
Time-predictable Cache Organization

Martin Schoeberl
Institute of Computer Engineering

Vienna University of Technology, Austria
mschoebe@mail.tuwien.ac.at

Abstract

Caches are a mandatory feature of current processors to
deliver instructions and data to a fast processor pipeline.
However, standard cache organizations are designed to
increase the average case performance. They are hard
to model for worst-case execution time (WCET) analysis.
Unknown abstract cache states during the analysis result
in conservative WCET bounds. Therefore, we propose to
adapt the cache organization to simplify the analysis. The
data cache is split into several independent caches for the
stack, static data, constants, and heap allocated data.

1. Introduction

Standard computer architectures optimize the architec-
ture for maximum throughput and average case perfor-
mance. The resulting architectures are very problematic to
model for worst-case execution time (WCET) analysis. Un-
known state of the processor during the analysis results in
conservative WCET bounds. We argue that future proces-
sors for real-time systems need to be designed to be time-
predictable to overcome this analysis issue. The internal
state of the processor has to be visible for the analysis.

Hiding the architectural details behind the instruction set
architecture (ISA) is one of the key principles for success in
general purpose computing. Programs can run faster on a
new machine without recompilation. This abstraction turns
WCET analysis into a nightmare. We need to know all the
architecture details of the pipeline and the memory hierar-
chy to analyze the execution time of programs. Therefore,
we argue that a time-predictable architecture has to expose
all pipeline and memory hierarchy details to the compiler
and the WCET analysis tool. In the embedded real-time
domain, compatibility of the ISA is less important. On a
processor change the application can be recompiled.

Between the middle of the 1980s and 2002, CPU per-
formance increased by around 52% per year, but memory
latency decreased only by 9% [11]. To bridge this grow-

ing gap between CPU and main memory performance, a
memory hierarchy is used. Several layers with different
tradeoffs between size, speed, and cost form that memory
hierarchy. A typical hierarchy consists of the register file,
first level instruction and data caches, one or two layers of
shared caches, the main memory, and the hard disc for vir-
tual memory.

Cache memories for the instructions and data are clas-
sic examples of the make the common case fast paradigm.
Avoiding or ignoring this feature in real-time systems, due
to its unpredictable behavior, results in a very pessimistic
WCET bound. Plenty of research effort has been expended
to integrate the instruction cache into the timing analysis
of tasks [2, 9], the influence of the task preemption on the
cache [4], and the integration of the cache analysis with the
pipeline analysis [8].

A unified cache for data and instructions can easily de-
stroy all the information on abstract cache states. Access
to n unknown addresses in an n-way set-associative cache
results in the state not classified for all cache lines. Mod-
ern processors usually have separate instruction and data
caches for the first level cache. However, the second level
cache is usually shared. Most chip-multiprocessor (CMP)
systems also share the second level cache between the dif-
ferent cores. The possible interactions between concurrent
threads running on different cores are practically impossible
to model.

Caches in general, and particularly data caches, are hard
to analyze statically. Therefore, we introduce caches that
are organized to speed-up execution time and provide tight
WCET bounds. We propose different caches for different
data areas:

• An instruction cache for complete methods

• A stack cache

• A cache for static data

• A small, fully associative buffer for heap access

• A cache for constants



Furthermore, the integration of a program- or compiler-
managed scratchpad memory can help to tighten the bounds
for hard to analyze memory access patterns.

The concepts, presented in this paper, are language ag-
nostic. Although, the discussion of virtual method dispatch
tables is biased towards object-oriented languages, such as
C++ and Java.

2. Related work

Edwards and Lee argue that a new research discipline is
needed for time-predictable embedded systems: “It is time
for a new era of processors whose temporal behavior is as
easily controlled as their logical function” [5]. A first simu-
lation of their PRET architecture is presented in [14]. PRET
implements the SPARC V8 ISA in a six-stage pipeline and
performs chip level multithreading for six threads to elim-
inate data forwarding and branch prediction. Scratchpad
memories are used instead of instruction and data caches.
The shared main memory is accessed via a TDMA scheme,
called memory wheel, similar to the TDMA based arbiter
used in the JOP CMP system [15]. The SPARC ISA is
extended with a deadline instruction that stalls the current
thread until the deadline is reached. This instruction is used
to perform time based, instead of lock based, synchroniza-
tion.

