
1 Bytecode Execution Time

Table 1.1 lists the bytecodes of the JVM with their opcode, mnemonics, the implemen-
tation type and the execution time on JOP. In the implementation column hw means
that this bytecode has a microcode equivalent, mc means that a microcode sequence
implements the bytecode, Java means the bytecode is implemented in Java, and a ‘-
’ indicates that this bytecode is not yet implemented. For bytecodes with a variable
execution time the minimum and maximum values are given.

Opcode Instruction Implementation Cycles

0 nop hw 1
1 aconst null hw 1
2 iconst m1 hw 1
3 iconst 0 hw 1
4 iconst 1 hw 1
5 iconst 2 hw 1
6 iconst 3 hw 1
7 iconst 4 hw 1
8 iconst 5 hw 1
9 lconst 0 mc 2

10 lconst 1 mc 2
11 fconst 0 Java
12 fconst 1 Java
13 fconst 2 Java
14 dconst 0 -
15 dconst 1 -
16 bipush mc 2
17 sipush mc 3
18 ldc mc 7+r
19 ldc w mc 8+r
20 ldc2 w20 mc 17+2*r
21 iload mc 2
22 lload mc 11
23 fload mc 2
24 dload mc 11

Table 1.1: Implemented bytecodes and execution time in cycles

1



1 BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles

25 aload mc 2
26 iload 0 hw 1
27 iload 1 hw 1
28 iload 2 hw 1
29 iload 3 hw 1
30 lload 0 mc 2
31 lload 1 mc 2
32 lload 2 mc 2
33 lload 3 mc 11
34 fload 0 hw 1
35 fload 1 hw 1
36 fload 2 hw 1
37 fload 3 hw 1
38 dload 0 mc 2
39 dload 1 mc 2
40 dload 2 mc 2
41 dload 3 mc 11
42 aload 0 hw 1
43 aload 1 hw 1
44 aload 2 hw 1
45 aload 3 hw 1
46 iaload46 mc 7+3*r
47 laload mc 43+4*r
48 faload46 mc 7+3*r
49 daload -
50 aaload46 mc 7+3*r
51 baload46 mc 7+3*r
52 caload46 mc 7+3*r
53 saload46 mc 7+3*r
54 istore mc 2
55 lstore mc 11
56 fstore mc 2
57 dstore mc 11
58 astore mc 2
59 istore 0 hw 1
60 istore 1 hw 1
61 istore 2 hw 1
62 istore 3 hw 1
63 lstore 0 mc 2

Table 1.1: Implemented bytecodes and execution time in cycles

2



Opcode Instruction Implementation Cycles

64 lstore 1 mc 2
65 lstore 2 mc 2
66 lstore 3 mc 11
67 fstore 0 hw 1
68 fstore 1 hw 1
69 fstore 2 hw 1
70 fstore 3 hw 1
71 dstore 0 mc 2
72 dstore 1 mc 2
73 dstore 2 mc 2
74 dstore 3 mc 11
75 astore 0 hw 1
76 astore 1 hw 1
77 astore 2 hw 1
78 astore 3 hw 1
79 iastore79 mc 10+2*r+w
80 lastore1 mc 48+2*r+2*w
81 fastore79 mc 10+2*r+w
82 dastore -
83 aastore Java
84 bastore79 mc 10+2*r+w
85 castore79 mc 10+2*r+w
86 sastore79 mc 10+2*r+w
87 pop hw 1
88 pop2 mc 2
89 dup hw 1
90 dup x1 mc 5
91 dup x2 mc 7
92 dup2 mc 6
93 dup2 x1 mc 8
94 dup2 x2 mc 10
95 swap2 mc 4
96 iadd hw 1
97 ladd Java
98 fadd Java
99 dadd -

