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Abstract—Real-time systems need time-predictable platforms
to enable static worst-case execution time (WCET) analysis. Im-
proving the processor performance with superscalar techniques
makes static WCET analysis practically impossible. However,
most real-time systems are multi-threaded applications and
performance can be improved by using several processor cores
on a single chip. In this paper we present a time-predictable chip-
multiprocessor system that aims to improve system performance
while still enabling WCET analysis.

The proposed chip-multiprocessor (CMP) uses a shared mem-
ory with a time-division multiple access (TDMA) based memory
access scheduling. The static TDMA schedule can be integrated
into the WCET analysis. Experiments with a JOP based CMP
showed that the memory access starts to dominate the execution
time when using more than 4 processor cores. To provide a
better scalability, more local memories have to be used. We add a
processor local scratchpad memory and split data caches, which
are still time-predictable, to the processor cores.

I. INTRODUCTION

Research on time-predictable processor architectures is
gaining momentum. The research is driven by the issues
of worst-case execution time (WCET) analysis for current
processors. Standard processors are optimized for average
case performance and many of the average case performance
enhancing features are hard to integrate into static WCET
analysis. The most important features, such as caches and
dynamic branch predictors, contain a lot of state information
that depends on the execution history. While exactly this
state increases the performance, it is not feasible to track the
concrete state in static program analysis. The state needs to be
abstracted and due to the information loss in the abstract state,
the analysis has to make conservative assumptions, such as
predicting a cache miss when the cache content is not known.
However, with out-of-order processors even this assumption
is not safe. Due to timing anomalies [12] this local worst
case does not need to trigger the global WCET. It has been
shown that a cache hit can actually lead to a higher execution
time than a cache miss. Those architectures are not timing
compositional and lead to a state space explosion for static
WCET analysis.

A time-predictable processor is designed to enable and
simplify WCET analysis [21]. Only analyzable performance
enhancing features shall be implemented. For example, the
pipeline and cache have to be organized to be timing com-
positional to enable independent pipeline and cache analysis.
The optimization of the processor is on the WCET instead
of average case performance. For hard real-time systems the

average case performance does not matter at all, only the
WCET is important.

As a result such a processor will be slower in the average
case than a standard processor. To reconcile performance with
predictability we argue to build chip-multiprocessor (CMP)
systems. As some of the resource hungry features, which are
hard to analyze, are dropped from the processor design, the
transistors are better spent by replicating simple pipelines on
a single chip. The remaining issue is to build a CMP system
where the access to the shared resource main memory can be
performed time-predictable. The execution time of the threads
running on the different cores shall not depend on each other.
Therefore, the access to main memory has to be scheduled
statically with a time-division multiple access (TDMA) based
arbitration scheme.

Embedded applications need to control and interact with
the real world, a task that is inherently parallel. Therefore,
those applications are already written in a multithreaded style
to interface sensors and actuators and execute control low
code at different periods. These multithreaded applications
are good candidates for CMP systems. With future many-
core systems it will even be possible that each thread has its
own core to execute. In that case, CPU scheduling, with the
scheduling overhead and the predictability issues due to task
preemption, disappears and only the memory accesses need to
be (statically) scheduled.

II. RELATED WORK

The basis of a time-predictable CMP system is a time-
predictable processor. In the following section several ap-
proaches to processors designed for real-time systems are
presented. Time-predictable chip-multiprocessing is a very
recent research topic. Therefore, there are not yet so many
publications available.

