MHz: A RISC processor (e.g.
LEON3 SPARC V8 [12]) at 35 MHz, the Java processor JOP
[13, 14] at 100 MHz. This gap is architecture inherent and
will not be closed when we use an ASIC as implementation
technology.

The bus width (e.g. 128 bit) of an on-chip bus is wider
than the processors register size (32 bit). This factor further
widens the bandwidth gap. The bandwidth gap is even larger
when the nodes are off-chip and the SoC only serves as the
network. It is at the limit on current FPGAs to provide a cu-
mulative off-chip bandwidth of 100 Gbit/s by using all high-
speed serial IO pins.

There is a big gap between the NoC bandwidth and a
microprocessor memory interface. Furthermore, the maxi-
mum period in the NoC is in the range of several µs which is
way too short for a time-triggered scheduling on the host. To
bridge this gap we propose a message multiplexer (M-Mux).
The M-Mux handles several ports of the host (each with a
longer period) and multiplexes them into one slot of the NoC
schedule. In the NoC scheduling we have a maximum period
that is restricted by the simple schedule table. The M-Mux
has to handle scheduling decisions every few µs instead of ns
as the NoC scheduler. Therefore, we can use a more com-
plex storage layout of the scheduling table to provide longer
message periods at the M-Mux level with lower memory re-
quirements.

5. IMPLEMENTATION

We have implemented the proposed time-triggered network
in an FPGA (Cyclone II EP2C35 [10]) on the Altera DE2
board. The bus is a single 128 bit ring. The NI contains
128×128 bit transmit and receive buffers. The individual
nodes are connected by a 32 bit SimpCon [11] interface with
128 bit atomic read and write.

The schedule table contains 512 entries with read and
write addresses for the message buffers, read and write sig-
nals, and one interrupt. The network is clocked at 225 MHz,
the maximum frequency we can achieve with the on-chip
memories and the PLL clocked from a 50 MHz source. The
individual nodes are clocked at 100 MHz. The clock domain
crossing is performed in the message buffers and for the in-
terrupt. The interrupt signal is widened to several network
clock cycles at the network side for a safe transmission to the
node side. The resulting broadcast bandwidth is 29 Gbit/s
(225 MHz × 128 bit). The theoretical peak bandwidth for

3In our experiments we have implemented a 256 bit wide bus at 413 MHz
in a Cyclone II device resulting in a bandwidth of 106 Gbit/s. A wider bus
with 2048 bits can be clocked with 298 MHz in the same technology and
results in a bandwidth of 610 Gbit/s.



n nodes is n×29 Gbit/s. For eight nodes this results in 230
Gbit/s.

5.1. Memory Blocks

Message buffers and the schedule table are implemented with
on-chip memory blocks. A single on-chip memory block is
4 Kbit and can be configured for a data width between 1 and
32 (independent for both ports). For a 128 bit interface four
RAM blocks are needed. With four RAM blocks for the mes-
sage buffers the fmax is 235 MHz.

In our first design we used different port width for the on-
chip memories to provide the 32/128 bit mapping between the
host side and the network side. However, using independent
clocks and independent port sizes can result in erroneous be-
havior in Cyclone II Rev. A and B devices [15]. The Quartus
work-around results in an fmax of 210 MHz for the network
and 203 MHz for the interface side (8 nodes). Quartus uses
the memory with equal port sizes (the larger one), does not
register the outputs of the memory, and inserts a registered
multiplexer at the output. To compensate for this issue we use
the memories with equal port size, fully registered and add
the bus resizing logic explicitly within an additional pipeline
stage. In this additional pipeline stage we also implement the
atomic read and write functionality.

5.2. Demo Application

We have also implemented a simple demo application (a vot-
ing triple modular redundancy sensor – a classic safety crit-
ical component) that consists of following nodes: the Java
processor JOP [13, 14], three sensor nodes, one voting node,
and one actuator node.

The three sensor nodes send a periodic message with their
actual value. The voting node performs the majority voting
and the actuator node displays the result. The processor reads
the sensor raw data and the voting result. On a change the
values are reported by the processor.