The most problematic processor features for WCET
analysis are the replacement strategies for set-associative
caches [10]. A pseudo-round-robin replacement strategy of
the 4-way set-associative cache in the ColdFire MCF 5307
effectively renders the associativity useless for WCET anal-
ysis. The use of a single 2-bit counter for the whole cache
destroys age information within the cache sets. Slightly
more complex pipelines, with branch prediction and out-
of-order execution, need an integrated pipeline and cache
analysis to provide useful WCET bounds. Such an inte-
grated analysis is complex and also demanding with respect
to the computational effort. Consequently, Heckmann et al.
suggest the following restrictions for time-predictable pro-
cessors: (1) separate data and instruction caches; (2) locally
deterministic update strategies for caches; (3) static branch
prediction; and (4) limited out-of-order execution.

Reineke et al. analyzed the predictability of different
cache replacement policies [18]. It is shown that the least
recently used (LRU) policy performs best with respect to
predictability. Pseudo-LRU and FIFO perform similarly.
Both perform considerably worse than LRU.

3. Split data caches

For the cache analysis the addresses of the memory ac-
cesses need to be predicted. The addresses for the instruc-

tion fetch are easy to determine1 and the access to stack
allocated data, e.g. function arguments and local variables,
is also quite regular. The addresses can be predicted when
the call tree is known.

The addresses for heap allocated data are very hard to
predict statically – the addresses are only known at run-
time.2 A data cache that caches heap and stack content suf-
fers from the same problem as a unified instruction and data
cache: an unknown address for a heap access will evict one
block from all sets in the abstract cache state and will in-
crease the age of all cache blocks. Therefore, we propose to
split the data cache into caches for different memory areas.

3.1. Stack data

Access patterns to stack allocated data are different from
heap or static allocated data. Addresses in the stack are usu-
ally easy to predict statically as the allocation addresses of
stack frames can be predicted by the analysis of the call
tree. Furthermore, a new stack frame for a function call
does not need to be cache consistent with the main mem-
ory. The involved cache blocks need no cache fill from the
main memory.

The regular access pattern to the stack cache will not
benefit from set associativity. Therefore, the stack cache
is a simple direct mapped cache. The stack contains local
variables and the write frequency is higher than for other
memory areas. The high frequency mandates a write back
organization.

A stack cache is similar to a windowed register file.
When the cache overflows, which can happen only during
a call, the oldest frame or frames have to be moved to the
memory. A frame only needs to be loaded from the mem-
ory when a function returns. A write back occurs first when
the program reaches a call depth resulting in a wrap around
within the cache. A cache miss can only occur when the
program goes up in the call tree and needs access to a cache
block that was evicted by a call down in the call tree.

On a return, the previously used cache blocks can be
marked empty, as function local data is not accessible af-
ter the return. As a result, cache lines will never need to be
written back on a cache wrap around after return. The stack
cache activity can be summarized:

• A cache miss can only occur after a return. The first
miss is at least one cache size away from a leaf in the
call tree

• Cache write back can only occur after a function call.
The first write back is one cache size away from the
root of the call tree

1Assuming avoidance of function pointers and computed gotos.
2We found no publication that described analysis of the data cache for

heap allocated data.



We can make the misses and write backs more pre-
dictable by forcing them to occur at explicit points in the
call tree. At these points, the cached stack frames are writ-
ten back to the main memory and the whole stack cache is
marked empty. If we place the flush points at function calls
in the call tree that are within one cache size from the leaf
functions, all cache accesses into that area are guaranteed
hits. This algorithm can actually improve WCET because
most of the execution time of a program is spent in inner
loops further down the call tree.

Stack data is usually not shared between threads and no
cache coherence and consistence protocol – the major bot-
tleneck for CMP scaling – needs to be implemented for a
CMP system.