Edwards and Lee argue: “It is time for a new era of
processors whose temporal behavior is as easily controlled
as their logical function" [5]. A first simulation of their
precision timed (PRET) architecture is presented in [10].
PRET implements a RISC pipeline and performs chip-level
multithreading for six threads to eliminate data forwarding
and branch prediction. Scratchpad memories are used instead
of instruction and data caches. The shared main memory is
accessed via a TDMA scheme, called the memory wheel. A
resent version of PRET [4] defines time-predictable access
to DRAM by assigning each thread a dedicated bank in
the memory chips. The access to the individual banks is



pipelined and the access time fixed. As the memory banks are
not shared between threads, thread communication has to be
performed via the shared scratchpad memory. Although the
PRET architecture is not a CMP system, the concepts used
in the multi-threaded pipeline can also be applied to a CMP
system. We intend to evaluate the PRET memory controller
with our CMP system. Each bank will be assigned to a set of
CPUs. Within this set we will perform a TDMA based memory
arbitration.

Our design can be seen as an instance of the PRET
architecture [11]. However, we leave the name PRET to the
original Berkeley design. The main difference between our
proposal and PRET is that we focus on time predictability and
PRET on repeatable timing. In our opinion a time-predictable
architecture does not need to provide repeatable timing as long
as WCET analysis can deliver tight WCET bounds.

Heckmann et al. provide examples of problematic processor
features in [7]. The most problematic features found are the
replacement strategies for set-associative caches. A pseudo-
round-robin replacement strategy effectively renders the asso-
ciativity useless for WCET analysis. In conclusion Heckmann
et al. suggest the following restrictions for time-predictable
processors: (1) separate data and instruction caches; (2) locally
deterministic update strategies for caches; (3) static branch
prediction; and (4) limited out-of-order execution. The authors
argue for restriction of processor features of actual processors
(of the time) for embedded systems. In contrast to that
proposal, we also provide additional features, such as the split
cache, for a time-predictable processor.

Whitham argues that the execution time of a basic block
has to be independent of the execution history [29]. As a con-
sequence his MCGREP architecture reduces pipelining to two
stages (fetch and execute) and avoids caches all together. To
reduce the WCET, Whitham proposes to implement the time
critical functions in microcode on a reconfigurable function
unit (RFU). With several RFUs, it is possible to explicitly
extract instruction level parallelism (ILP) from the original
RISC code. Whitham and Audsley extend the MCGREP
architecture with a trace scratchpad [30]. The trace scratchpad
caches microcode and is placed after the decode stage. The
trace scratchpad has to be explicitly started and the scratchpad
has to be loaded under program control. The authors extract
ILP at the microcode level and schedule the instructions
statically – similar to a very long instruction word (VLIW)
architecture.

Superscalar out-of-order processors can achieve higher per-
formance than in-order designs, but due to the dynamic
allocation of processor resources it is difficult to predict the
WCET. Whitham and Audsley present modifications to out-
of-order processors to achieve time-predictable operation [32].
Virtual traces allow static WCET analysis, which is performed
before execution. Those virtual traces are formed within the
program and constrain the out-of order scheduler built into the
CPU to execute deterministically.

In comparison to caches, scratchpads are more energy effi-
cient and the access latencies are independent of the preceding

memory access pattern. The latter property makes memory
access time-predictable which is relevant for hard real-time
systems and WCET analysis. [31] introduces the scratchpad
memory management unit (SMMU) as an enhancement to
scratchpad technology. This proposed solution does not require
whole-program pointer analysis and makes load and store
operation time-predictable.

The scope of the Connective Autonomic Real-time System-
on-Chip (CAR-SoC) [15] project is to integrate the CarCore
in a SoC that supports autonomic computing principles for the
use in real-time capable autonomic systems. The multithreaded
embedded processor executes the time critical application
concurrently to a number of helper threads that monitor the
system and provide autonomic or organic computing features
such as self-configuration, self-healing, self-optimization and
self-protection.

Multi-Core Execution of Hard Real-Time Applications Sup-
porting Analysability (MERASA) is a European Union project
that aims for multicore processor designs in hard real-time
embedded systems. How a single threaded in-order superscalar
processor can be enhanced to provide hardware multithreading
is described in [13]. By strictly prioritizing multithreading
capabilities and completely isolating threads it is possible
to reach a deterministic behavior for tight WCET analysis.
The CarCore, a multithreaded embedded processor, supports
one hard real-time thread to be executed while several non
real-time threads run concurrently in the background. The
MERASA processor is a CMP system where a simplified
version of the CarCore processor is used. The shared memory
is accessed via a shared bus.