100 isub hw 1
101 lsub Java
102 fsub Java

Table 1.1: Implemented bytecodes and execution time in cycles

3



1 BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles

103 dsub -
104 imul mc 35
105 lmul Java
106 fmul Java
107 dmul -
108 idiv Java
109 ldiv Java
110 fdiv Java
111 ddiv -
112 irem Java
113 lrem Java
114 frem Java
115 drem -
116 ineg mc 4
117 lneg Java
118 fneg Java
119 dneg -
120 ishl hw 1
121 lshl Java
122 ishr hw 1
123 lshr Java
124 iushr hw 1
125 lushr Java
126 iand hw 1
127 land Java
128 ior hw 1
129 lor Java
130 ixor hw 1
131 lxor Java
132 iinc mc 8
133 i2l Java
134 i2f Java
135 i2d -
136 l2i mc 3
137 l2f -
138 l2d -
139 f2i Java
140 f2l -
141 f2d -

Table 1.1: Implemented bytecodes and execution time in cycles

4



Opcode Instruction Implementation Cycles

142 d2i -
143 d2l -
144 d2f -
145 i2b Java
146 i2c mc 2
147 i2s Java
148 lcmp Java
149 fcmpl Java
150 fcmpg Java
151 dcmpl -
152 dcmpg -
153 ifeq mc 4
154 ifne mc 4
155 iflt mc 4
156 ifge mc 4
157 ifgt mc 4
158 ifle mc 4
159 if icmpeq mc 4
160 if icmpne mc 4
161 if icmplt mc 4
162 if icmpge mc 4
163 if icmpgt mc 4
164 if icmple mc 4
165 if acmpeq mc 4
166 if acmpne mc 4
167 goto mc 4
168 jsr not used
169 ret not used
170 tableswitch170 Java
171 lookupswitch171 Java
172 ireturn172 mc 23+r+l
173 lreturn173 mc 25+r+l
174 freturn172 mc 23+r+l
175 dreturn173 mc 25+r+l
176 areturn172 mc 23+r+l
177 return177 mc 21+r+l
178 getstatic mc 12+2*r
179 putstatic mc 13+r+w
180 getfield mc 17+2*r

Table 1.1: Implemented bytecodes and execution time in cycles

5



1 BYTECODE EXECUTION TIME

Opcode Instruction Implementation Cycles

181 putfield mc 20+r+w
182 invokevirtual182 mc 100+4r+l
183 invokespecial183 mc 74+3*r+l
184 invokestatic183 mc 74+3*r+l
185 invokeinterface185 mc 114+6r+l
186 unused ba -
187 new187 Java
188 newarray188 Java
189 anewarray Java
190 arraylength mc 6+r
191 athrow3 Java
192 checkcast Java
193 instanceof Java
194 monitorenter mc 11
195 monitorexit mc 10/14
196 wide not used
197 multianewarray4 Java
198 ifnull mc 4
199 ifnonnull mc 4
200 goto w not used
201 jsr w not used
202 breakpoint -
203 reserved -
204 reserved -
205 reserved -
206 reserved -
207 reserved -
208 reserved -
209 jopsys rd209 mc 4+r
210 jopsys wr mc 5+w
211 jopsys rdmem mc 4+r
212 jopsys wrmem mc 5+w
213 jopsys rdint mc 3
214 jopsys wrint mc 3
215 jopsys getsp mc 3
216 jopsys setsp mc 4
217 jopsys getvp hw 1
218 jopsys setvp mc 2
219 jopsys int2ext219 mc 14+r+n*(23+w)

Table 1.1: Implemented bytecodes and execution time in cycles

6



Opcode Instruction Implementation Cycles

220 jopsys ext2int220 mc 14+r+n*(23+r)
221 jopsys nop mc 1
222 jopsys invoke mc
223 jopsys cond move mc 5
224 getstatic ref mc
225 putstatic ref mc
226 getfield ref mc
227 putfield ref mc
228 getstatic long mc
229 putstatic long mc
230 getfield long mc
231 putfield long mc
232 reserved -
233 reserved -
234 reserved -
235 reserved -
236 reserved -
237 reserved -
238 reserved -
239 reserved -
240 sys int240 Java
241 sys exc240 Java
242 reserved -
243 reserved -
244 reserved -
245 reserved -
246 reserved -
247 reserved -
248 reserved -
249 reserved -
250 reserved -
251 reserved -
252 reserved -
253 reserved -
254 sys noimp Java
255 sys init not used