In C it is possible to generate non-regular stack access
patterns that violate the described access rules, e.g., prop-
agate stack allocated data to callees or other threads. The
compiler can detect these patterns by escape analysis and
can generate safe code, e.g. allocating this data on a sec-
ond stack on the heap. This detection is also needed for the
register allocation of local variables.

3.2. Static data

For conservatively written programs with statically allo-
cated data, the address of the data is known after program
linking. Value analysis results in a good prediction of read
and write addresses. The addresses are the input for the
cache analysis. In [6], control tasks from a real-time bench-
mark were analyzed. For this benchmark 90% of the mem-
ory accesses were predicted precisely.

Therefore, we propose to implement an additional cache
that covers the address area of the static data, e.g., class
fields in Java. The address range of the cache needs to be
configurable and is set after program loading. As static data
is shared between threads, a CMP must implement a cache
coherence protocol.

3.3. Heap allocated data

In a modern object oriented language, data is usually al-
located on the heap. The addresses for the objects are only
known at runtime. It is possible to analyze local cache ef-
fects with unknown addresses for an LRU set-associative
cache. For an n-way associative cache the history for n dif-
ferent addresses can be tracked. As the addresses are un-
known, a single access influences all sets in the cache. The
analysis reduces the effective cache size to a single set.

Even when using such a language in a conservative style,
where all data is allocated during an initialization phase, it is
not easy to predict the resulting addresses. The order of the
allocations determines the addresses of the objects. When
the order becomes unknown at one point in the initialization

phase, the addresses for all following allocations cannot be
determined precisely.

We propose to implement the cache architecture exactly
as it results from this analysis – a small, fully associative
cache with an LRU replacement policy. The emphasis of
the data cache is on associativity instead of capacity. To
avoid false positives in the analysis, the cache line will be a
single word.

The LRU policy is difficult to calculate in hardware and
only possible for very small sets. Replacement of the oldest
block gives an approximation of LRU. The resulting FIFO
strategy can be used for larger caches. To offset the less pre-
dictable behavior of the FIFO replacement [18], the cache
has to be much larger than an LRU based cache.

3.4. Constants

In procedural languages, such as C, the constant area pri-
marily contains string constants and is small. For object
oriented languages, such as C++ and Java, the virtual meth-
ods tables and class related constants consume a consider-
able amount of memory. The addresses of the constants are
known after program linking and are simple to predict for
the WCET analysis. On a uniprocessor system the constant
area and the static data can share the same cache.

For CMP systems, splitting the static data cache and the
constant cache is a valuable option. In contrast to static data,
constants are per definition immutable. Therefore, cache
coherence and consistence needs not to be enforced and the
resulting cache is simpler and can be made larger.

Another option for constants is to embed them into the
code. To support this option a PC relative addressing mode
is needed. However, this option is only practical for a
few constants. Large virtual method dispatch tables would
thrash the instruction cache. Furthermore, if the address
range for the PC relative addressing is restricted, some ta-
bles would need to be duplicated, increasing the code size.

3.5. Scratchpad memory

A common method for avoiding data caches is an on-
chip memory called scratchpad memory, which is under
program control. This program managed memory entails
a more complicated programming model, although it can
be automatically partitioned [1, 25].

A similar approach for time-predictable caching is to
lock cache blocks. The control of the cache locking [17]
and the allocation of data in the scratchpad memory [26, 24]
can be optimized for the WCET.

Exposing the scratchpad memory at the language level
can further help to optimize the time-critical path of the
application. The Real-Time Specification for Java [3] in-
troduces scoped memory, which represents a memory re-



gion for a limited lifetime allocation without garbage col-
lection. This scoped memory model can be used to rep-
resent scratchpad memory at the language level. In [27]
thread-local scoped memory is introduced for a CMP sys-
tem to represent per processor local scratchpad memory.
This local scratchpad memory also avoids cache coherence
protocols.