Not that many papers are available on the design of time-
predictable CMP systems. A recent paper discusses some
high-level design guidelines [3]. To simplify WCET analysis
(or even make it feasible) the architecture shall be timing
compositional. That means that the architecture has no timing
anomalies or unbounded timing effects [12]. The Java proces-
sor JOP, used in the proposed time-predictable CMP, fulfills
those properties. For CMP systems the authors of [3] argue
for bounded access delays on shared resources. This is in our
opinion best fulfilled by a TDMA based arbitration scheme.

III. TIME-PREDICTABLE PROCESSORS

The basic building block for a time-predictable CMP is a
time-predictable processor. In the following we present two
architectures that can be used: the Java processor JOP, which
is already in industrial us; and the VLIW processor Patmos,
which is currently in development.

A. The Java Processo JOP

The Java processor JOP [19] is a hardware implementation
of the Java virtual machine (JVM). The JVM bytecodes are the
native instruction set of JOP. The main advantage of directly
executing bytecode instructions is that WCET analysis can be
performed at the bytecode level. The WCET tool WCA [23]
is part of the JOP distribution. The Java classfile, which is
the Java executable format, contains all symbolic information



of the original program.1 Having this symbolic information
available is of a great help for a WCET analysis tool.

The pipeline and the microcode of JOP has been designed to
avoid timing dependencies between bytecode instructions. The
execution time of the bytecodes are known cycle accurate. If a
bytecode instruction accesses main memory (e.g., object field
load), the execution time depends on the memory latency and
in the case of a CMP system on the memory arbitration. The
timing influence of a TDAM based memory arbiter has been
integrated into the timing model of the individual bytecodes
for the WCET analysis tool [14].

JOP uses split load instructions to partially hide the memory
latency. A split load instruction consists of two instructions:
one that triggers the actual memory load and a second one
that reads the result. Between those two instructions other,
non memory accessing, instructions can be executed. In the
microcode of JOP this feature is used to hide some of the
memory latency.

JOP contains a method cache [16] for the bytecode instruc-
tions, a stack cache [17] for the stack allocated data, and a
split-cache for heap allocated data [20], [22]. A special object
cache has been integrated into the WCET analysis tool [9] and
is currently under development.

JOP is open-source under the GNU GPL and available
from http://www.jopdesign.com/. The source distribution also
contains the WCET analysis tool WCA. The uniprocessor
version of JOP has been in use in industrial applications. The
CMP version of JOP was used as the platform for architecture
research within the EC funded project JEOPARD [25] on Java
for parallel real-time development.

B. The VLIW Processor Patmos

Processors for future embedded systems need to be time-
predictable and provide a reasonable worst-case performance.
Therefore, we develop a VLIW pipeline with special designed
caches to provide good single thread performance. To enhance
multi-threaded worst-case performance the VLIW pipeline is
duplicated in a CMP design.

The time-predictable processor Patmos is one approach to
attack the complexity issue of WCET analysis. Patmos is a
static scheduled, dual-issue RISC processor that is optimized
for real-time systems. All instruction delays are visible at the
instruction set architecture. This decision puts more burden on
the compiler, but simplifies the WCET analysis tool.

Access to main memory is done via a split load, where
one instruction starts the memory read and another instruction
explicitly waits for the result. Although this increases the
number of instructions to be executed, instruction scheduling
can use the split accesses to hide memory access latencies
deterministically.

A major challenge for the WCET analysis is the memory
hierarchy with multiple levels of caches. We attack this issue
by caches that are especially designed for WCET analysis. For

1There exists even decompilers, which generate reasonable readable Java
source from the classfiles.

instructions we adopt the method cache from JOP [16], which
operates on whole functions/methods and thus simplifies the
modeling for WCET analysis. This cache organization simpli-
fies the pipeline and the WCET analysis as instruction cache
misses can only happen at call or return instructions.