Table 1.1: Implemented bytecodes and execution time in cycles

7



1 BYTECODE EXECUTION TIME

Memory Timing

The external memory timing is defined in the top level VHDL file (e.g. jopcyc.vhd)
with ram cnt for the number of cycles for a read and write access. At the moment
there is no difference for a read and write access. For the 100MHz JOP with 15ns
SRAMs this access time is two cycles (ram cnt=2, 20ns). Therefore the wait state nws
is 1 (ram cnt-1). A basic memory read in microcode is as follows:

stmra // start read with address store
wait // fill the pipeline with two
wait // wait instructions
ldmrd // push read result on TOS

1The exact value is given below.
2Not tested as javac does not emit the swap bytecode.
3A simple version that stops the JVM. No catch support.
4Only dimension 2 supported.

20The exact value is 17+
{

r−2 : r > 2
0 : r ≤ 2 +

{
r−1 : r > 1

0 : r ≤ 1
46The exact value is no hidden wait states at the moment.
79The exact value is no hidden wait states at the moment.

170tableswitch execution time depends to a great extent on the caching of the corresponding Java method or
the memory transfer time for the method.

171 lookupswitch execution time depends to a great extent on the caching of the corresponding Java method
or the memory transfer time for the method. lookupswitch also depends on the argument as it performs
a linear search in the jump table.

172The exact value is: 23+
{

r−3 : r > 3
0 : r ≤ 3 +

{
l−10 : l > 10

0 : l ≤ 10
173The exact value is: 25+

{
r−3 : r > 3

0 : r ≤ 3 +
{

l−11 : l > 11
0 : l ≤ 11

177The exact value is: 21+
{

r−3 : r > 3
0 : r ≤ 3 +

{
l−9 : l > 9

0 : l ≤ 9
182The exact value is: 100+2r +

{
r−3 : r > 3

0 : r ≤ 3 +
{

r−2 : r > 2
0 : r ≤ 2 +

{
l−37 : l > 37

0 : l ≤ 37
183The exact value is: 74+ r +

{
r−3 : r > 3

0 : r ≤ 3 +
{

r−2 : r > 2
0 : r ≤ 2 +

{
l−37 : l > 37

0 : l ≤ 37
185The exact value is: 114+4r +

{
r−3 : r > 3

0 : r ≤ 3 +
{

r−2 : r > 2
0 : r ≤ 2 +

{
l−37 : l > 37

0 : l ≤ 37
187new execution time depends to a great extent on the caching of the corresponding Java method or the

memory transfer time for the method. new also depends on the size of the created object as the memory
for the object is filled with zeros – This will change with the GC

188newarray execution time depends to a great extent on the caching of the corresponding Java method or
the memory transfer time for the method. newarray also depends on the size of the array as the memory
for the object is filled with zeros – This will change with the GC

209The native instructions jopsys rd and jopsys wr are alias to the jopsys rdmem and jopsys wrmem instruc-
tions just for compatibility to existing Java code. IO devices are now memory mapped. In the case for
simple IO devices there are no wait states and the exact values are 4 and 5 cycles respective.

219The exact value is 14+ r +n(23+
{

w−8 : w > 8
0 : w≤ 8 ). n is the number of words transferred.

220The exact value is 14+ r +n(23+
{

r−10 : r > 10
0 : r ≤ 10 ). n is the number of words transferred.

240Is the interrupt and the exception still a bytecode or is it now inserted just as microcode address?