4. Instruction cache

A new form of organization for the instruction cache, the
method cache, which has a novel replacement policy, is pro-
posed in [19]. A whole function or method is loaded into
the cache on a call or return.3 This cache fill strategy lumps
all the cache misses of a function together. All instructions
except call and return are guaranteed cache hits. Only the
call tree needs to be analyzed for the cache analysis. With
the proposed cache organization, the cache analysis can be
performed independently of the pipeline analysis.

For a full method load into the cache we need to know
the length of the method. This information is available in
the Java class file. For a compiled C program this informa-
tion can be provided in the executable.

The WCET analysis is simpler with the method cache
than with a direct-mapped cache. We only have to consider
invoke and return instructions and not all instructions in a
cache line for a cache analysis. As methods in the cache
need to span contiguous cache blocks, a least-recently used
replacement strategy is impractical. The method cache im-
plements a FIFO replacement strategy.

The method cache needs the whole program call graph
and the whole program control flow graph for the analy-
sis. Whole program analysis with a FIFO replacement pol-
icy can become computationally impractical. Therefore, a
practical approximation of the cache works as follows [13]:
Within a loop, all possibly invoked methods are tested if
they will fit together into the cache. If this is the case, all
methods cause at most one miss in the loop.

In order to use the method cache in a RISC processor,
the ISA is extended with a prefetch instruction to force the
cache load. The prefetch instruction can be placed imme-
diately before the call or return instruction. It can also be
scheduled earlier to hide the cache load latency.

5. Discussion

The proposed splitting of caches is intended to lower the
WCET bound – a design decision for time-predictable pro-
cessors. Optimizing the WCET performance hurts the aver-
age case performance [22]. A data cache for all data areas

3For functions that do not fit into the cache we provide a fall-back
mechanism, either with compiler support or with hardware support.

is, in the average case, more efficient than splitting the same
amount of on-chip memory for different data types. There-
fore, the presented solution is intended for systems where
the WCET performance is of primary importance.

5.1. Scheduling

Cache analysis usually ignores the influence of context
switches. However, on a context switch the cache data be-
comes usually invalid. One option to consider this effect
in the schedulability analysis is to include the cost for a
complete refill of the cache in the context switch time. For
an implementation of time-predictable caches we can en-
force this assumption in hardware. The cache content can
be saved and restored on a thread switch in the same way as
registers are saved and restored. Under the assumption that
saving and restoring the whole cache in one burst is better
analyzable than individual cache loads, this architecture can
reduce the WCET of a thread switch.

5.2. Chip multiprocessors

CMP systems share the memory bandwidth between the
on-chip processors and the pressure to avoid memory ac-
cesses is increased. Therefore, these systems call for large
and processor local caches. Furthermore, some data needs
to be held consistent between the processor local caches.
Cache coherence and consistence protocols are expensive
to implement and limit the number of cores in a multipro-
cessor system. However, not all data needs to be held coher-
ent. Thread local data, such as stack allocated data, constant
data, and instructions can be cached processor local without
such a protocol. This simplification is another argument for
splitting the cache for different memory areas.

For a CMP system with a processor local scratchpad
memory, thread migration between cores is problematic. A
possible solution is to save the scratchpad memory on a
context switch into main memory and restore it on a dif-
ferent processor on rescheduling. The scratchpad memory
increases the thread context and the context switch becomes
more expensive.

This organization of the proposed cache for heap allo-
cated data fits very well as a buffer for hardware transac-
tional memory [12]. We will explore transactional memory
as an alternative to cache coherency protocols for massively
parallel CMP systems.

5.3. Implementation

We have implemented some of the proposed caches in
the Java processor JOP [21] and in the CMP version of
JOP [16]. JOP is intended to be a time-predictable plat-
form for real-time Java programs. As JOP is an easy target



for WCET analysis, two independent WCET analysis tools
are available for JOP [23, 7].

The instructions are cached in the method cache. As the
misses are only possible at invoke or return instructions,
the pipeline can be simplified considerably. Invoke and re-
turn are implemented in microcode and wait explicitly till
the method is transferred into the method cache from the
main memory. As all other instructions are guaranteed hits,
stalling of the pipeline, with the possible impact on the max-
imum clock frequency, does not have to be considered.