Furthermore, we propose a split-cache architecture [20] for
data, offering dedicated caches for the stack area, constants,
static data, heap allocated objects, as well as a compiler
managed scratchpad memory. Data allocated on the stack is
served by a direct mapped stack cache, heap allocated data in a
highly associative data cache, and constants and static data in
a set associative cache. Only the cache for heap allocated data
and static data needs a cache coherence protocol for a CMP
configuration of Patmos. Each of these mechanism specifically
allows predictable caching of its related data, while at the same
time supporting WCET analysis.

Furthermore, a scratchpad memory can also be used to store
frequently accessed data. To distinguish between the different
caches, Patmos implements typed load and store instructions.
The type information is assigned by the compiler (e.g., the
compiler already organizes the stack allocated data).

IV. SHARED MEMORY ARBITRATION

The individual cores of a CMP system share the access
bandwidth to the main memory. To build a time-predictable
CMP, we need to schedule the access to the main memory
in a time-predictable way. A predictable scheduling can only
be time based, where each core receives a fixed time slice.
This scheduling scheme is called time-division multiple access
(TDMA). The execution time of un-cached loads and stores
and the cache miss penalty depend on this schedule and
therefore, for accurate WCET analysis, the complete schedule
needs to be known. A TDMA schedule with equal sized slots
has been integrated into the WCET analysis tool for JOP. As
far as we know the JOP CMP system [14] is the first time-
predictable CMP that includes a WCET analysis tool.

The individual time slices need not be equally sized. Es-
pecially on a many-core system the TDMA schedule can be
optimized for the application. Assuming that enough cores are
available, we propose a CMP model with a single thread per
core. In that case, thread switching with the scheduling over-
head and the hard to predict cache trashing though preemption
disappears. Furthermore, no schedulability analysis has to be
performed.

Since each processor executes only a single thread, the
WCET of that thread can be as long as its deadline. When the
period of a thread is equal to its deadline, 100% utilization of
individual cores are feasible, which is in general not possible
with priority based scheduling.

For threads that have enough slack time left, we can increase
the WCET by decreasing their share of the bandwidth on
the memory bus. Other threads with tighter deadlines can,
in turn, use additional memory bandwidth in order to reduce
their WCET. The TDMA schedule is the input for the WCET
analysis and the WCET analysis verifies if all tasks will



meet their deadline. Finding a static TDMA schedule for an
application is thus an iterative optimization problem [24].

V. CACHING

Several cores competing for access to the same memory
increase the pressure to reduce accesses to the shared main
memory. In standard computer architecture several levels of
caches, core local first level caches and shared caches for
the other levels, are used. However, for a time-predictable
architecture the cache need to be analyzable. A cache shared
between different threads and serving instructions and data
requests is practically not analyzable. Therefore, only core
local caches provide the timing independency between the
threads running on different cores.

On a CMP system some data needs to be hold cache
coherent. However, not all data is shared between threads.
Stack allocated data, constants, and class type information
(e.g., the method dispatch table) usually needs no cache
coherence. Therefore, splitting the cache for different data
areas simplifies some of the caches.

Furthermore, a single data cache for different data areas can
be the reason for very conservative WCET bounds. A single
access with an unknown address destroys all abstract cache
information on one way of a set-associative cache. In the case
of a direct mapped cache the abstract cache state for all the
whole cache is unknown. Heap allocated objects and arrays
are a prime candidate for this issue. Their address is usually
only known at runtime and not at static program analysis
time. We argue that accesses to data with statically unknown
addresses shall not be cached at all or go to a dedicated cache.
If this object cache is highly associative, some accesses can
be tracked symbolically in the WCET analysis [9].