8



In this sequence the last wait executes for 1 + nws cycles. Therefore the whole read
sequence takes 4 + nws cycles. For the example with ram cnt=2 this basic memory
read takes 5 cycles.

A memory write in microcode is as follows:

stmwa // store address
stmwd // store data and start the write
wait // fill the pipeline with wait
wait // wait for the memory ready

The last wait again executes for 1+nws cycles and the basic write takes 4+nws cycles.
For the native bytecode jopsys wrmem an additional nop instruction for the nxt flag is
necessary.

The read and write wait states rws and wws are:

rws = wws =
{

ram cnt−1 : ram cnt > 1
0 : ram cnt ≤ 1

In the instruction timing we use r and w instead of rws and wws. The wait states can
be hidden by other microcode instructions between stmra/wait and stmwd/wait. The
exact value is given in the footnote.

Instruction Timing

The bytecodes that access memory are indicated by an r for a memory read and an
w for a memory write at the cycles column (r and w are the additional wait states).
The wait cycles for the memory access have to be added to the execution time. These
two values are implementation dependent (clock frequency versus RAM access time,
data bus width); for the Cyclone EP1C6 board with 15ns SRAMs and 100MHz clock
frequency these values are both 1 cycle (ram cnt-1).

For some bytecodes, part of the memory latency can be hidden by executing mi-
crocode during the memory access. However, these cycles can only be subtracted
when the wait states (r or w) are larger then 0 cycles. The exact execution time with
the subtraction of the saved cycles is given in the footnote.

Cache Load

For the method cache load the cache wait state cws is:

cws =
{

rws−1 : rws > 1
0 : rws ≤ 1

On a method invoke or return the bytecode has to be loaded into the cache on a
cache miss. The load time l is:

l =
{

6+(n+1)(2+ cws) : cache miss
4 : cach hit

9



1 BYTECODE EXECUTION TIME

with n as the length of the method in number of 32-bit words. For short methods
the load time of the method on a cache miss, or part of it, is hidden by microcode
execution. The exact value is given in the footnote.

lastore

tlastore = 48+2rws +wws +
{

wws−3 : wws > 3
0 : wws ≤ 3

get/putfield/ref/long

TODO: add different values for 32-bit, 64-bit and reference type.

10



2 JOP Instruction Set

The instruction set of JOP, the so-called microcode, is described in this appendix.
Each instruction consists of a single instruction word (8 bits) without extra operands
and executes in a single cycle1. Table 2.1 lists the registers and internal memory areas
that are used in the dataflow description.

Name Description

A Top of the stack
B The element one below the top of stack
stack[] The stack buffer for the rest of the stack
sp The stack pointer for the stack buffer
vp The variable pointer. Points to the first local in the stack buffer
ar Address register for indirect stack access
pc Microcode program counter
offtbl Table for branch offsets
jpc Program counter for the Java bytecode
opd 8 bit operand from the bytecode fetch unit
opd16 16 bit operand from the bytecode fetch unit
ioar Address register of the IO subsystem
memrda Read address register of the memory subsystem
memwra Write address register of the memory subsystem
memrdd Read data register of the memory subsystem
memwrd Write data register of the memory subsystem
mula, mulb Operands of the hardware multiplier
mulr Result register of the hardware multiplier
membcr Bytecode address and length register of the memory subsystem
bcstart Method start address register in the method cache

Table 2.1: JOP hardware registers and memory areas

1The only multicycle instruction is wait and depends on the access time of the external memory

11



2 JOP INSTRUCTION SET

pop

Operation Pop the top operand stack value

Opcode 00000000

Dataflow B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent pop

Description Pop the top value from the operand stack.

and

Operation Boolean AND int

Opcode 00000001

Dataflow A∧B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent iand

Description Build the bitwise AND (conjunction) of the two top elements of the
stack and push back the result onto the operand stack.