The stack cache in a Java processor contains – besides
the stack frames for the return address and the local vari-
ables – also the operand stack. For an efficient implemen-
tation of the stack machine (the Java virtual machine is a
stack machine), the two top elements are implemented in
discrete registers [20]. Exchange of data between these two
registers and the on-chip stack cache is automatically per-
formed in the execution stage. The exchange between the
stack cache and the main memory is performed on a thread
switch. This exchange increases the context switch time,
but avoids possible cache fill and write back operation at
method invocations.

For a JOP CMP system we have implemented a pro-
cessor local scratchpad memory [27]. This memory is
mapped to a thread-local scoped memory and therefore un-
der program control. Measurements of a simple benchmark
showed an average case performance increase of a factor of
up to two for a 8 processor system. Integration of the thread-
local memory into the WCET analysis [23] is considered as
future work.

A fully associative cache for heap allocated data is cur-
rently under development by Wolfgang Puffitsch. First ex-
periments in a field-programmable gate array indicate that
the practical limit for the associativity is around 8. Beyond
that point, the cache hit detection becomes the critical path
in the design. Pipelining the hit detection increases the pos-
sible associativity at the expense of an additional cycle la-
tency.

6. Conclusion

For real-time systems we need a time-predictable proces-
sor to allow WCET analysis with tight bounds. In this paper
we discussed the organization of caches – an architectural
feature of modern processors that increases the average case
performance. Caches, and especially data caches, are hard
to analyze with respect to the WCET. A single access to
an unknown address destroys the abstract cache state for a
whole set. Therefore, we propose to split the data cache
into independent caches for different memory areas. When
caching stack allocated data, static data, and heap allocated
data in different caches, the cache states are easier to pre-
dict. Stack and static data accesses are not disturbed by heap

accessing instructions. Furthermore, splitting the physical
caches and the cache analysis for different data areas re-
duces the state that need to be tracked by the analysis. The
analysis will scale better for larger programs.

Acknowledgement

This research has received partial funding from the
European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement number 216682
(JEOPARD). The author would like to acknowledge the dis-
cussions with Wolgang Puffitsch, who is currently imple-
menting and evaluating a fully associative data cache for
JOP. Furthermore, I thank Albrecht Kadlec for his detailed
review of the paper.

References

[1] F. Angiolini, L. Benini, and A. Caprara. Polynomial-time
algorithm for on-chip scratchpad memory partitioning. In
Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES-
03), pages 318–326, New York, Oct. 30 Nov. 01 2003.
ACM Press.

[2] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bound-
ing worst-case instruction cache performance. In IEEE Real-
Time Systems Symposium, pages 172–181, 1994.

[3] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull. The Real-Time Specification for Java. Java
Series. Addison-Wesley, June 2000.

[4] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. J. Gil, and
A. J. Wellings. Adding instruction cache effect to schedu-
lability analysis of preemptive real-time systems. In IEEE
Real-Time Technology and Applications Symposium (RTAS
’96), pages 204–213, Washington - Brussels - Tokyo, June
1996. IEEE Computer Society Press.

[5] S. A. Edwards and E. A. Lee. The case for the precision
timed (PRET) machine. In DAC ’07: Proceedings of the
44th annual conference on Design automation, pages 264–
265, New York, NY, USA, 2007. ACM.

[6] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-
able and precise WCET determination for a real-life proces-
sor. In T. A. Henzinger and C. M. Kirsch, editors, EMSOFT,
volume 2211 of Lecture Notes in Computer Science, pages
469–485. Springer, 2001.

[7] T. Harmon and R. Klefstad. Interactive back-annotation of
worst-case execution time analysis for java microprocessors.
In Proceedings of the Thirteenth IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and
Applications (RTCSA 2007), August 2007.

[8] C. A. Healy, R. D. Arnold, F. Mueller, D. B. Whalley, and
M. G. Harmon. Bounding pipeline and instruction cache
performance. IEEE Trans. Computers, 48(1):53–70, 1999.