For a time-predictable CMP design we suggest to use
following cache architecture:

• A method cache for the instructions that caches full
methods/functions (non cache coherent).

• A direct mapped stack cache for stack allocated data (non
cache coherent).

• A cache for constants and class information (direct
mapped or medium associativity, not cache coherent).

• A cache for probably shared static data (medium asso-
ciativity, cache coherent).

• A highly associative cache for heap allocated objects
(cache coherent).

• A few prefetch buffers for arrays, which explore primary
spatial locality (cache coherent).

The delegation of load and store instructions to the dedicated
caches is simple in a Java processor, as the bytecode contains
enough information about the memory area. For a RISC style
load/store architecture either typed load/store instructions can
be introduced or the MMU can be programmed to map the
different data areas to address ranges that decide on the cache
type.

A common approach to avoid data caches is to use an on-
chip memory called scratchpad memory, where data allocation
is under program control. This program managed memory

entails a more complicated programming model, although
it can be automatically partitioned [1], [26]. Exposing the
scratchpad memory at the language level can further help to
optimize the time-critical path of the application. The real-time
specification for Java (RTSJ) [2] has the notation of scoped
memory, which serves as temporal allocation context to avoid
garbage collection. This scoped memory is an ideal candidate
to represent core local scratchpad memories [27].

VI. ALTERNATIVE COMMUNICATION PATHS

With the increase in number of cores, the memory band-
width and the cache-coherence protocol are becoming limiting
factors for the scalability of CMP systems. We have to
reconsider other forms of on-chip communication for further
performance scaling. In the 80’s the architecture of Trans-
puters [28] provided hardware support for the programming
model of Communicating Sequential Processes (CSP [8]). CSP
are processes with a clear definition of communication based
on message passing. The communication primitives also serve
as synchronization points.

In [6] we have presented the design of hardware support for
CSP based on-chip communication. The individual cores are
connected to a ring based network-on-chip (NoC). To make
this (shared) NoC predictable, we applied the same design
principle to the NoC as for the memory controller: the access
to the NoC is TDMA based. In our case, each core has a
dedicated clock cycle where it is allowed to insert a single
packet into the ring network. The NoC runs at the same clock
speed as the individual cores. For a quite small CMP system,
consisting just of three cores, the communication between the
cores via the TDMA based NoC is up to 11 times faster than
communication via the shared memory.

VII. CONCLUSION

In this paper we have presented an approach to design
a time-predictable chip-multiprocessor. The basis of a time-
predictable CMP is a time-predictable core. Dynamic features,
which use a large execution history to increase the average
case performance, are problematic for WCET analysis. Espe-
cially interferences between different features result in a state
space explosion for the analysis. The presented architectures,
the Java processor JOP and the dual-issue VLIW processor
Patmos, are in-order pipelines without implicit instruction de-
pendencies. Both architectures use a method cache containing
whole methods and a data cache that is split for stack allocated
data, constants, and heap allocated data.

A streamlined, time-predictable processor is quite small.
Therefore, we can regain performance by the exploration
of thread level parallelism in embedded applications with a
replication of the processor in a CMP architecture. The key
component for a time-predictable CMP is static scheduling
of the accesses to the shared memory. The static schedule
guarantees that thread execution times on different cores are
independent of each other.

For future many-core systems we propose to execute just a
single thread per processor core. In that case CPU scheduling



disappears. Only the WCET of the individual threads has to
be less than their deadline. With this approach the individual
threads can execute at 100% core utilization. With this configu-
ration the memory access can be statically scheduled according
to the application needs. With non-uniform time slices, the
arbiter schedule can be adapted to balance the utilization of
the individual cores.

The Java processor JOP, which is the basis of the presented
paper, has been used with success to implement several
commercial real-time applications [18]. JOP is open-source
under the GNU GPL and all design files (including the CMP
version), the documentation, and the WCET analysis tool are
available at http://www.jopdesign.com/.
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