12



or

Operation Boolean OR int

Opcode 00000010

Dataflow A∨B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent ior

Description Build the bitwise inclusive OR (disjunction) of the two top elements
of the stack and push back the result onto the operand stack.

xor

Operation Boolean XOR int

Opcode 00000011

Dataflow A 6≡ B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent ixor

Description Build the bitwise exclusive OR (negation of equivalence) of the two
top elements of the stack and push back the result onto the operand
stack.

13



2 JOP INSTRUCTION SET

add

Operation Add int

Opcode 00000100

Dataflow A+B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent iadd

Description Add the two top elements from the stack and push back the result
onto the operand stack.

sub

Operation Subtract int

Opcode 00000101

Dataflow A−B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent isub

Description Subtract the two top elements from the stack and push back the re-
sult onto the operand stack.

14



stmra

Operation Store memory read address

Opcode 00001000

Dataflow A→ memrda
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as read address in the memory
subsystem. This operation starts the concurrent memory read. The
processor can continue with other operations. When the datum is
needed a wait instruction stalls the processor till the read access is
finished. The value is read with ldmrd.

stmwa

Operation Store memory write address

Opcode 00001001

Dataflow A→ memwra
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as write address in the memory
subsystem for a following stmwd.

15



2 JOP INSTRUCTION SET

stmwd

Operation Store memory write data

Opcode 00001010

Dataflow A→ memwrd
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as write data in the memory
subsystem. This operation starts the concurrent memory write The
processor can continue with other operations. The wait instruction
stalls the processor till the write access is finished.

stald

Operation Start array load

Opcode 00001011

Dataflow A→ memidx
B→ A
B→ memptr
stack[sp]→ B
sp−1→ sp

JVM equivalent xaload

Description The top value from the stack is stored as array index, the next as ref-
erence in the memory subsystem. This operation starts the concur-
rent array load. The processor can continue with other operations.
The wait instruction stalls the processor till the read access is fin-
ished. A null pointer or out of bounds exception is generated by the
memory subsystem and thrown at the next bytecode fetch.

16



stast

Operation Start array store

Opcode 00001100

Dataflow A→ memval
B→ A
stack[sp]→ B
sp−1→ sp
nextcycle
A→ memidx
B→ A
B→ memptr
stack[sp]→ B
sp−1→ sp

JVM equivalent xastore

Description In the first cycle the top value from the stack is stored as value into
the memory subsystem. A microcode pop hast to follow. In the sec-
ond cycle the top value from the stack is stored as array index, the
next as reference in the memory subsystem. This operation starts the
concurrent array store. The processor can continue with other oper-
ations. The wait instruction stalls the processor till the write access
is finished. A null pointer or out of bounds exception is generated
by the memory subsystem and thrown at the next bytecode fetch.

17



2 JOP INSTRUCTION SET

stmul

Operation Multiply int

Opcode 00001101

Dataflow A→ mula
B→ mulb
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as first operand for the mul-
tiplier. The value one below the top of stack is stored as second
operand for the multiplier. This operation starts the multiplier. The
result is read with the ldmul instruction.

18



stbcrd

Operation Start bytecode read

Opcode 00001111

Dataflow A→ membcr
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the stack is stored as address and length of a
method in the memory subsystem. This operation starts the memory
transfer from the main memory to the bytecode cache (DMA). The
processor can continue with other operations. The wait instruction
stalls the processor till the transfer has finished. No other memory
accesses are allowed during the bytecode read.

st<n>

Operation Store 32-bit word into local variable

Opcode 000100nn

Dataflow A→ stack[vp+n]
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent astore <n>, istore <n>, fstore <n>

Description The value on the top of the operand stack is popped and stored in
the local variable at position n.