[9] C. A. Healy, D. B. Whalley, and M. G. Harmon. Integrating
the timing analysis of pipelining and instruction caching. In
IEEE Real-Time Systems Symposium, pages 288–297, 1995.



[10] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm.
The influence of processor architecture on the design and re-
sults of WCET tools. Proceedings of the IEEE, 91(7):1038–
1054, Jul. 2003.

[11] J. Hennessy and D. Patterson. Computer Architecture: A
Quantitative Approach, 4th ed. Morgan Kaufmann Publish-
ers, 2006.

[12] M. Herlihy, J. Eliot, and B. Moss. Transactional memory:
Architectural support for lock-free data structures. In Com-
puter Architecture, 1993. Proceedings of the 20th Annual
International Symposium on, pages 289–300, 1993.

[13] B. Huber and M. Schoeberl. Comparison of ILP and model
checking based WCET analysis. Technical Report 72/2008,
Institute of Computer Engineering, Vienna University of
Technology, December 2008.

[14] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and
E. A. Lee. Predictable programming on a precision timed
architecture. In E. R. Altman, editor, Proceedings of the
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES 2008), pages 137–
146, Atlanta, GA, USA, October 2008. ACM.

[15] C. Pitter. Time-predictable memory arbitration for a Java
chip-multiprocessor. In Proceedings of the 6th International
Workshop on Java Technologies for Real-time and Embed-
ded Systems (JTRES 2008), 2008.

[16] C. Pitter and M. Schoeberl. Performance evaluation of a
Java chip-multiprocessor. In Proceedings of the 3rd IEEE
Symposium on Industrial Embedded Systems (SIES 2008),
Jun. 2008.

[17] I. Puaut. WCET-centric software-controlled instruction
caches for hard real-time systems. In ECRTS ’06: Proceed-
ings of the 18th Euromicro Conference on Real-Time Sys-
tems, pages 217–226, Washington, DC, USA, 2006. IEEE
Computer Society.

[18] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing pre-
dictability of cache replacement policies. Journal of Real-
Time Systems, 37(2):99–122, Nov. 2007.

[19] M. Schoeberl. A time predictable instruction cache for a
Java processor. In On the Move to Meaningful Internet
Systems 2004: Workshop on Java Technologies for Real-
Time and Embedded Systems (JTRES 2004), volume 3292 of
LNCS, pages 371–382, Agia Napa, Cyprus, October 2004.
Springer.

[20] M. Schoeberl. Design and implementation of an efficient
stack machine. In Proceedings of the 12th IEEE Recon-
figurable Architecture Workshop (RAW2005), Denver, Col-
orado, USA, April 2005. IEEE.

[21] M. Schoeberl. A Java processor architecture for embedded
real-time systems. Journal of Systems Architecture, 54/1–
2:265–286, 2008.

[22] M. Schoeberl. Time-predictable computer architecture.
EURASIP Journal on Embedded Systems (to appear), 2009.

[23] M. Schoeberl and R. Pedersen. WCET analysis for a Java
processor. In Proceedings of the 4th International Workshop
on Java Technologies for Real-time and Embedded Systems
(JTRES 2006), pages 202–211, New York, NY, USA, 2006.
ACM Press.

[24] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen.
WCET centric data allocation to scratchpad memory. In Pro-
ceedings of the 26th IEEE International Real-Time Systems
Symposium (RTSS), pages 223–232. IEEE Computer Soci-
ety, 2005.

[25] M. Verma and P. Marwedel. Overlay techniques for scratch-
pad memories in low power embedded processors. IEEE
Trans. VLSI Syst, 14(8):802–815, 2006.

[26] L. Wehmeyer and P. Marwedel. Influence of memory hi-
erarchies on predictability for time constrained embedded
software. In Proceedings of Design, Automation and Test in
Europe (DATE2005)., pages 600–605 Vol. 1, March 2005.

[27] A. Wellings and M. Schoeberl. Thread-local scope caching
for real-time Java. In Proceedings of the 12th IEEE Inter-
national Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC 2009), Tokyo,
Japan, March 2009. IEEE Computer Society.