The schedule for this example was created by a small tool
written in Java. However, getting the schedule correct with
the different latencies of this heavily pipelined design is quite
a challenge. A more advanced tool to calculate and verify
the schedule, even online in the TNA for mode changes, is of
primary importance to render the proposed NoC useful.

5.3. Results

A full NI for the 128 bit bus needs just 480 logic cells (LC).
This resource usage is quite low compared to other designs.
PNoC [16] is a lightweight circuit-switched NoC. A four port
router at a data width of only 32 bit (compared to the 128
bits we use in the example design) for PNoC is reported to
consume 732 LCs (366 Virtex-II slices).

For the NI of a node that uses only one direction and not
the full 128 bit, such as the sensor node, the resource usage

# Nodes # JOP LC Memory fmax

6 1 4,068 174 Kbit 235 MHz
7 2 6,894 244 Kbit 235 MHz
9 4 12,543 383 Kbit 235 MHz
13 8 22,704 661 Kbit 235 MHz
17 12 33,558 939 Kbit 235 MHz

Table 2. Scalability of the NoC design with several non-
trivial network nodes

drops down to about 170 LCs. To set these numbers into rela-
tion: the soft-core processor JOP consumes about 2,200 LCs
in a standard configuration with the additional NI connection.
The low-cost FPGA (medium size) used for this prototype
contains 33,000 LCs.

The main resource limitation is in the message and sched-
ule buffer. A complete NI needs 10 on-chip memory blocks
of 4 Kbit each4. The EP2C35 contains 105 on-chip memory
blocks. If we implement a message multiplexer (see Sec-
tion 4.3) on top of the NI additional on-chip memory is nec-
essary. The on-chip memory in the Cyclone II also limits
the maximum bus frequency to 235 MHz. According to Al-
tera this slow memory (compared to the predecessor Cyclone
in an older technology where the memory can be clocked
up to 250 MHz) is a tribute to the lower cost. Compiling
the design for the high-performance/high-cost FPGA family
Stratix II the network can be clocked at 390 MHz, resulting
in a broadcast bandwidth of 50 Gbit/s and a peak bandwidth
of 400 Gbit/s for 8 nodes. However, we want to provide an
affordable solution and stay with the low-cost FPGA series.

5.4. Scalability

We have performed some experiments to evaluate the scala-
bility of the design. The assumed main issue with scalability
is the pressure on routing resources with several non-trivial
network nodes. We start from our initial prototype with one
processor (JOP) and 5 simple nodes and add additional pro-
cessors. Table 2 shows the resulting resource usage (LCs and
on-chip memory bits) and the maximum network frequency
for the different configurations.

The number of network nodes in the table is # JOP plus
5. The first entry is the baseline from the prototype. The
experiment was restricted by the available on-chip memory
of 1 Mbit in the largest Cyclone II device (EP2C70) used
for this compilation experiment. For all compilation runs we
have set the network PLL to 250 MHz to force the compiler
to optimize for speed and to report the maximum achievable
frequency. With this setting the LC usage is 10–14% higher
than with a setting to the realistic 225 MHz.

From this experiment we conclude that our simple and

4It has to be noted that the size of the on-chip memory blocks is deter-
mined by the FPGA architecture. For an ASIC implementation, or a different
FPGA such as Stratix II, smaller memories for the message buffers can be
used.



heavily pipelined NoC design scales quite well. The largest
design with 12 processors and 5 simple nodes is still band-
width limited by the on-chip memory and not the routing in-
frastructure.

5.5. Discussion

For a simple node, such as the sensor or voter, the 128 bit
message buffer with the 32 bit atomic read/write interface is
an overkill. Simple nodes that transmit or receive only a few
messages can be connected to the bus without the message
buffer to reduce the memory consumption. With careful cod-
ing those nodes can be implemented to run with the fast net-
work clock rendering the logic for the clock domain crossing
useless. As a result a hardware node can be quite cheap – an
interesting aspect for future designs.

The trusted part of the scheduling to avoid wrong routing,
the on-chip version of a collision, is actually only a single bit
entry in the schedule table. That bit controls the multiplexer
whether the node’s own data or the data from the left neighbor
is routed to the next node. Therefore, only this single bit entry
and the generation of the correct schedule for this schedule
entry have to be certified for a safety critical system.