19



2 JOP INSTRUCTION SET

st

Operation Store 32-bit word into local variable

Opcode 00010100

Dataflow A→ stack[vp+opd]
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent astore, istore, fstore

Description The value on the top of the operand stack is popped and stored in
the local variable at position opd. opd is taken from the bytecode
instruction stream.

stmi

Operation Store in local memory indirect

Opcode 00010101

Dataflow A→ stack[ar]
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the operand stack is stored in the local memory
(stack) at position ar.

20



stvp

Operation Store variable pointer

Opcode 00011000

Dataflow A→ vp
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The value on the top of the operand stack is popped and stored in
the variable pointer (vp).

stjpc

Operation Store Java program counter

Opcode 00011001

Dataflow A→ jpc
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The value on the top of the operand stack is popped and stored in
the Java program counter (jpc).

21



2 JOP INSTRUCTION SET

star

Operation Store adress register

Opcode 00011010

Dataflow A→ ar
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The value on the top of the operand stack is popped and stored in
the address register (ar). Due to a pipeline delay the register is valid
on cycle later for usage by ldmi and stmi.

stsp

Operation Store stack pointer

Opcode 00011011

Dataflow A→ sp
B→ A
stack[sp]→ B

JVM equivalent –

Description The value on the top of the operand stack is popped and stored in
the stack pointer (sp).

22



ushr

Operation Logical shift rigth int

Opcode 00011100

Dataflow B >>> A→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent iushr

Description The values are popped from the operand stack. An int result is cal-
culated by shifting the TOS-1 value rigth by s position, with zero
extension, where s is the value of the low 5 bits of the TOS. The
result is pushed onto the operand stack.

shl

Operation Shift left int

Opcode 00011101

Dataflow B << A→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent ishl

Description The values are popped from the operand stack. An int result is cal-
culated by shifting the TOS-1 value left by s position, where s is the
value of the low 5 bits of the TOS. The result is pushed onto the
operand stack.

23



2 JOP INSTRUCTION SET

shr

Operation Arithmetic shift rigth int

Opcode 00011110

Dataflow B >> A→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent ishr

Description The values are popped from the operand stack. An int result is cal-
culated by shifting the TOS-1 value rigth by s position, with sign
extension, where s is the value of the low 5 bits of the TOS. The
result is pushed onto the operand stack.

stm

Operation Store in local memory

Opcode 001nnnnn

Dataflow A→ stack[n]
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description The top value from the operand stack is stored in the local mem-
ory (stack) at position n. These 32 memory destinations represent
microcode local variables.

24



bz

Operation Branch if value is zero

Opcode 010nnnnn

Dataflow if A = 0 then pc+o f f tbl[n]+2→ pc
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description If the top value from the operand stack is zero a microcode branch
is taken. The value is popped from the operand stack. Due to a
pipeline delay, the zero flag is delayed one cycle, i.e. the value from
the last but one instruction is taken. The branch is followed by two
branch delay slots. The branch offset is taken from the table o f f tbl
indexed by n.

bnz

Operation Branch if value is not zero

Opcode 011nnnnn

Dataflow if A 6= 0 then pc+o f f tbl[n]+2→ pc
B→ A
stack[sp]→ B
sp−1→ sp

JVM equivalent –

Description If the top value from the operand stack is not zero a microcode
branch is taken. The value is popped from the operand stack. Due
to a pipeline delay, the zero flag is delayed one cycle, i.e. the value
from the last but one instruction is taken. The branch is followed
by two branch delay slots. The branch offset is taken from the table
o f f tbl indexed by n.

25



2 JOP INSTRUCTION SET

nop

Operation Do nothing

Opcode 10000000

Dataflow −

JVM equivalent nop

Description The famous no operation instruction.

wait

Operation Wait for memory completion

Opcode 10000001

Dataflow −

JVM equivalent –

Description This instruction stalls the processor until a pending memory instruc-
tion (stmra, stmwd or stbcrd) has completed. Two consecutive wait

instructions are necessary for a correct stall of the decode and exe-
cute stage.

26



jbr

Operation Conditional bytecode branch and goto

Opcode 10000010

Dataflow −

JVM equivalent ifnull, ifnonnull, ifeq, ifne, iflt, ifge, ifgt, ifle, if acmpeq, if acmpne,

if icmpeq, if icmpne, if icmplt, if icmpge, if icmpgt, if icmple, goto

Description Execute a bytecode branch or goto. The branch condition and off-
set are calculated in the bytecode fetch unit. Arguments must be
removed with pop instructions in the following microcode instruc-
tions.

ldm

Operation Load from local memory

Opcode 101nnnnn

Dataflow stack[n]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The value from the local memory (stack) at position n is pushed
onto the operand stack. These 32 memory destinations represent
microcode local variables.

27



2 JOP INSTRUCTION SET

ldi

Operation Load from local memory

Opcode 110nnnnn

Dataflow stack[n+32]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The value from the local memory (stack) at position n+32 is pushed
onto the operand stack. These 32 memory destinations represent
microcode constants.

ldmrd

Operation Load memory read data

Opcode 11100010

Dataflow memrdd → A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The value from the memory system after a memory read is pushed
onto the operand stack. This operation is usually preceded by two
wait instructions.

28



ldmul

Operation Load multiplier result

Opcode 11100101

Dataflow mulr→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent (imul)

Description The result of the multiplier is pushed onto the operand stack.

ldbcstart

Operation Load method start

Opcode 11100111

Dataflow bcstart → A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The method start address in the method cache is pushed onto the
operand stack.

29



2 JOP INSTRUCTION SET

ld<n>

Operation Load 32-bit word from local variable

Opcode 111010nn

Dataflow stack[vp+n]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent aload <n>, iload <n>, fload <n>

Description The local variable at position n is pushed onto the operand stack.

ld

Operation Load 32-bit word from local variable

Opcode 11101100

Dataflow stack[vp+opd]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent aload, iload, fload

Description The local variable at position opd is pushed onto the operand stack.
opd is taken from the bytecode instruction stream.

30



ldmi

Operation Load from local memory indirect

Opcode 11101101

Dataflow stack[ar]→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The value from the local memory (stack) at position ar is pushed
onto the operand stack.

ldsp

Operation Load stack pointer

Opcode 11110000

Dataflow sp→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The stack pointer is pushed onto the operand stack.

31



2 JOP INSTRUCTION SET

ldvp

Operation Load variable pointer

Opcode 11110001

Dataflow vp→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The variable pointer is pushed onto the operand stack.

ldjpc

Operation Load Java program counter

Opcode 11110010

Dataflow jpc→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description The Java program counter is pushed onto the operand stack.

32



ld opd 8u

Operation Load 8-bit bytecode operand unsigned

Opcode 11110100

Dataflow opd → A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description A single byte from the bytecode stream is pushed as int onto the
operand stack.

ld opd 8s

Operation Load 8-bit bytecode operand signed

Opcode 11110101

Dataflow opd → A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent (bipush)

Description A single byte from the bytecode stream is sign-extended to an int

and pushed onto the operand stack.

33



2 JOP INSTRUCTION SET

ld opd 16u

Operation Load 16-bit bytecode operand unsigned

Opcode 11110110

Dataflow opd 16→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent –

Description A 16-bit word from the bytecode stream is pushed as int onto the
operand stack.

ld opd 16s

Operation Load 16-bit bytecode operand signed

Opcode 11110111

Dataflow opd 16→ A
A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent (sipush)

Description A 16-bit word from the bytecode stream is sign-extended to an int

and pushed onto the operand stack.

34



dup

Operation Duplicate the top operand stack value

Opcode 11111000

Dataflow A→ B
B→ stack[sp+1]
sp+1→ sp

JVM equivalent dup

Description Duplicate the top value on the operand stack and push it onto the
operand stack.

35


	Bytecode Execution Time
	JOP Instruction Set