6. CONCLUSION

With the proposed time-triggered NoC we provide a high-
performance SoC interconnection with time predictable de-
livery of real-time messages. The NoC builds the basis for
higher level services for distributed real-time systems. The
combination of the TTA and a SoC network provides quite
new opportunities for the system design. The TTA with a run-
time static schedule provides real-time guaranties and simpli-
fies the architecture of the on-chip network. As future work
we consider adding the message multiplexer to the design for
slower nodes and longer periods. We will integrate the TNA
that calculates online new schedules for mode changes and
updates the schedule tables in the NIs. When building a net-
work with more nodes a second ring in the other direction
can reduce the latency for half of the nodes. The proposed
TT NoC is intended to be a part of a larger time-triggered
network, a cluster of SoCs connected via TT-Ethernet [3]. In
this configuration the on-chip time will be synchronized with
the cluster time. The cluster time itself can be synchronized
with the world time via GPS. In this case the on-chip network
time and the message periods are in sync with the world time.

Acknowledgments
This work has been supported in part by the European IST
project DECOS under project No. IST-511764. This work is
only a small part of the research on a time-triggered, fault
tolerant SoC. The author thanks Hermann Kopetz, Bernhard
Huber, Christian El Salloum, and Roman Obermaisser for the
discussions on the proposed NoC and network interface.

7. REFERENCES

[1] H. Kopetz and G. Bauer, “The time-triggered architecture,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[2] H. Kopetz and G. Grünsteidl, “TTP - A time-triggered proto-
col for fault-tolerant real-time systems,” in Proceedings of the
23rd Annual International Symposium on Fault-Tolerant Com-
puting (FTCS ’93), J.-C. Laprie, Ed. Toulouse, France: IEEE
Computer Society Press, June 1993, pp. 524–533.

[3] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinham-
mer, “The time-triggered ethernet (TTE) design,” in ISORC
’05: Proceedings of the Eighth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing
(ISORC’05). Washington, DC, USA: IEEE Computer So-
ciety, 2005, pp. 22–33.

[4] RTCA/DO-178B, “Software considerations in airborne sys-
tems and equipment certification,” December 1992.

[5] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Comput. Surv., vol. 38,
no. 1, p. 1, 2006.

[6] Sonics, “Sonics µNetwork technical overview,”
http://www.sonicsinc.com/, 2002.

[7] H. P. Hofstee, “Power efficient processor architecture and the
cell processor,” in HPCA, 2005, pp. 258–262.

[8] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy, “Introduction to the Cell multipro-
cessor,” j-IBM-JRD, vol. 49, no. 4/5, pp. 589–604, 2005.

[9] M. Kistler, M. Perrone, and F. Petrini, “Cell multiproces-
sor communication network: Built for speed,” Micro, IEEE,
vol. 26, pp. 10–25, 2006.

[10] Altera, “Cyclone II device handbook, volume 1,” Altera Cor-
poration, 2006.

[11] M. Schoeberl, “SimpCon - a simple SoC interconnect, draft,”
Available at: http://www.opencores.org/, December 2005.

[12] J. Gaisler, “A portable and fault-tolerant microprocessor based
on the SPARC v8 architecture,” in DSN ’02: Proceedings
of the 2002 International Conference on Dependable Systems
and Networks. Washington, DC, USA: IEEE Computer So-
ciety, 2002, p. 409.

[13] M. Schoeberl, “Jop: A java optimized processor for embedded
real-time systems,” Ph.D. dissertation, Vienna University of
Technology, 2005.

[14] ——, “Java technology in an FPGA,” in Proceedings of the
International Conference on Field-Programmable Logic and
its Applications (FPL 2004), Antwerp, Belgium, August 2004.

[15] Altera, “Cyclone II FPGA family, errata sheet,” Altera Corpo-
ration, March 2006.

[16] C. Hilton and B. E. Nelson, “PNoC: a flexible circuit-switched
NoC for FPGA-based systems,” Computers and Digital Tech-
niques, IEE Proceedings, vol. 153 (3), pp. 181–188, 2006.


